Properties

Label 1058.4
Level 1058
Weight 4
Dimension 34782
Nonzero newspaces 4
Sturm bound 279312
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 4 \)
Sturm bound: \(279312\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1058))\).

Total New Old
Modular forms 105490 34782 70708
Cusp forms 103994 34782 69212
Eisenstein series 1496 0 1496

Trace form

\( 34782 q - 1496 q^{15} - 352 q^{17} + 176 q^{18} + 440 q^{19} + 704 q^{20} + 2640 q^{21} + 968 q^{22} + 968 q^{23} + 1408 q^{25} + 440 q^{26} + 264 q^{27} - 352 q^{28} - 880 q^{29} - 2992 q^{30} - 2200 q^{31}+ \cdots - 23100 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1058))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1058.4.a \(\chi_{1058}(1, \cdot)\) 1058.4.a.a 1 1
1058.4.a.b 1
1058.4.a.c 1
1058.4.a.d 1
1058.4.a.e 2
1058.4.a.f 2
1058.4.a.g 2
1058.4.a.h 2
1058.4.a.i 2
1058.4.a.j 2
1058.4.a.k 3
1058.4.a.l 3
1058.4.a.m 3
1058.4.a.n 3
1058.4.a.o 4
1058.4.a.p 6
1058.4.a.q 8
1058.4.a.r 8
1058.4.a.s 12
1058.4.a.t 15
1058.4.a.u 15
1058.4.a.v 15
1058.4.a.w 15
1058.4.c \(\chi_{1058}(177, \cdot)\) n/a 1260 10
1058.4.e \(\chi_{1058}(47, \cdot)\) n/a 3036 22
1058.4.g \(\chi_{1058}(3, \cdot)\) n/a 30360 220

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1058))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(1058)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 2}\)