Defining parameters
Level: | \( N \) | = | \( 1058 = 2 \cdot 23^{2} \) |
Weight: | \( k \) | = | \( 4 \) |
Nonzero newspaces: | \( 4 \) | ||
Sturm bound: | \(279312\) | ||
Trace bound: | \(1\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(1058))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 105490 | 34782 | 70708 |
Cusp forms | 103994 | 34782 | 69212 |
Eisenstein series | 1496 | 0 | 1496 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(1058))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
1058.4.a | \(\chi_{1058}(1, \cdot)\) | 1058.4.a.a | 1 | 1 |
1058.4.a.b | 1 | |||
1058.4.a.c | 1 | |||
1058.4.a.d | 1 | |||
1058.4.a.e | 2 | |||
1058.4.a.f | 2 | |||
1058.4.a.g | 2 | |||
1058.4.a.h | 2 | |||
1058.4.a.i | 2 | |||
1058.4.a.j | 2 | |||
1058.4.a.k | 3 | |||
1058.4.a.l | 3 | |||
1058.4.a.m | 3 | |||
1058.4.a.n | 3 | |||
1058.4.a.o | 4 | |||
1058.4.a.p | 6 | |||
1058.4.a.q | 8 | |||
1058.4.a.r | 8 | |||
1058.4.a.s | 12 | |||
1058.4.a.t | 15 | |||
1058.4.a.u | 15 | |||
1058.4.a.v | 15 | |||
1058.4.a.w | 15 | |||
1058.4.c | \(\chi_{1058}(177, \cdot)\) | n/a | 1260 | 10 |
1058.4.e | \(\chi_{1058}(47, \cdot)\) | n/a | 3036 | 22 |
1058.4.g | \(\chi_{1058}(3, \cdot)\) | n/a | 30360 | 220 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(1058))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_1(1058)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(529))\)\(^{\oplus 2}\)