Properties

Label 1080.4.q.b
Level $1080$
Weight $4$
Character orbit 1080.q
Analytic conductor $63.722$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1080,4,Mod(361,1080)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1080.361"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1080, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1080 = 2^{3} \cdot 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1080.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,0,40,0,-34] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(63.7220628062\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 6 x^{15} + 16 x^{14} + 14 x^{13} - 284 x^{12} + 764 x^{11} + 19770 x^{10} + 55106 x^{9} + \cdots + 193472540143 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{14} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - 5 \beta_1 + 5) q^{5} + (\beta_{5} - 4 \beta_1) q^{7} + ( - \beta_{13} + \beta_{2} + 8 \beta_1) q^{11} + (\beta_{12} - \beta_{8} + 6 \beta_1 - 6) q^{13} + ( - \beta_{14} - \beta_{9} + \beta_{5} - 13) q^{17}+ \cdots + (\beta_{14} - 7 \beta_{13} + \cdots + 30 \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 40 q^{5} - 34 q^{7} + 64 q^{11} - 48 q^{13} - 212 q^{17} + 456 q^{19} + 166 q^{23} - 200 q^{25} + 110 q^{29} - 160 q^{31} - 340 q^{35} + 104 q^{37} + 280 q^{41} + 136 q^{43} + 594 q^{47} - 1094 q^{49}+ \cdots + 182 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} - 6 x^{15} + 16 x^{14} + 14 x^{13} - 284 x^{12} + 764 x^{11} + 19770 x^{10} + 55106 x^{9} + \cdots + 193472540143 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 76 \nu^{15} - 77258 \nu^{14} + 527696 \nu^{13} + 274645 \nu^{12} - 16218838 \nu^{11} + \cdots + 900219652474679 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 157 \nu^{15} - 2095 \nu^{14} + 70300 \nu^{13} - 694036 \nu^{12} + 3516229 \nu^{11} + \cdots - 20917892904731 ) / 2301277704660 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 13268 \nu^{15} + 321410 \nu^{14} - 2099393 \nu^{13} - 5510131 \nu^{12} + \cdots - 986312262228999 ) / 128615853938220 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 91 \nu^{15} + 887 \nu^{14} + 4318 \nu^{13} - 55384 \nu^{12} + 174931 \nu^{11} + \cdots + 5389336662397 ) / 383546284110 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 299945 \nu^{15} - 868339 \nu^{14} - 6297611 \nu^{13} + 81959675 \nu^{12} + \cdots + 24\!\cdots\!58 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 360499 \nu^{15} - 996851 \nu^{14} + 10938140 \nu^{13} - 71674496 \nu^{12} + \cdots + 46\!\cdots\!45 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 434 \nu^{15} + 6094 \nu^{14} - 34564 \nu^{13} + 101911 \nu^{12} + 161186 \nu^{11} + \cdots + 4387912744523 ) / 1150638852330 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 449 \nu^{15} + 7087 \nu^{14} - 44152 \nu^{13} + 131047 \nu^{12} - 509443 \nu^{11} + \cdots + 2515559042558 ) / 1150638852330 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 165770 \nu^{15} + 2137864 \nu^{14} - 17687509 \nu^{13} + 85202449 \nu^{12} + \cdots - 71\!\cdots\!89 ) / 385847561814660 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 553543 \nu^{15} + 7632611 \nu^{14} - 53749274 \nu^{13} + 204757187 \nu^{12} + \cdots + 11\!\cdots\!82 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 572522 \nu^{15} - 10044223 \nu^{14} + 65299159 \nu^{13} - 146021446 \nu^{12} + \cdots + 12\!\cdots\!71 ) / 11\!\cdots\!80 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 324121 \nu^{15} - 1493588 \nu^{14} + 1065959 \nu^{13} - 24751322 \nu^{12} + \cdots + 87\!\cdots\!50 ) / 578771342721990 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 100305 \nu^{15} - 1188719 \nu^{14} + 7769075 \nu^{13} - 25953113 \nu^{12} + \cdots + 51\!\cdots\!26 ) / 128615853938220 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 1925 \nu^{15} + 20389 \nu^{14} - 84724 \nu^{13} + 219193 \nu^{12} - 1376377 \nu^{11} + \cdots - 28168704583270 ) / 2301277704660 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 2747 \nu^{15} + 27019 \nu^{14} - 111784 \nu^{13} + 236452 \nu^{12} + \cdots - 82295219611021 ) / 2301277704660 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{9} - \beta_{7} + \beta_{6} - \beta_{5} + 2\beta _1 + 2 ) / 9 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( - 3 \beta_{14} - 3 \beta_{13} + \beta_{10} - 2 \beta_{9} + 3 \beta_{8} - 2 \beta_{7} + \beta_{6} + \cdots + 3 ) / 9 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 6 \beta_{15} + 3 \beta_{14} + 9 \beta_{13} + 15 \beta_{12} + 12 \beta_{11} + 8 \beta_{10} + 6 \beta_{9} + \cdots + 2 ) / 9 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 6 \beta_{15} + 81 \beta_{14} - 75 \beta_{13} + 78 \beta_{12} + 84 \beta_{11} + 59 \beta_{10} - 16 \beta_{9} + \cdots - 18 ) / 9 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 90 \beta_{15} + 525 \beta_{14} - 294 \beta_{13} + 594 \beta_{12} + 216 \beta_{11} + 253 \beta_{10} + \cdots - 2098 ) / 9 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 53 \beta_{15} + 104 \beta_{14} + 31 \beta_{13} + 200 \beta_{12} - 194 \beta_{11} + 449 \beta_{10} + \cdots - 8976 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 7794 \beta_{15} + 1854 \beta_{14} - 234 \beta_{13} + 5310 \beta_{12} - 7686 \beta_{11} + 24687 \beta_{10} + \cdots - 944836 ) / 9 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 20754 \beta_{15} + 6171 \beta_{14} + 14856 \beta_{13} + 31230 \beta_{12} - 26802 \beta_{11} + \cdots - 6702432 ) / 9 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( 68280 \beta_{15} - 5433 \beta_{14} + 243234 \beta_{13} + 166245 \beta_{12} - 258018 \beta_{11} + \cdots - 22179121 ) / 9 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 1268295 \beta_{15} - 1086111 \beta_{14} + 1811661 \beta_{13} + 173922 \beta_{12} - 2973552 \beta_{11} + \cdots - 23530851 ) / 9 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 7432299 \beta_{15} - 15548703 \beta_{14} + 5758248 \beta_{13} - 13334823 \beta_{12} - 14396688 \beta_{11} + \cdots + 125828675 ) / 9 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( 4341634 \beta_{15} - 12547142 \beta_{14} + 2628071 \beta_{13} - 16316312 \beta_{12} - 1659250 \beta_{11} + \cdots + 56401067 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( ( 184488633 \beta_{15} - 396018414 \beta_{14} + 109709091 \beta_{13} - 911935980 \beta_{12} + \cdots + 13070072981 ) / 9 \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( ( 418349322 \beta_{15} + 295880235 \beta_{14} - 237851085 \beta_{13} - 4519304190 \beta_{12} + \cdots + 184026481212 ) / 9 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( ( - 7412079243 \beta_{15} + 10053860277 \beta_{14} - 7027379802 \beta_{13} - 22505590668 \beta_{12} + \cdots + 1351798631138 ) / 9 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1080\mathbb{Z}\right)^\times\).

\(n\) \(217\) \(271\) \(541\) \(1001\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1 + \beta_{1}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
2.04823 + 5.08932i
−2.94096 3.38657i
5.28147 2.94432i
−3.70856 + 2.19760i
5.78315 + 2.03015i
−0.887205 + 4.84133i
1.53665 5.16837i
−4.11278 0.927101i
2.04823 5.08932i
−2.94096 + 3.38657i
5.28147 + 2.94432i
−3.70856 2.19760i
5.78315 2.03015i
−0.887205 4.84133i
1.53665 + 5.16837i
−4.11278 + 0.927101i
0 0 0 2.50000 4.33013i 0 −17.3532 30.0566i 0 0 0
361.2 0 0 0 2.50000 4.33013i 0 −15.9276 27.5874i 0 0 0
361.3 0 0 0 2.50000 4.33013i 0 −5.91307 10.2417i 0 0 0
361.4 0 0 0 2.50000 4.33013i 0 −3.79996 6.58173i 0 0 0
361.5 0 0 0 2.50000 4.33013i 0 −2.04790 3.54707i 0 0 0
361.6 0 0 0 2.50000 4.33013i 0 4.29040 + 7.43119i 0 0 0
361.7 0 0 0 2.50000 4.33013i 0 6.84527 + 11.8564i 0 0 0
361.8 0 0 0 2.50000 4.33013i 0 16.9061 + 29.2822i 0 0 0
721.1 0 0 0 2.50000 + 4.33013i 0 −17.3532 + 30.0566i 0 0 0
721.2 0 0 0 2.50000 + 4.33013i 0 −15.9276 + 27.5874i 0 0 0
721.3 0 0 0 2.50000 + 4.33013i 0 −5.91307 + 10.2417i 0 0 0
721.4 0 0 0 2.50000 + 4.33013i 0 −3.79996 + 6.58173i 0 0 0
721.5 0 0 0 2.50000 + 4.33013i 0 −2.04790 + 3.54707i 0 0 0
721.6 0 0 0 2.50000 + 4.33013i 0 4.29040 7.43119i 0 0 0
721.7 0 0 0 2.50000 + 4.33013i 0 6.84527 11.8564i 0 0 0
721.8 0 0 0 2.50000 + 4.33013i 0 16.9061 29.2822i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 361.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1080.4.q.b 16
3.b odd 2 1 360.4.q.b 16
9.c even 3 1 inner 1080.4.q.b 16
9.d odd 6 1 360.4.q.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
360.4.q.b 16 3.b odd 2 1
360.4.q.b 16 9.d odd 6 1
1080.4.q.b 16 1.a even 1 1 trivial
1080.4.q.b 16 9.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{16} + 34 T_{7}^{15} + 2497 T_{7}^{14} + 48838 T_{7}^{13} + 3188398 T_{7}^{12} + \cdots + 26\!\cdots\!64 \) acting on \(S_{4}^{\mathrm{new}}(1080, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( T^{16} \) Copy content Toggle raw display
$5$ \( (T^{2} - 5 T + 25)^{8} \) Copy content Toggle raw display
$7$ \( T^{16} + \cdots + 26\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 57\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( T^{16} + \cdots + 89\!\cdots\!44 \) Copy content Toggle raw display
$17$ \( (T^{8} + \cdots - 1974672949104)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + \cdots + 5438892407536)^{2} \) Copy content Toggle raw display
$23$ \( T^{16} + \cdots + 79\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{16} + \cdots + 76\!\cdots\!56 \) Copy content Toggle raw display
$31$ \( T^{16} + \cdots + 29\!\cdots\!76 \) Copy content Toggle raw display
$37$ \( (T^{8} + \cdots + 55\!\cdots\!24)^{2} \) Copy content Toggle raw display
$41$ \( T^{16} + \cdots + 52\!\cdots\!49 \) Copy content Toggle raw display
$43$ \( T^{16} + \cdots + 94\!\cdots\!44 \) Copy content Toggle raw display
$47$ \( T^{16} + \cdots + 42\!\cdots\!36 \) Copy content Toggle raw display
$53$ \( (T^{8} + \cdots + 14\!\cdots\!96)^{2} \) Copy content Toggle raw display
$59$ \( T^{16} + \cdots + 78\!\cdots\!76 \) Copy content Toggle raw display
$61$ \( T^{16} + \cdots + 31\!\cdots\!36 \) Copy content Toggle raw display
$67$ \( T^{16} + \cdots + 22\!\cdots\!21 \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots - 47\!\cdots\!36)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots - 10\!\cdots\!92)^{2} \) Copy content Toggle raw display
$79$ \( T^{16} + \cdots + 50\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{16} + \cdots + 41\!\cdots\!16 \) Copy content Toggle raw display
$89$ \( (T^{8} + \cdots + 25\!\cdots\!48)^{2} \) Copy content Toggle raw display
$97$ \( T^{16} + \cdots + 25\!\cdots\!44 \) Copy content Toggle raw display
show more
show less