Properties

Label 1058.4.a.p
Level $1058$
Weight $4$
Character orbit 1058.a
Self dual yes
Analytic conductor $62.424$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1058,4,Mod(1,1058)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1058, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1058.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.4240207861\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 75x^{4} + 102x^{3} + 1209x^{2} - 844x - 2078 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 q^{2} + (\beta_{2} + 2) q^{3} + 4 q^{4} + (\beta_{5} + 4 \beta_{3}) q^{5} + ( - 2 \beta_{2} - 4) q^{6} + ( - 2 \beta_{5} - 2 \beta_{3} + \beta_1) q^{7} - 8 q^{8} + (3 \beta_{4} + 4 \beta_{2} + 16) q^{9}+ \cdots + ( - 105 \beta_{5} + 277 \beta_{3} + 59 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 12 q^{2} + 12 q^{3} + 24 q^{4} - 24 q^{6} - 48 q^{8} + 90 q^{9} + 48 q^{12} + 44 q^{13} + 96 q^{16} - 180 q^{18} - 96 q^{24} - 98 q^{25} - 88 q^{26} + 984 q^{27} + 580 q^{29} - 268 q^{31} - 192 q^{32}+ \cdots - 1092 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} - 75x^{4} + 102x^{3} + 1209x^{2} - 844x - 2078 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 57\nu^{5} + 1728\nu^{4} - 6104\nu^{3} - 81343\nu^{2} + 98344\nu + 141566 ) / 99613 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( 278\nu^{5} + 3185\nu^{4} - 22780\nu^{3} - 251675\nu^{2} + 214008\nu + 2832998 ) / 298839 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -164\nu^{5} + 271\nu^{4} + 10572\nu^{3} - 10624\nu^{2} - 116933\nu + 40072 ) / 99613 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -706\nu^{5} + 4811\nu^{4} + 40652\nu^{3} - 315419\nu^{2} + 110088\nu + 2774591 ) / 298839 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -1880\nu^{5} + 677\nu^{4} + 157635\nu^{3} - 41611\nu^{2} - 2778766\nu + 716898 ) / 298839 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - 2\beta_{3} - \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{4} - 5\beta_{2} + 4\beta _1 + 51 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 9\beta_{5} + 20\beta_{4} - 74\beta_{3} - 23\beta_{2} + 6\beta _1 + 32 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 24\beta_{5} - 25\beta_{4} - 96\beta_{3} - 263\beta_{2} + 312\beta _1 + 2263 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 1200\beta_{5} + 1889\beta_{4} - 9488\beta_{3} - 2363\beta_{2} + 1030\beta _1 + 4337 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
7.68806
4.85963
−7.02873
−4.20030
1.75488
−1.07354
−2.00000 −5.21166 4.00000 −4.33058 10.4233 9.04844 −8.00000 0.161433 8.66116
1.2 −2.00000 −5.21166 4.00000 4.33058 10.4233 −9.04844 −8.00000 0.161433 −8.66116
1.3 −2.00000 1.36391 4.00000 −3.18284 −2.72781 22.7911 −8.00000 −25.1398 6.36569
1.4 −2.00000 1.36391 4.00000 3.18284 −2.72781 −22.7911 −8.00000 −25.1398 −6.36569
1.5 −2.00000 9.84776 4.00000 −17.2370 −19.6955 26.4706 −8.00000 69.9783 34.4741
1.6 −2.00000 9.84776 4.00000 17.2370 −19.6955 −26.4706 −8.00000 69.9783 −34.4741
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(23\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
23.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1058.4.a.p 6
23.b odd 2 1 inner 1058.4.a.p 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1058.4.a.p 6 1.a even 1 1 trivial
1058.4.a.p 6 23.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\):

\( T_{3}^{3} - 6T_{3}^{2} - 45T_{3} + 70 \) Copy content Toggle raw display
\( T_{5}^{6} - 326T_{5}^{4} + 8772T_{5}^{2} - 56448 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T + 2)^{6} \) Copy content Toggle raw display
$3$ \( (T^{3} - 6 T^{2} - 45 T + 70)^{2} \) Copy content Toggle raw display
$5$ \( T^{6} - 326 T^{4} + \cdots - 56448 \) Copy content Toggle raw display
$7$ \( T^{6} - 1302 T^{4} + \cdots - 29799200 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots - 1627921800 \) Copy content Toggle raw display
$13$ \( (T^{3} - 22 T^{2} + \cdots - 1050)^{2} \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots - 3144879432 \) Copy content Toggle raw display
$19$ \( T^{6} - 3334 T^{4} + \cdots - 643256712 \) Copy content Toggle raw display
$23$ \( T^{6} \) Copy content Toggle raw display
$29$ \( (T^{3} - 290 T^{2} + \cdots - 394266)^{2} \) Copy content Toggle raw display
$31$ \( (T^{3} + 134 T^{2} + \cdots - 2098368)^{2} \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 1546154091008 \) Copy content Toggle raw display
$41$ \( (T^{3} + 24 T^{2} + \cdots - 6708528)^{2} \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 16\!\cdots\!28 \) Copy content Toggle raw display
$47$ \( (T^{3} - 662 T^{2} + \cdots + 42000360)^{2} \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots - 74\!\cdots\!00 \) Copy content Toggle raw display
$59$ \( (T^{3} - 322 T^{2} + \cdots - 23390160)^{2} \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 285973178580000 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 54\!\cdots\!52 \) Copy content Toggle raw display
$71$ \( (T^{3} + 264 T^{2} + \cdots + 118093572)^{2} \) Copy content Toggle raw display
$73$ \( (T^{3} - 634 T^{2} + \cdots + 183848070)^{2} \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots - 23\!\cdots\!32 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots - 97\!\cdots\!92 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 12\!\cdots\!52 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots - 36\!\cdots\!00 \) Copy content Toggle raw display
show more
show less