Properties

Label 1058.4.a.p.1.2
Level $1058$
Weight $4$
Character 1058.1
Self dual yes
Analytic conductor $62.424$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1058,4,Mod(1,1058)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1058.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1058, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-12,12,24,0,-24,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 75x^{4} + 102x^{3} + 1209x^{2} - 844x - 2078 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(4.85963\) of defining polynomial
Character \(\chi\) \(=\) 1058.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -5.21166 q^{3} +4.00000 q^{4} +4.33058 q^{5} +10.4233 q^{6} -9.04844 q^{7} -8.00000 q^{8} +0.161433 q^{9} -8.66116 q^{10} +46.5516 q^{11} -20.8467 q^{12} -32.9791 q^{13} +18.0969 q^{14} -22.5695 q^{15} +16.0000 q^{16} +65.4116 q^{17} -0.322867 q^{18} -16.9296 q^{19} +17.3223 q^{20} +47.1574 q^{21} -93.1031 q^{22} +41.6933 q^{24} -106.246 q^{25} +65.9582 q^{26} +139.874 q^{27} -36.1938 q^{28} +22.4230 q^{29} +45.1391 q^{30} -251.263 q^{31} -32.0000 q^{32} -242.611 q^{33} -130.823 q^{34} -39.1850 q^{35} +0.645734 q^{36} -51.9548 q^{37} +33.8592 q^{38} +171.876 q^{39} -34.6446 q^{40} +373.388 q^{41} -94.3148 q^{42} +433.075 q^{43} +186.206 q^{44} +0.699101 q^{45} -218.465 q^{47} -83.3866 q^{48} -261.126 q^{49} +212.492 q^{50} -340.903 q^{51} -131.916 q^{52} +423.615 q^{53} -279.747 q^{54} +201.595 q^{55} +72.3875 q^{56} +88.2313 q^{57} -44.8459 q^{58} -382.178 q^{59} -90.2781 q^{60} -191.489 q^{61} +502.525 q^{62} -1.46072 q^{63} +64.0000 q^{64} -142.819 q^{65} +485.222 q^{66} -579.602 q^{67} +261.646 q^{68} +78.3700 q^{70} -1053.27 q^{71} -1.29147 q^{72} -600.364 q^{73} +103.910 q^{74} +553.719 q^{75} -67.7183 q^{76} -421.219 q^{77} -343.752 q^{78} -240.591 q^{79} +69.2893 q^{80} -733.333 q^{81} -746.775 q^{82} +750.461 q^{83} +188.630 q^{84} +283.270 q^{85} -866.150 q^{86} -116.861 q^{87} -372.412 q^{88} +1533.04 q^{89} -1.39820 q^{90} +298.409 q^{91} +1309.50 q^{93} +436.930 q^{94} -73.3149 q^{95} +166.773 q^{96} -1666.70 q^{97} +522.252 q^{98} +7.51498 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 12 q^{3} + 24 q^{4} - 24 q^{6} - 48 q^{8} + 90 q^{9} + 48 q^{12} + 44 q^{13} + 96 q^{16} - 180 q^{18} - 96 q^{24} - 98 q^{25} - 88 q^{26} + 984 q^{27} + 580 q^{29} - 268 q^{31} - 192 q^{32}+ \cdots - 1092 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −5.21166 −1.00299 −0.501493 0.865162i \(-0.667216\pi\)
−0.501493 + 0.865162i \(0.667216\pi\)
\(4\) 4.00000 0.500000
\(5\) 4.33058 0.387339 0.193669 0.981067i \(-0.437961\pi\)
0.193669 + 0.981067i \(0.437961\pi\)
\(6\) 10.4233 0.709218
\(7\) −9.04844 −0.488570 −0.244285 0.969704i \(-0.578553\pi\)
−0.244285 + 0.969704i \(0.578553\pi\)
\(8\) −8.00000 −0.353553
\(9\) 0.161433 0.00597902
\(10\) −8.66116 −0.273890
\(11\) 46.5516 1.27598 0.637992 0.770043i \(-0.279765\pi\)
0.637992 + 0.770043i \(0.279765\pi\)
\(12\) −20.8467 −0.501493
\(13\) −32.9791 −0.703597 −0.351798 0.936076i \(-0.614430\pi\)
−0.351798 + 0.936076i \(0.614430\pi\)
\(14\) 18.0969 0.345471
\(15\) −22.5695 −0.388495
\(16\) 16.0000 0.250000
\(17\) 65.4116 0.933214 0.466607 0.884465i \(-0.345476\pi\)
0.466607 + 0.884465i \(0.345476\pi\)
\(18\) −0.322867 −0.00422780
\(19\) −16.9296 −0.204416 −0.102208 0.994763i \(-0.532591\pi\)
−0.102208 + 0.994763i \(0.532591\pi\)
\(20\) 17.3223 0.193669
\(21\) 47.1574 0.490028
\(22\) −93.1031 −0.902257
\(23\) 0 0
\(24\) 41.6933 0.354609
\(25\) −106.246 −0.849969
\(26\) 65.9582 0.497518
\(27\) 139.874 0.996988
\(28\) −36.1938 −0.244285
\(29\) 22.4230 0.143581 0.0717904 0.997420i \(-0.477129\pi\)
0.0717904 + 0.997420i \(0.477129\pi\)
\(30\) 45.1391 0.274708
\(31\) −251.263 −1.45574 −0.727872 0.685712i \(-0.759491\pi\)
−0.727872 + 0.685712i \(0.759491\pi\)
\(32\) −32.0000 −0.176777
\(33\) −242.611 −1.27979
\(34\) −130.823 −0.659882
\(35\) −39.1850 −0.189242
\(36\) 0.645734 0.00298951
\(37\) −51.9548 −0.230846 −0.115423 0.993316i \(-0.536822\pi\)
−0.115423 + 0.993316i \(0.536822\pi\)
\(38\) 33.8592 0.144544
\(39\) 171.876 0.705697
\(40\) −34.6446 −0.136945
\(41\) 373.388 1.42228 0.711139 0.703052i \(-0.248180\pi\)
0.711139 + 0.703052i \(0.248180\pi\)
\(42\) −94.3148 −0.346502
\(43\) 433.075 1.53589 0.767946 0.640515i \(-0.221279\pi\)
0.767946 + 0.640515i \(0.221279\pi\)
\(44\) 186.206 0.637992
\(45\) 0.699101 0.00231591
\(46\) 0 0
\(47\) −218.465 −0.678009 −0.339004 0.940785i \(-0.610090\pi\)
−0.339004 + 0.940785i \(0.610090\pi\)
\(48\) −83.3866 −0.250746
\(49\) −261.126 −0.761300
\(50\) 212.492 0.601019
\(51\) −340.903 −0.935999
\(52\) −131.916 −0.351798
\(53\) 423.615 1.09789 0.548944 0.835859i \(-0.315030\pi\)
0.548944 + 0.835859i \(0.315030\pi\)
\(54\) −279.747 −0.704977
\(55\) 201.595 0.494238
\(56\) 72.3875 0.172735
\(57\) 88.2313 0.205027
\(58\) −44.8459 −0.101527
\(59\) −382.178 −0.843312 −0.421656 0.906756i \(-0.638551\pi\)
−0.421656 + 0.906756i \(0.638551\pi\)
\(60\) −90.2781 −0.194248
\(61\) −191.489 −0.401929 −0.200964 0.979599i \(-0.564408\pi\)
−0.200964 + 0.979599i \(0.564408\pi\)
\(62\) 502.525 1.02937
\(63\) −1.46072 −0.00292117
\(64\) 64.0000 0.125000
\(65\) −142.819 −0.272530
\(66\) 485.222 0.904950
\(67\) −579.602 −1.05686 −0.528431 0.848976i \(-0.677219\pi\)
−0.528431 + 0.848976i \(0.677219\pi\)
\(68\) 261.646 0.466607
\(69\) 0 0
\(70\) 78.3700 0.133814
\(71\) −1053.27 −1.76057 −0.880283 0.474450i \(-0.842647\pi\)
−0.880283 + 0.474450i \(0.842647\pi\)
\(72\) −1.29147 −0.00211390
\(73\) −600.364 −0.962566 −0.481283 0.876565i \(-0.659829\pi\)
−0.481283 + 0.876565i \(0.659829\pi\)
\(74\) 103.910 0.163233
\(75\) 553.719 0.852506
\(76\) −67.7183 −0.102208
\(77\) −421.219 −0.623407
\(78\) −343.752 −0.499003
\(79\) −240.591 −0.342640 −0.171320 0.985215i \(-0.554803\pi\)
−0.171320 + 0.985215i \(0.554803\pi\)
\(80\) 69.2893 0.0968347
\(81\) −733.333 −1.00594
\(82\) −746.775 −1.00570
\(83\) 750.461 0.992456 0.496228 0.868192i \(-0.334718\pi\)
0.496228 + 0.868192i \(0.334718\pi\)
\(84\) 188.630 0.245014
\(85\) 283.270 0.361470
\(86\) −866.150 −1.08604
\(87\) −116.861 −0.144009
\(88\) −372.412 −0.451128
\(89\) 1533.04 1.82586 0.912932 0.408113i \(-0.133813\pi\)
0.912932 + 0.408113i \(0.133813\pi\)
\(90\) −1.39820 −0.00163759
\(91\) 298.409 0.343756
\(92\) 0 0
\(93\) 1309.50 1.46009
\(94\) 436.930 0.479425
\(95\) −73.3149 −0.0791784
\(96\) 166.773 0.177304
\(97\) −1666.70 −1.74462 −0.872308 0.488957i \(-0.837377\pi\)
−0.872308 + 0.488957i \(0.837377\pi\)
\(98\) 522.252 0.538320
\(99\) 7.51498 0.00762913
\(100\) −424.984 −0.424984
\(101\) 715.317 0.704720 0.352360 0.935865i \(-0.385379\pi\)
0.352360 + 0.935865i \(0.385379\pi\)
\(102\) 681.806 0.661851
\(103\) 637.684 0.610028 0.305014 0.952348i \(-0.401339\pi\)
0.305014 + 0.952348i \(0.401339\pi\)
\(104\) 263.833 0.248759
\(105\) 204.219 0.189807
\(106\) −847.231 −0.776324
\(107\) 990.139 0.894582 0.447291 0.894388i \(-0.352389\pi\)
0.447291 + 0.894388i \(0.352389\pi\)
\(108\) 559.494 0.498494
\(109\) −1280.38 −1.12512 −0.562561 0.826756i \(-0.690184\pi\)
−0.562561 + 0.826756i \(0.690184\pi\)
\(110\) −403.191 −0.349479
\(111\) 270.771 0.231536
\(112\) −144.775 −0.122142
\(113\) −1236.77 −1.02961 −0.514803 0.857309i \(-0.672135\pi\)
−0.514803 + 0.857309i \(0.672135\pi\)
\(114\) −176.463 −0.144976
\(115\) 0 0
\(116\) 89.6919 0.0717904
\(117\) −5.32393 −0.00420682
\(118\) 764.357 0.596311
\(119\) −591.872 −0.455940
\(120\) 180.556 0.137354
\(121\) 836.048 0.628135
\(122\) 382.978 0.284206
\(123\) −1945.97 −1.42652
\(124\) −1005.05 −0.727872
\(125\) −1001.43 −0.716565
\(126\) 2.92144 0.00206558
\(127\) 2650.20 1.85171 0.925855 0.377878i \(-0.123346\pi\)
0.925855 + 0.377878i \(0.123346\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2257.04 −1.54048
\(130\) 285.637 0.192708
\(131\) −417.264 −0.278294 −0.139147 0.990272i \(-0.544436\pi\)
−0.139147 + 0.990272i \(0.544436\pi\)
\(132\) −970.444 −0.639896
\(133\) 153.186 0.0998717
\(134\) 1159.20 0.747314
\(135\) 605.734 0.386172
\(136\) −523.292 −0.329941
\(137\) 1960.98 1.22290 0.611451 0.791282i \(-0.290586\pi\)
0.611451 + 0.791282i \(0.290586\pi\)
\(138\) 0 0
\(139\) 1759.38 1.07359 0.536793 0.843714i \(-0.319635\pi\)
0.536793 + 0.843714i \(0.319635\pi\)
\(140\) −156.740 −0.0946210
\(141\) 1138.57 0.680033
\(142\) 2106.54 1.24491
\(143\) −1535.23 −0.897778
\(144\) 2.58294 0.00149475
\(145\) 97.1045 0.0556144
\(146\) 1200.73 0.680637
\(147\) 1360.90 0.763572
\(148\) −207.819 −0.115423
\(149\) 2882.34 1.58477 0.792383 0.610024i \(-0.208840\pi\)
0.792383 + 0.610024i \(0.208840\pi\)
\(150\) −1107.44 −0.602813
\(151\) 3032.12 1.63411 0.817056 0.576559i \(-0.195605\pi\)
0.817056 + 0.576559i \(0.195605\pi\)
\(152\) 135.437 0.0722721
\(153\) 10.5596 0.00557970
\(154\) 842.438 0.440815
\(155\) −1088.11 −0.563867
\(156\) 687.504 0.352849
\(157\) 2791.44 1.41899 0.709493 0.704712i \(-0.248924\pi\)
0.709493 + 0.704712i \(0.248924\pi\)
\(158\) 481.181 0.242283
\(159\) −2207.74 −1.10116
\(160\) −138.579 −0.0684725
\(161\) 0 0
\(162\) 1466.67 0.711309
\(163\) 1678.20 0.806423 0.403212 0.915107i \(-0.367894\pi\)
0.403212 + 0.915107i \(0.367894\pi\)
\(164\) 1493.55 0.711139
\(165\) −1050.65 −0.495714
\(166\) −1500.92 −0.701772
\(167\) 2918.31 1.35225 0.676125 0.736787i \(-0.263658\pi\)
0.676125 + 0.736787i \(0.263658\pi\)
\(168\) −377.259 −0.173251
\(169\) −1109.38 −0.504952
\(170\) −566.540 −0.255598
\(171\) −2.73300 −0.00122221
\(172\) 1732.30 0.767946
\(173\) 153.954 0.0676583 0.0338292 0.999428i \(-0.489230\pi\)
0.0338292 + 0.999428i \(0.489230\pi\)
\(174\) 233.722 0.101830
\(175\) 961.361 0.415269
\(176\) 744.825 0.318996
\(177\) 1991.79 0.845829
\(178\) −3066.08 −1.29108
\(179\) 1031.48 0.430707 0.215354 0.976536i \(-0.430910\pi\)
0.215354 + 0.976536i \(0.430910\pi\)
\(180\) 2.79640 0.00115795
\(181\) −72.7337 −0.0298688 −0.0149344 0.999888i \(-0.504754\pi\)
−0.0149344 + 0.999888i \(0.504754\pi\)
\(182\) −596.819 −0.243072
\(183\) 997.976 0.403128
\(184\) 0 0
\(185\) −224.995 −0.0894158
\(186\) −2618.99 −1.03244
\(187\) 3045.01 1.19077
\(188\) −873.861 −0.339004
\(189\) −1265.64 −0.487098
\(190\) 146.630 0.0559876
\(191\) −2802.09 −1.06153 −0.530764 0.847520i \(-0.678095\pi\)
−0.530764 + 0.847520i \(0.678095\pi\)
\(192\) −333.546 −0.125373
\(193\) 1327.92 0.495265 0.247632 0.968854i \(-0.420347\pi\)
0.247632 + 0.968854i \(0.420347\pi\)
\(194\) 3333.40 1.23363
\(195\) 744.323 0.273344
\(196\) −1044.50 −0.380650
\(197\) 1832.22 0.662640 0.331320 0.943518i \(-0.392506\pi\)
0.331320 + 0.943518i \(0.392506\pi\)
\(198\) −15.0300 −0.00539461
\(199\) 1378.55 0.491068 0.245534 0.969388i \(-0.421037\pi\)
0.245534 + 0.969388i \(0.421037\pi\)
\(200\) 849.969 0.300509
\(201\) 3020.69 1.06002
\(202\) −1430.63 −0.498312
\(203\) −202.893 −0.0701492
\(204\) −1363.61 −0.468000
\(205\) 1616.99 0.550903
\(206\) −1275.37 −0.431355
\(207\) 0 0
\(208\) −527.666 −0.175899
\(209\) −788.098 −0.260832
\(210\) −408.438 −0.134214
\(211\) −476.743 −0.155547 −0.0777733 0.996971i \(-0.524781\pi\)
−0.0777733 + 0.996971i \(0.524781\pi\)
\(212\) 1694.46 0.548944
\(213\) 5489.29 1.76582
\(214\) −1980.28 −0.632565
\(215\) 1875.47 0.594910
\(216\) −1118.99 −0.352489
\(217\) 2273.53 0.711233
\(218\) 2560.76 0.795582
\(219\) 3128.90 0.965440
\(220\) 806.381 0.247119
\(221\) −2157.21 −0.656606
\(222\) −541.542 −0.163720
\(223\) 4015.20 1.20573 0.602864 0.797844i \(-0.294026\pi\)
0.602864 + 0.797844i \(0.294026\pi\)
\(224\) 289.550 0.0863677
\(225\) −17.1517 −0.00508198
\(226\) 2473.54 0.728041
\(227\) 4393.17 1.28452 0.642258 0.766489i \(-0.277998\pi\)
0.642258 + 0.766489i \(0.277998\pi\)
\(228\) 352.925 0.102513
\(229\) 4311.28 1.24409 0.622047 0.782980i \(-0.286301\pi\)
0.622047 + 0.782980i \(0.286301\pi\)
\(230\) 0 0
\(231\) 2195.25 0.625268
\(232\) −179.384 −0.0507635
\(233\) 3508.07 0.986358 0.493179 0.869928i \(-0.335835\pi\)
0.493179 + 0.869928i \(0.335835\pi\)
\(234\) 10.6479 0.00297467
\(235\) −946.081 −0.262619
\(236\) −1528.71 −0.421656
\(237\) 1253.88 0.343663
\(238\) 1183.74 0.322398
\(239\) 3364.14 0.910494 0.455247 0.890365i \(-0.349551\pi\)
0.455247 + 0.890365i \(0.349551\pi\)
\(240\) −361.112 −0.0971238
\(241\) −6462.14 −1.72723 −0.863616 0.504151i \(-0.831806\pi\)
−0.863616 + 0.504151i \(0.831806\pi\)
\(242\) −1672.10 −0.444158
\(243\) 45.2964 0.0119579
\(244\) −765.956 −0.200964
\(245\) −1130.83 −0.294881
\(246\) 3891.94 1.00870
\(247\) 558.322 0.143827
\(248\) 2010.10 0.514684
\(249\) −3911.15 −0.995419
\(250\) 2002.86 0.506688
\(251\) −388.032 −0.0975793 −0.0487896 0.998809i \(-0.515536\pi\)
−0.0487896 + 0.998809i \(0.515536\pi\)
\(252\) −5.84288 −0.00146058
\(253\) 0 0
\(254\) −5300.40 −1.30936
\(255\) −1476.31 −0.362549
\(256\) 256.000 0.0625000
\(257\) −930.487 −0.225845 −0.112923 0.993604i \(-0.536021\pi\)
−0.112923 + 0.993604i \(0.536021\pi\)
\(258\) 4514.08 1.08928
\(259\) 470.110 0.112785
\(260\) −571.275 −0.136265
\(261\) 3.61982 0.000858472 0
\(262\) 834.527 0.196783
\(263\) −1149.87 −0.269596 −0.134798 0.990873i \(-0.543039\pi\)
−0.134798 + 0.990873i \(0.543039\pi\)
\(264\) 1940.89 0.452475
\(265\) 1834.50 0.425255
\(266\) −306.372 −0.0706199
\(267\) −7989.68 −1.83131
\(268\) −2318.41 −0.528431
\(269\) −3814.34 −0.864553 −0.432276 0.901741i \(-0.642289\pi\)
−0.432276 + 0.901741i \(0.642289\pi\)
\(270\) −1211.47 −0.273065
\(271\) 4169.39 0.934586 0.467293 0.884103i \(-0.345229\pi\)
0.467293 + 0.884103i \(0.345229\pi\)
\(272\) 1046.58 0.233303
\(273\) −1555.21 −0.344782
\(274\) −3921.95 −0.864722
\(275\) −4945.92 −1.08455
\(276\) 0 0
\(277\) −4272.56 −0.926763 −0.463381 0.886159i \(-0.653364\pi\)
−0.463381 + 0.886159i \(0.653364\pi\)
\(278\) −3518.76 −0.759140
\(279\) −40.5622 −0.00870393
\(280\) 313.480 0.0669072
\(281\) −7639.10 −1.62174 −0.810872 0.585223i \(-0.801007\pi\)
−0.810872 + 0.585223i \(0.801007\pi\)
\(282\) −2277.13 −0.480856
\(283\) 1217.49 0.255732 0.127866 0.991791i \(-0.459187\pi\)
0.127866 + 0.991791i \(0.459187\pi\)
\(284\) −4213.08 −0.880283
\(285\) 382.093 0.0794148
\(286\) 3070.46 0.634825
\(287\) −3378.58 −0.694881
\(288\) −5.16587 −0.00105695
\(289\) −634.329 −0.129112
\(290\) −194.209 −0.0393253
\(291\) 8686.28 1.74982
\(292\) −2401.46 −0.481283
\(293\) 5320.54 1.06085 0.530425 0.847732i \(-0.322032\pi\)
0.530425 + 0.847732i \(0.322032\pi\)
\(294\) −2721.80 −0.539927
\(295\) −1655.05 −0.326647
\(296\) 415.639 0.0816166
\(297\) 6511.33 1.27214
\(298\) −5764.67 −1.12060
\(299\) 0 0
\(300\) 2214.88 0.426253
\(301\) −3918.65 −0.750390
\(302\) −6064.25 −1.15549
\(303\) −3727.99 −0.706823
\(304\) −270.873 −0.0511041
\(305\) −829.258 −0.155683
\(306\) −21.1192 −0.00394544
\(307\) 6898.95 1.28255 0.641276 0.767310i \(-0.278405\pi\)
0.641276 + 0.767310i \(0.278405\pi\)
\(308\) −1684.88 −0.311704
\(309\) −3323.39 −0.611849
\(310\) 2176.23 0.398714
\(311\) 629.934 0.114856 0.0574281 0.998350i \(-0.481710\pi\)
0.0574281 + 0.998350i \(0.481710\pi\)
\(312\) −1375.01 −0.249502
\(313\) −1369.81 −0.247367 −0.123684 0.992322i \(-0.539471\pi\)
−0.123684 + 0.992322i \(0.539471\pi\)
\(314\) −5582.87 −1.00337
\(315\) −6.32577 −0.00113148
\(316\) −962.363 −0.171320
\(317\) 2583.87 0.457807 0.228903 0.973449i \(-0.426486\pi\)
0.228903 + 0.973449i \(0.426486\pi\)
\(318\) 4415.48 0.778641
\(319\) 1043.82 0.183207
\(320\) 277.157 0.0484174
\(321\) −5160.27 −0.897253
\(322\) 0 0
\(323\) −1107.39 −0.190764
\(324\) −2933.33 −0.502972
\(325\) 3503.90 0.598035
\(326\) −3356.40 −0.570227
\(327\) 6672.92 1.12848
\(328\) −2987.10 −0.502851
\(329\) 1976.77 0.331255
\(330\) 2101.29 0.350522
\(331\) 1028.64 0.170813 0.0854065 0.996346i \(-0.472781\pi\)
0.0854065 + 0.996346i \(0.472781\pi\)
\(332\) 3001.85 0.496228
\(333\) −8.38725 −0.00138024
\(334\) −5836.62 −0.956185
\(335\) −2510.02 −0.409364
\(336\) 754.519 0.122507
\(337\) −8650.70 −1.39832 −0.699159 0.714966i \(-0.746442\pi\)
−0.699159 + 0.714966i \(0.746442\pi\)
\(338\) 2218.76 0.357055
\(339\) 6445.63 1.03268
\(340\) 1133.08 0.180735
\(341\) −11696.7 −1.85751
\(342\) 5.46600 0.000864232 0
\(343\) 5466.39 0.860518
\(344\) −3464.60 −0.543019
\(345\) 0 0
\(346\) −307.908 −0.0478417
\(347\) 12314.1 1.90506 0.952531 0.304440i \(-0.0984693\pi\)
0.952531 + 0.304440i \(0.0984693\pi\)
\(348\) −467.444 −0.0720047
\(349\) 2938.78 0.450743 0.225372 0.974273i \(-0.427640\pi\)
0.225372 + 0.974273i \(0.427640\pi\)
\(350\) −1922.72 −0.293639
\(351\) −4612.91 −0.701478
\(352\) −1489.65 −0.225564
\(353\) −9491.13 −1.43105 −0.715527 0.698585i \(-0.753813\pi\)
−0.715527 + 0.698585i \(0.753813\pi\)
\(354\) −3983.57 −0.598091
\(355\) −4561.27 −0.681935
\(356\) 6132.16 0.912932
\(357\) 3084.64 0.457301
\(358\) −2062.96 −0.304556
\(359\) 11320.5 1.66426 0.832132 0.554578i \(-0.187120\pi\)
0.832132 + 0.554578i \(0.187120\pi\)
\(360\) −5.59281 −0.000818796 0
\(361\) −6572.39 −0.958214
\(362\) 145.467 0.0211204
\(363\) −4357.20 −0.630010
\(364\) 1193.64 0.171878
\(365\) −2599.93 −0.372839
\(366\) −1995.95 −0.285055
\(367\) 6529.40 0.928698 0.464349 0.885652i \(-0.346288\pi\)
0.464349 + 0.885652i \(0.346288\pi\)
\(368\) 0 0
\(369\) 60.2773 0.00850382
\(370\) 449.989 0.0632265
\(371\) −3833.06 −0.536395
\(372\) 5237.98 0.730045
\(373\) 2942.44 0.408456 0.204228 0.978923i \(-0.434532\pi\)
0.204228 + 0.978923i \(0.434532\pi\)
\(374\) −6090.02 −0.841998
\(375\) 5219.11 0.718704
\(376\) 1747.72 0.239712
\(377\) −739.490 −0.101023
\(378\) 2531.27 0.344430
\(379\) −1474.30 −0.199815 −0.0999075 0.994997i \(-0.531855\pi\)
−0.0999075 + 0.994997i \(0.531855\pi\)
\(380\) −293.260 −0.0395892
\(381\) −13812.0 −1.85724
\(382\) 5604.17 0.750613
\(383\) 950.773 0.126847 0.0634233 0.997987i \(-0.479798\pi\)
0.0634233 + 0.997987i \(0.479798\pi\)
\(384\) 667.093 0.0886522
\(385\) −1824.12 −0.241470
\(386\) −2655.85 −0.350205
\(387\) 69.9128 0.00918312
\(388\) −6666.80 −0.872308
\(389\) 5589.10 0.728480 0.364240 0.931305i \(-0.381329\pi\)
0.364240 + 0.931305i \(0.381329\pi\)
\(390\) −1488.65 −0.193283
\(391\) 0 0
\(392\) 2089.01 0.269160
\(393\) 2174.64 0.279125
\(394\) −3664.43 −0.468557
\(395\) −1041.90 −0.132718
\(396\) 30.0599 0.00381457
\(397\) 7496.86 0.947750 0.473875 0.880592i \(-0.342855\pi\)
0.473875 + 0.880592i \(0.342855\pi\)
\(398\) −2757.09 −0.347238
\(399\) −798.355 −0.100170
\(400\) −1699.94 −0.212492
\(401\) 1773.23 0.220826 0.110413 0.993886i \(-0.464783\pi\)
0.110413 + 0.993886i \(0.464783\pi\)
\(402\) −6041.39 −0.749545
\(403\) 8286.42 1.02426
\(404\) 2861.27 0.352360
\(405\) −3175.76 −0.389641
\(406\) 405.786 0.0496030
\(407\) −2418.58 −0.294556
\(408\) 2727.22 0.330926
\(409\) −2200.53 −0.266038 −0.133019 0.991114i \(-0.542467\pi\)
−0.133019 + 0.991114i \(0.542467\pi\)
\(410\) −3233.97 −0.389547
\(411\) −10220.0 −1.22655
\(412\) 2550.74 0.305014
\(413\) 3458.12 0.412017
\(414\) 0 0
\(415\) 3249.93 0.384417
\(416\) 1055.33 0.124380
\(417\) −9169.29 −1.07679
\(418\) 1576.20 0.184436
\(419\) 836.942 0.0975830 0.0487915 0.998809i \(-0.484463\pi\)
0.0487915 + 0.998809i \(0.484463\pi\)
\(420\) 816.876 0.0949035
\(421\) 12156.2 1.40726 0.703628 0.710569i \(-0.251562\pi\)
0.703628 + 0.710569i \(0.251562\pi\)
\(422\) 953.486 0.109988
\(423\) −35.2676 −0.00405383
\(424\) −3388.92 −0.388162
\(425\) −6949.72 −0.793202
\(426\) −10978.6 −1.24862
\(427\) 1732.68 0.196370
\(428\) 3960.55 0.447291
\(429\) 8001.09 0.900458
\(430\) −3750.93 −0.420665
\(431\) 5695.64 0.636541 0.318270 0.948000i \(-0.396898\pi\)
0.318270 + 0.948000i \(0.396898\pi\)
\(432\) 2237.98 0.249247
\(433\) −513.619 −0.0570045 −0.0285023 0.999594i \(-0.509074\pi\)
−0.0285023 + 0.999594i \(0.509074\pi\)
\(434\) −4547.07 −0.502918
\(435\) −506.076 −0.0557804
\(436\) −5121.53 −0.562561
\(437\) 0 0
\(438\) −6257.79 −0.682669
\(439\) 16785.3 1.82487 0.912435 0.409221i \(-0.134200\pi\)
0.912435 + 0.409221i \(0.134200\pi\)
\(440\) −1612.76 −0.174740
\(441\) −42.1544 −0.00455182
\(442\) 4314.43 0.464291
\(443\) −13552.0 −1.45344 −0.726720 0.686934i \(-0.758956\pi\)
−0.726720 + 0.686934i \(0.758956\pi\)
\(444\) 1083.08 0.115768
\(445\) 6638.95 0.707228
\(446\) −8030.39 −0.852579
\(447\) −15021.8 −1.58950
\(448\) −579.100 −0.0610712
\(449\) −5732.64 −0.602539 −0.301270 0.953539i \(-0.597410\pi\)
−0.301270 + 0.953539i \(0.597410\pi\)
\(450\) 34.3033 0.00359350
\(451\) 17381.8 1.81480
\(452\) −4947.08 −0.514803
\(453\) −15802.4 −1.63899
\(454\) −8786.34 −0.908290
\(455\) 1292.29 0.133150
\(456\) −705.850 −0.0724878
\(457\) −3360.90 −0.344018 −0.172009 0.985095i \(-0.555026\pi\)
−0.172009 + 0.985095i \(0.555026\pi\)
\(458\) −8622.57 −0.879708
\(459\) 9149.35 0.930403
\(460\) 0 0
\(461\) −8453.93 −0.854097 −0.427048 0.904229i \(-0.640447\pi\)
−0.427048 + 0.904229i \(0.640447\pi\)
\(462\) −4390.50 −0.442131
\(463\) −3741.11 −0.375516 −0.187758 0.982215i \(-0.560122\pi\)
−0.187758 + 0.982215i \(0.560122\pi\)
\(464\) 358.768 0.0358952
\(465\) 5670.88 0.565550
\(466\) −7016.14 −0.697460
\(467\) −8272.99 −0.819760 −0.409880 0.912139i \(-0.634429\pi\)
−0.409880 + 0.912139i \(0.634429\pi\)
\(468\) −21.2957 −0.00210341
\(469\) 5244.50 0.516350
\(470\) 1892.16 0.185700
\(471\) −14548.0 −1.42322
\(472\) 3057.43 0.298156
\(473\) 20160.3 1.95977
\(474\) −2507.76 −0.243006
\(475\) 1798.70 0.173748
\(476\) −2367.49 −0.227970
\(477\) 68.3857 0.00656429
\(478\) −6728.28 −0.643817
\(479\) 11451.7 1.09236 0.546182 0.837667i \(-0.316081\pi\)
0.546182 + 0.837667i \(0.316081\pi\)
\(480\) 722.225 0.0686769
\(481\) 1713.42 0.162423
\(482\) 12924.3 1.22134
\(483\) 0 0
\(484\) 3344.19 0.314067
\(485\) −7217.78 −0.675758
\(486\) −90.5928 −0.00845550
\(487\) 16249.7 1.51200 0.755999 0.654573i \(-0.227151\pi\)
0.755999 + 0.654573i \(0.227151\pi\)
\(488\) 1531.91 0.142103
\(489\) −8746.23 −0.808830
\(490\) 2261.65 0.208512
\(491\) 7470.12 0.686602 0.343301 0.939225i \(-0.388455\pi\)
0.343301 + 0.939225i \(0.388455\pi\)
\(492\) −7783.88 −0.713261
\(493\) 1466.72 0.133992
\(494\) −1116.64 −0.101701
\(495\) 32.5442 0.00295506
\(496\) −4020.20 −0.363936
\(497\) 9530.45 0.860159
\(498\) 7822.30 0.703867
\(499\) −11438.5 −1.02617 −0.513083 0.858339i \(-0.671497\pi\)
−0.513083 + 0.858339i \(0.671497\pi\)
\(500\) −4005.72 −0.358282
\(501\) −15209.3 −1.35629
\(502\) 776.065 0.0689990
\(503\) −5288.25 −0.468770 −0.234385 0.972144i \(-0.575308\pi\)
−0.234385 + 0.972144i \(0.575308\pi\)
\(504\) 11.6858 0.00103279
\(505\) 3097.74 0.272965
\(506\) 0 0
\(507\) 5781.71 0.506459
\(508\) 10600.8 0.925855
\(509\) −20444.9 −1.78036 −0.890180 0.455608i \(-0.849422\pi\)
−0.890180 + 0.455608i \(0.849422\pi\)
\(510\) 2952.62 0.256361
\(511\) 5432.36 0.470281
\(512\) −512.000 −0.0441942
\(513\) −2368.00 −0.203801
\(514\) 1860.97 0.159697
\(515\) 2761.54 0.236288
\(516\) −9028.16 −0.770238
\(517\) −10169.9 −0.865128
\(518\) −940.220 −0.0797508
\(519\) −802.356 −0.0678603
\(520\) 1142.55 0.0963540
\(521\) −15469.5 −1.30083 −0.650415 0.759579i \(-0.725405\pi\)
−0.650415 + 0.759579i \(0.725405\pi\)
\(522\) −7.23964 −0.000607031 0
\(523\) −3611.57 −0.301956 −0.150978 0.988537i \(-0.548242\pi\)
−0.150978 + 0.988537i \(0.548242\pi\)
\(524\) −1669.05 −0.139147
\(525\) −5010.29 −0.416509
\(526\) 2299.73 0.190633
\(527\) −16435.5 −1.35852
\(528\) −3881.78 −0.319948
\(529\) 0 0
\(530\) −3669.00 −0.300700
\(531\) −61.6964 −0.00504218
\(532\) 612.745 0.0499358
\(533\) −12314.0 −1.00071
\(534\) 15979.4 1.29493
\(535\) 4287.88 0.346507
\(536\) 4636.82 0.373657
\(537\) −5375.74 −0.431993
\(538\) 7628.69 0.611331
\(539\) −12155.8 −0.971406
\(540\) 2422.93 0.193086
\(541\) −20809.9 −1.65377 −0.826883 0.562374i \(-0.809888\pi\)
−0.826883 + 0.562374i \(0.809888\pi\)
\(542\) −8338.79 −0.660852
\(543\) 379.064 0.0299580
\(544\) −2093.17 −0.164970
\(545\) −5544.80 −0.435804
\(546\) 3110.42 0.243798
\(547\) −15166.8 −1.18553 −0.592765 0.805375i \(-0.701964\pi\)
−0.592765 + 0.805375i \(0.701964\pi\)
\(548\) 7843.91 0.611451
\(549\) −30.9127 −0.00240314
\(550\) 9891.84 0.766890
\(551\) −379.611 −0.0293503
\(552\) 0 0
\(553\) 2176.97 0.167404
\(554\) 8545.12 0.655320
\(555\) 1172.60 0.0896827
\(556\) 7037.51 0.536793
\(557\) 12474.4 0.948935 0.474468 0.880273i \(-0.342641\pi\)
0.474468 + 0.880273i \(0.342641\pi\)
\(558\) 81.1244 0.00615460
\(559\) −14282.4 −1.08065
\(560\) −626.960 −0.0473105
\(561\) −15869.6 −1.19432
\(562\) 15278.2 1.14675
\(563\) 10739.4 0.803929 0.401964 0.915655i \(-0.368328\pi\)
0.401964 + 0.915655i \(0.368328\pi\)
\(564\) 4554.27 0.340016
\(565\) −5355.93 −0.398806
\(566\) −2434.98 −0.180830
\(567\) 6635.51 0.491473
\(568\) 8426.16 0.622454
\(569\) 13583.2 1.00077 0.500386 0.865802i \(-0.333191\pi\)
0.500386 + 0.865802i \(0.333191\pi\)
\(570\) −764.185 −0.0561547
\(571\) −5262.91 −0.385720 −0.192860 0.981226i \(-0.561776\pi\)
−0.192860 + 0.981226i \(0.561776\pi\)
\(572\) −6140.91 −0.448889
\(573\) 14603.5 1.06470
\(574\) 6757.15 0.491355
\(575\) 0 0
\(576\) 10.3317 0.000747377 0
\(577\) 22690.5 1.63712 0.818559 0.574423i \(-0.194774\pi\)
0.818559 + 0.574423i \(0.194774\pi\)
\(578\) 1268.66 0.0912962
\(579\) −6920.69 −0.496743
\(580\) 388.418 0.0278072
\(581\) −6790.50 −0.484884
\(582\) −17372.6 −1.23731
\(583\) 19720.0 1.40089
\(584\) 4802.92 0.340319
\(585\) −23.0557 −0.00162946
\(586\) −10641.1 −0.750134
\(587\) −450.330 −0.0316646 −0.0158323 0.999875i \(-0.505040\pi\)
−0.0158323 + 0.999875i \(0.505040\pi\)
\(588\) 5443.60 0.381786
\(589\) 4253.77 0.297578
\(590\) 3310.11 0.230975
\(591\) −9548.90 −0.664618
\(592\) −831.277 −0.0577116
\(593\) 21707.5 1.50324 0.751619 0.659598i \(-0.229273\pi\)
0.751619 + 0.659598i \(0.229273\pi\)
\(594\) −13022.7 −0.899539
\(595\) −2563.15 −0.176603
\(596\) 11529.3 0.792383
\(597\) −7184.52 −0.492534
\(598\) 0 0
\(599\) 5528.42 0.377103 0.188552 0.982063i \(-0.439621\pi\)
0.188552 + 0.982063i \(0.439621\pi\)
\(600\) −4429.75 −0.301406
\(601\) 391.648 0.0265818 0.0132909 0.999912i \(-0.495769\pi\)
0.0132909 + 0.999912i \(0.495769\pi\)
\(602\) 7837.30 0.530606
\(603\) −93.5672 −0.00631899
\(604\) 12128.5 0.817056
\(605\) 3620.57 0.243301
\(606\) 7455.98 0.499800
\(607\) 689.357 0.0460958 0.0230479 0.999734i \(-0.492663\pi\)
0.0230479 + 0.999734i \(0.492663\pi\)
\(608\) 541.746 0.0361361
\(609\) 1057.41 0.0703586
\(610\) 1658.52 0.110084
\(611\) 7204.79 0.477045
\(612\) 42.2385 0.00278985
\(613\) −13835.3 −0.911590 −0.455795 0.890085i \(-0.650645\pi\)
−0.455795 + 0.890085i \(0.650645\pi\)
\(614\) −13797.9 −0.906902
\(615\) −8427.18 −0.552548
\(616\) 3369.75 0.220408
\(617\) −14646.6 −0.955670 −0.477835 0.878450i \(-0.658578\pi\)
−0.477835 + 0.878450i \(0.658578\pi\)
\(618\) 6646.79 0.432642
\(619\) −17606.2 −1.14322 −0.571610 0.820526i \(-0.693681\pi\)
−0.571610 + 0.820526i \(0.693681\pi\)
\(620\) −4352.45 −0.281933
\(621\) 0 0
\(622\) −1259.87 −0.0812156
\(623\) −13871.6 −0.892061
\(624\) 2750.02 0.176424
\(625\) 8943.99 0.572415
\(626\) 2739.61 0.174915
\(627\) 4107.30 0.261611
\(628\) 11165.7 0.709493
\(629\) −3398.45 −0.215429
\(630\) 12.6515 0.000800078 0
\(631\) 9503.45 0.599567 0.299783 0.954007i \(-0.403086\pi\)
0.299783 + 0.954007i \(0.403086\pi\)
\(632\) 1924.73 0.121142
\(633\) 2484.62 0.156011
\(634\) −5167.75 −0.323718
\(635\) 11476.9 0.717240
\(636\) −8830.96 −0.550582
\(637\) 8611.69 0.535648
\(638\) −2087.65 −0.129547
\(639\) −170.033 −0.0105265
\(640\) −554.314 −0.0342362
\(641\) −170.214 −0.0104884 −0.00524419 0.999986i \(-0.501669\pi\)
−0.00524419 + 0.999986i \(0.501669\pi\)
\(642\) 10320.5 0.634454
\(643\) −9664.25 −0.592723 −0.296362 0.955076i \(-0.595773\pi\)
−0.296362 + 0.955076i \(0.595773\pi\)
\(644\) 0 0
\(645\) −9774.30 −0.596686
\(646\) 2214.78 0.134891
\(647\) 12000.3 0.729179 0.364589 0.931168i \(-0.381209\pi\)
0.364589 + 0.931168i \(0.381209\pi\)
\(648\) 5866.66 0.355655
\(649\) −17791.0 −1.07605
\(650\) −7007.80 −0.422875
\(651\) −11848.9 −0.713356
\(652\) 6712.81 0.403212
\(653\) 12388.9 0.742444 0.371222 0.928544i \(-0.378939\pi\)
0.371222 + 0.928544i \(0.378939\pi\)
\(654\) −13345.8 −0.797957
\(655\) −1806.99 −0.107794
\(656\) 5974.20 0.355569
\(657\) −96.9189 −0.00575520
\(658\) −3953.54 −0.234232
\(659\) −13558.0 −0.801431 −0.400716 0.916202i \(-0.631238\pi\)
−0.400716 + 0.916202i \(0.631238\pi\)
\(660\) −4202.59 −0.247857
\(661\) 25480.9 1.49938 0.749692 0.661787i \(-0.230202\pi\)
0.749692 + 0.661787i \(0.230202\pi\)
\(662\) −2057.28 −0.120783
\(663\) 11242.7 0.658566
\(664\) −6003.69 −0.350886
\(665\) 663.385 0.0386842
\(666\) 16.7745 0.000975974 0
\(667\) 0 0
\(668\) 11673.2 0.676125
\(669\) −20925.8 −1.20933
\(670\) 5020.03 0.289464
\(671\) −8914.11 −0.512854
\(672\) −1509.04 −0.0866256
\(673\) −6133.05 −0.351281 −0.175640 0.984454i \(-0.556200\pi\)
−0.175640 + 0.984454i \(0.556200\pi\)
\(674\) 17301.4 0.988761
\(675\) −14861.0 −0.847409
\(676\) −4437.51 −0.252476
\(677\) −9489.27 −0.538704 −0.269352 0.963042i \(-0.586809\pi\)
−0.269352 + 0.963042i \(0.586809\pi\)
\(678\) −12891.3 −0.730215
\(679\) 15081.0 0.852366
\(680\) −2266.16 −0.127799
\(681\) −22895.7 −1.28835
\(682\) 23393.3 1.31346
\(683\) 966.384 0.0541400 0.0270700 0.999634i \(-0.491382\pi\)
0.0270700 + 0.999634i \(0.491382\pi\)
\(684\) −10.9320 −0.000611105 0
\(685\) 8492.17 0.473678
\(686\) −10932.8 −0.608478
\(687\) −22469.0 −1.24781
\(688\) 6929.20 0.383973
\(689\) −13970.5 −0.772470
\(690\) 0 0
\(691\) −8288.05 −0.456284 −0.228142 0.973628i \(-0.573265\pi\)
−0.228142 + 0.973628i \(0.573265\pi\)
\(692\) 615.815 0.0338292
\(693\) −67.9988 −0.00372736
\(694\) −24628.2 −1.34708
\(695\) 7619.13 0.415842
\(696\) 934.888 0.0509150
\(697\) 24423.9 1.32729
\(698\) −5877.56 −0.318724
\(699\) −18282.9 −0.989302
\(700\) 3845.44 0.207634
\(701\) 33338.2 1.79625 0.898123 0.439745i \(-0.144931\pi\)
0.898123 + 0.439745i \(0.144931\pi\)
\(702\) 9225.81 0.496020
\(703\) 879.573 0.0471888
\(704\) 2979.30 0.159498
\(705\) 4930.66 0.263403
\(706\) 18982.3 1.01191
\(707\) −6472.50 −0.344305
\(708\) 7967.14 0.422915
\(709\) 22451.8 1.18927 0.594636 0.803995i \(-0.297296\pi\)
0.594636 + 0.803995i \(0.297296\pi\)
\(710\) 9122.54 0.482201
\(711\) −38.8394 −0.00204865
\(712\) −12264.3 −0.645540
\(713\) 0 0
\(714\) −6169.28 −0.323361
\(715\) −6648.43 −0.347744
\(716\) 4125.93 0.215354
\(717\) −17532.8 −0.913212
\(718\) −22640.9 −1.17681
\(719\) −14426.9 −0.748306 −0.374153 0.927367i \(-0.622067\pi\)
−0.374153 + 0.927367i \(0.622067\pi\)
\(720\) 11.1856 0.000578977 0
\(721\) −5770.04 −0.298041
\(722\) 13144.8 0.677560
\(723\) 33678.5 1.73239
\(724\) −290.935 −0.0149344
\(725\) −2382.35 −0.122039
\(726\) 8714.40 0.445484
\(727\) −18589.4 −0.948339 −0.474169 0.880434i \(-0.657252\pi\)
−0.474169 + 0.880434i \(0.657252\pi\)
\(728\) −2387.27 −0.121536
\(729\) 19563.9 0.993950
\(730\) 5199.85 0.263637
\(731\) 28328.1 1.43331
\(732\) 3991.90 0.201564
\(733\) 26534.1 1.33705 0.668525 0.743689i \(-0.266926\pi\)
0.668525 + 0.743689i \(0.266926\pi\)
\(734\) −13058.8 −0.656689
\(735\) 5893.49 0.295761
\(736\) 0 0
\(737\) −26981.4 −1.34854
\(738\) −120.555 −0.00601311
\(739\) −27669.3 −1.37731 −0.688655 0.725090i \(-0.741798\pi\)
−0.688655 + 0.725090i \(0.741798\pi\)
\(740\) −899.978 −0.0447079
\(741\) −2909.79 −0.144256
\(742\) 7666.11 0.379288
\(743\) −17614.1 −0.869717 −0.434859 0.900499i \(-0.643202\pi\)
−0.434859 + 0.900499i \(0.643202\pi\)
\(744\) −10476.0 −0.516220
\(745\) 12482.2 0.613842
\(746\) −5884.89 −0.288822
\(747\) 121.150 0.00593391
\(748\) 12180.0 0.595383
\(749\) −8959.21 −0.437066
\(750\) −10438.2 −0.508200
\(751\) −21905.3 −1.06436 −0.532182 0.846630i \(-0.678628\pi\)
−0.532182 + 0.846630i \(0.678628\pi\)
\(752\) −3495.44 −0.169502
\(753\) 2022.29 0.0978705
\(754\) 1478.98 0.0714340
\(755\) 13130.9 0.632955
\(756\) −5062.55 −0.243549
\(757\) 32332.5 1.55237 0.776184 0.630506i \(-0.217153\pi\)
0.776184 + 0.630506i \(0.217153\pi\)
\(758\) 2948.61 0.141291
\(759\) 0 0
\(760\) 586.519 0.0279938
\(761\) −23474.6 −1.11821 −0.559103 0.829099i \(-0.688854\pi\)
−0.559103 + 0.829099i \(0.688854\pi\)
\(762\) 27623.9 1.31327
\(763\) 11585.5 0.549701
\(764\) −11208.3 −0.530764
\(765\) 45.7293 0.00216124
\(766\) −1901.55 −0.0896941
\(767\) 12603.9 0.593351
\(768\) −1334.19 −0.0626866
\(769\) 27320.3 1.28114 0.640569 0.767900i \(-0.278698\pi\)
0.640569 + 0.767900i \(0.278698\pi\)
\(770\) 3648.24 0.170745
\(771\) 4849.38 0.226519
\(772\) 5311.70 0.247632
\(773\) −17902.8 −0.833013 −0.416506 0.909133i \(-0.636746\pi\)
−0.416506 + 0.909133i \(0.636746\pi\)
\(774\) −139.826 −0.00649345
\(775\) 26695.7 1.23734
\(776\) 13333.6 0.616815
\(777\) −2450.05 −0.113121
\(778\) −11178.2 −0.515113
\(779\) −6321.30 −0.290737
\(780\) 2977.29 0.136672
\(781\) −49031.3 −2.24645
\(782\) 0 0
\(783\) 3136.38 0.143148
\(784\) −4178.01 −0.190325
\(785\) 12088.5 0.549629
\(786\) −4349.27 −0.197371
\(787\) −450.226 −0.0203924 −0.0101962 0.999948i \(-0.503246\pi\)
−0.0101962 + 0.999948i \(0.503246\pi\)
\(788\) 7328.87 0.331320
\(789\) 5992.72 0.270401
\(790\) 2083.79 0.0938457
\(791\) 11190.8 0.503034
\(792\) −60.1198 −0.00269731
\(793\) 6315.13 0.282796
\(794\) −14993.7 −0.670161
\(795\) −9560.80 −0.426524
\(796\) 5514.18 0.245534
\(797\) 28787.8 1.27944 0.639722 0.768606i \(-0.279049\pi\)
0.639722 + 0.768606i \(0.279049\pi\)
\(798\) 1596.71 0.0708307
\(799\) −14290.1 −0.632727
\(800\) 3399.87 0.150255
\(801\) 247.484 0.0109169
\(802\) −3546.47 −0.156147
\(803\) −27947.9 −1.22822
\(804\) 12082.8 0.530008
\(805\) 0 0
\(806\) −16572.8 −0.724259
\(807\) 19879.1 0.867133
\(808\) −5722.54 −0.249156
\(809\) −11782.9 −0.512071 −0.256036 0.966667i \(-0.582416\pi\)
−0.256036 + 0.966667i \(0.582416\pi\)
\(810\) 6351.51 0.275518
\(811\) 31774.6 1.37578 0.687890 0.725815i \(-0.258537\pi\)
0.687890 + 0.725815i \(0.258537\pi\)
\(812\) −811.572 −0.0350746
\(813\) −21729.5 −0.937375
\(814\) 4837.16 0.208283
\(815\) 7267.59 0.312359
\(816\) −5454.45 −0.234000
\(817\) −7331.78 −0.313961
\(818\) 4401.07 0.188117
\(819\) 48.1733 0.00205532
\(820\) 6467.94 0.275452
\(821\) 34804.0 1.47950 0.739749 0.672883i \(-0.234944\pi\)
0.739749 + 0.672883i \(0.234944\pi\)
\(822\) 20439.9 0.867304
\(823\) −40133.7 −1.69984 −0.849922 0.526908i \(-0.823351\pi\)
−0.849922 + 0.526908i \(0.823351\pi\)
\(824\) −5101.47 −0.215677
\(825\) 25776.5 1.08778
\(826\) −6916.24 −0.291340
\(827\) 30628.1 1.28784 0.643919 0.765093i \(-0.277307\pi\)
0.643919 + 0.765093i \(0.277307\pi\)
\(828\) 0 0
\(829\) 23165.8 0.970543 0.485271 0.874364i \(-0.338721\pi\)
0.485271 + 0.874364i \(0.338721\pi\)
\(830\) −6499.87 −0.271824
\(831\) 22267.1 0.929529
\(832\) −2110.66 −0.0879496
\(833\) −17080.6 −0.710455
\(834\) 18338.6 0.761406
\(835\) 12638.0 0.523779
\(836\) −3152.39 −0.130416
\(837\) −35145.0 −1.45136
\(838\) −1673.88 −0.0690016
\(839\) 31553.9 1.29840 0.649202 0.760616i \(-0.275103\pi\)
0.649202 + 0.760616i \(0.275103\pi\)
\(840\) −1633.75 −0.0671069
\(841\) −23886.2 −0.979385
\(842\) −24312.3 −0.995080
\(843\) 39812.4 1.62659
\(844\) −1906.97 −0.0777733
\(845\) −4804.25 −0.195587
\(846\) 70.5352 0.00286649
\(847\) −7564.92 −0.306888
\(848\) 6777.84 0.274472
\(849\) −6345.15 −0.256496
\(850\) 13899.4 0.560879
\(851\) 0 0
\(852\) 21957.1 0.882910
\(853\) −42509.2 −1.70632 −0.853158 0.521653i \(-0.825315\pi\)
−0.853158 + 0.521653i \(0.825315\pi\)
\(854\) −3465.35 −0.138855
\(855\) −11.8355 −0.000473409 0
\(856\) −7921.11 −0.316283
\(857\) −7026.51 −0.280071 −0.140036 0.990146i \(-0.544722\pi\)
−0.140036 + 0.990146i \(0.544722\pi\)
\(858\) −16002.2 −0.636720
\(859\) 15146.7 0.601627 0.300813 0.953683i \(-0.402742\pi\)
0.300813 + 0.953683i \(0.402742\pi\)
\(860\) 7501.86 0.297455
\(861\) 17608.0 0.696956
\(862\) −11391.3 −0.450102
\(863\) −24338.2 −0.960002 −0.480001 0.877268i \(-0.659364\pi\)
−0.480001 + 0.877268i \(0.659364\pi\)
\(864\) −4475.95 −0.176244
\(865\) 666.709 0.0262067
\(866\) 1027.24 0.0403083
\(867\) 3305.91 0.129498
\(868\) 9094.14 0.355616
\(869\) −11199.9 −0.437203
\(870\) 1012.15 0.0394427
\(871\) 19114.8 0.743604
\(872\) 10243.1 0.397791
\(873\) −269.061 −0.0104311
\(874\) 0 0
\(875\) 9061.37 0.350092
\(876\) 12515.6 0.482720
\(877\) 42546.2 1.63818 0.819089 0.573666i \(-0.194479\pi\)
0.819089 + 0.573666i \(0.194479\pi\)
\(878\) −33570.6 −1.29038
\(879\) −27728.8 −1.06402
\(880\) 3225.52 0.123560
\(881\) −23917.9 −0.914660 −0.457330 0.889297i \(-0.651194\pi\)
−0.457330 + 0.889297i \(0.651194\pi\)
\(882\) 84.3089 0.00321863
\(883\) 8266.56 0.315053 0.157527 0.987515i \(-0.449648\pi\)
0.157527 + 0.987515i \(0.449648\pi\)
\(884\) −8628.86 −0.328303
\(885\) 8625.59 0.327622
\(886\) 27104.0 1.02774
\(887\) 19604.7 0.742122 0.371061 0.928608i \(-0.378994\pi\)
0.371061 + 0.928608i \(0.378994\pi\)
\(888\) −2166.17 −0.0818602
\(889\) −23980.2 −0.904690
\(890\) −13277.9 −0.500086
\(891\) −34137.8 −1.28357
\(892\) 16060.8 0.602864
\(893\) 3698.52 0.138596
\(894\) 30043.5 1.12394
\(895\) 4466.92 0.166830
\(896\) 1158.20 0.0431839
\(897\) 0 0
\(898\) 11465.3 0.426060
\(899\) −5634.05 −0.209017
\(900\) −68.6067 −0.00254099
\(901\) 27709.3 1.02456
\(902\) −34763.6 −1.28326
\(903\) 20422.7 0.752630
\(904\) 9894.15 0.364021
\(905\) −314.979 −0.0115694
\(906\) 31604.8 1.15894
\(907\) −1501.34 −0.0549628 −0.0274814 0.999622i \(-0.508749\pi\)
−0.0274814 + 0.999622i \(0.508749\pi\)
\(908\) 17572.7 0.642258
\(909\) 115.476 0.00421353
\(910\) −2584.57 −0.0941513
\(911\) −16524.2 −0.600957 −0.300478 0.953789i \(-0.597146\pi\)
−0.300478 + 0.953789i \(0.597146\pi\)
\(912\) 1411.70 0.0512566
\(913\) 34935.1 1.26636
\(914\) 6721.79 0.243257
\(915\) 4321.82 0.156147
\(916\) 17245.1 0.622047
\(917\) 3775.58 0.135966
\(918\) −18298.7 −0.657894
\(919\) −13312.6 −0.477848 −0.238924 0.971038i \(-0.576795\pi\)
−0.238924 + 0.971038i \(0.576795\pi\)
\(920\) 0 0
\(921\) −35955.0 −1.28638
\(922\) 16907.9 0.603938
\(923\) 34735.9 1.23873
\(924\) 8781.00 0.312634
\(925\) 5520.00 0.196212
\(926\) 7482.21 0.265530
\(927\) 102.944 0.00364737
\(928\) −717.535 −0.0253817
\(929\) 31441.3 1.11039 0.555197 0.831719i \(-0.312643\pi\)
0.555197 + 0.831719i \(0.312643\pi\)
\(930\) −11341.8 −0.399904
\(931\) 4420.75 0.155622
\(932\) 14032.3 0.493179
\(933\) −3283.00 −0.115199
\(934\) 16546.0 0.579658
\(935\) 13186.7 0.461230
\(936\) 42.5915 0.00148733
\(937\) −50500.2 −1.76069 −0.880346 0.474332i \(-0.842690\pi\)
−0.880346 + 0.474332i \(0.842690\pi\)
\(938\) −10489.0 −0.365115
\(939\) 7138.97 0.248106
\(940\) −3784.32 −0.131310
\(941\) −33474.1 −1.15964 −0.579822 0.814743i \(-0.696878\pi\)
−0.579822 + 0.814743i \(0.696878\pi\)
\(942\) 29096.1 1.00637
\(943\) 0 0
\(944\) −6114.85 −0.210828
\(945\) −5480.94 −0.188672
\(946\) −40320.6 −1.38577
\(947\) 12214.7 0.419138 0.209569 0.977794i \(-0.432794\pi\)
0.209569 + 0.977794i \(0.432794\pi\)
\(948\) 5015.51 0.171831
\(949\) 19799.5 0.677259
\(950\) −3597.40 −0.122858
\(951\) −13466.3 −0.459173
\(952\) 4734.98 0.161199
\(953\) −3098.85 −0.105332 −0.0526661 0.998612i \(-0.516772\pi\)
−0.0526661 + 0.998612i \(0.516772\pi\)
\(954\) −136.771 −0.00464165
\(955\) −12134.7 −0.411171
\(956\) 13456.6 0.455247
\(957\) −5440.06 −0.183754
\(958\) −22903.4 −0.772418
\(959\) −17743.8 −0.597473
\(960\) −1444.45 −0.0485619
\(961\) 33341.9 1.11919
\(962\) −3426.85 −0.114850
\(963\) 159.842 0.00534872
\(964\) −25848.5 −0.863616
\(965\) 5750.68 0.191835
\(966\) 0 0
\(967\) 35481.7 1.17995 0.589977 0.807420i \(-0.299137\pi\)
0.589977 + 0.807420i \(0.299137\pi\)
\(968\) −6688.38 −0.222079
\(969\) 5771.34 0.191334
\(970\) 14435.6 0.477833
\(971\) 46079.9 1.52294 0.761469 0.648201i \(-0.224478\pi\)
0.761469 + 0.648201i \(0.224478\pi\)
\(972\) 181.186 0.00597894
\(973\) −15919.6 −0.524522
\(974\) −32499.4 −1.06914
\(975\) −18261.1 −0.599820
\(976\) −3063.82 −0.100482
\(977\) −24804.7 −0.812256 −0.406128 0.913816i \(-0.633121\pi\)
−0.406128 + 0.913816i \(0.633121\pi\)
\(978\) 17492.5 0.571929
\(979\) 71365.4 2.32977
\(980\) −4523.30 −0.147440
\(981\) −206.697 −0.00672713
\(982\) −14940.2 −0.485501
\(983\) −50657.7 −1.64367 −0.821836 0.569724i \(-0.807050\pi\)
−0.821836 + 0.569724i \(0.807050\pi\)
\(984\) 15567.8 0.504352
\(985\) 7934.56 0.256666
\(986\) −2933.44 −0.0947463
\(987\) −10302.3 −0.332243
\(988\) 2233.29 0.0719134
\(989\) 0 0
\(990\) −65.0885 −0.00208954
\(991\) 16887.0 0.541304 0.270652 0.962677i \(-0.412761\pi\)
0.270652 + 0.962677i \(0.412761\pi\)
\(992\) 8040.40 0.257342
\(993\) −5360.92 −0.171323
\(994\) −19060.9 −0.608224
\(995\) 5969.90 0.190210
\(996\) −15644.6 −0.497709
\(997\) −2976.93 −0.0945639 −0.0472820 0.998882i \(-0.515056\pi\)
−0.0472820 + 0.998882i \(0.515056\pi\)
\(998\) 22877.0 0.725609
\(999\) −7267.11 −0.230151
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1058.4.a.p.1.2 yes 6
23.22 odd 2 inner 1058.4.a.p.1.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1058.4.a.p.1.1 6 23.22 odd 2 inner
1058.4.a.p.1.2 yes 6 1.1 even 1 trivial