Properties

Label 1058.4.a
Level $1058$
Weight $4$
Character orbit 1058.a
Rep. character $\chi_{1058}(1,\cdot)$
Character field $\Q$
Dimension $126$
Newform subspaces $23$
Sturm bound $552$
Trace bound $7$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1058 = 2 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1058.a (trivial)
Character field: \(\Q\)
Newform subspaces: \( 23 \)
Sturm bound: \(552\)
Trace bound: \(7\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1058))\).

Total New Old
Modular forms 438 126 312
Cusp forms 390 126 264
Eisenstein series 48 0 48

The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.

\(2\)\(23\)FrickeDim
\(+\)\(+\)\(+\)\(33\)
\(+\)\(-\)\(-\)\(30\)
\(-\)\(+\)\(-\)\(27\)
\(-\)\(-\)\(+\)\(36\)
Plus space\(+\)\(69\)
Minus space\(-\)\(57\)

Trace form

\( 126 q + 8 q^{3} + 504 q^{4} + 10 q^{5} + 8 q^{6} - 8 q^{7} + 1042 q^{9} + 20 q^{10} + 34 q^{11} + 32 q^{12} + 112 q^{13} - 40 q^{14} - 4 q^{15} + 2016 q^{16} - 28 q^{17} + 128 q^{18} - 38 q^{19} + 40 q^{20}+ \cdots - 2586 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces A-L signs Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$ 2 23
1058.4.a.a 1058.a 1.a $1$ $62.424$ \(\Q\) None 46.4.a.a \(-2\) \(-1\) \(10\) \(12\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-q^{3}+4q^{4}+10q^{5}+2q^{6}+\cdots\)
1058.4.a.b 1058.a 1.a $1$ $62.424$ \(\Q\) None 46.4.a.b \(2\) \(-9\) \(20\) \(-2\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-9q^{3}+4q^{4}+20q^{5}-18q^{6}+\cdots\)
1058.4.a.c 1058.a 1.a $1$ $62.424$ \(\Q\) None 1058.4.a.c \(2\) \(7\) \(-18\) \(30\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+7q^{3}+4q^{4}-18q^{5}+14q^{6}+\cdots\)
1058.4.a.d 1058.a 1.a $1$ $62.424$ \(\Q\) None 1058.4.a.c \(2\) \(7\) \(18\) \(-30\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+7q^{3}+4q^{4}+18q^{5}+14q^{6}+\cdots\)
1058.4.a.e 1058.a 1.a $2$ $62.424$ \(\Q(\sqrt{3}) \) None 1058.4.a.e \(-4\) \(-10\) \(0\) \(0\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}-5q^{3}+4q^{4}-\beta q^{5}+10q^{6}+\cdots\)
1058.4.a.f 1058.a 1.a $2$ $62.424$ \(\Q(\sqrt{41}) \) None 46.4.a.c \(-4\) \(-1\) \(-10\) \(-6\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1-3\beta )q^{3}+4q^{4}+(-4-2\beta )q^{5}+\cdots\)
1058.4.a.g 1058.a 1.a $2$ $62.424$ \(\Q(\sqrt{3}) \) None 1058.4.a.g \(-4\) \(2\) \(-12\) \(18\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+3\beta )q^{3}+4q^{4}+(-6-\beta )q^{5}+\cdots\)
1058.4.a.h 1058.a 1.a $2$ $62.424$ \(\Q(\sqrt{3}) \) None 1058.4.a.g \(-4\) \(2\) \(12\) \(-18\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(1+3\beta )q^{3}+4q^{4}+(6+\beta )q^{5}+\cdots\)
1058.4.a.i 1058.a 1.a $2$ $62.424$ \(\Q(\sqrt{26}) \) None 1058.4.a.i \(4\) \(-8\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}-4q^{3}+4q^{4}+\beta q^{5}-8q^{6}+\cdots\)
1058.4.a.j 1058.a 1.a $2$ $62.424$ \(\Q(\sqrt{73}) \) None 46.4.a.d \(4\) \(3\) \(-10\) \(-12\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1+\beta )q^{3}+4q^{4}+(-6+2\beta )q^{5}+\cdots\)
1058.4.a.k 1058.a 1.a $3$ $62.424$ 3.3.6584.1 None 1058.4.a.k \(-6\) \(-2\) \(-9\) \(30\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(-3+\cdots)q^{5}+\cdots\)
1058.4.a.l 1058.a 1.a $3$ $62.424$ 3.3.6584.1 None 1058.4.a.k \(-6\) \(-2\) \(9\) \(-30\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-1+\beta _{1})q^{3}+4q^{4}+(3+2\beta _{1}+\cdots)q^{5}+\cdots\)
1058.4.a.m 1058.a 1.a $3$ $62.424$ 3.3.123880.1 None 1058.4.a.m \(6\) \(9\) \(-4\) \(-10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(3+\beta _{1})q^{3}+4q^{4}+(-1+\beta _{2})q^{5}+\cdots\)
1058.4.a.n 1058.a 1.a $3$ $62.424$ 3.3.123880.1 None 1058.4.a.m \(6\) \(9\) \(4\) \(10\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(3+\beta _{1})q^{3}+4q^{4}+(1-\beta _{2})q^{5}+\cdots\)
1058.4.a.o 1058.a 1.a $4$ $62.424$ \(\Q(\sqrt{2}, \sqrt{13})\) None 1058.4.a.o \(8\) \(0\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{3}q^{3}+4q^{4}+(-5\beta _{1}-6\beta _{2}+\cdots)q^{5}+\cdots\)
1058.4.a.p 1058.a 1.a $6$ $62.424$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 1058.4.a.p \(-12\) \(12\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(2+\beta _{2})q^{3}+4q^{4}+(4\beta _{3}+\beta _{5})q^{5}+\cdots\)
1058.4.a.q 1058.a 1.a $8$ $62.424$ 8.8.\(\cdots\).1 None 1058.4.a.q \(16\) \(-24\) \(0\) \(0\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+(-3+\beta _{1}-\beta _{4})q^{3}+4q^{4}+\cdots\)
1058.4.a.r 1058.a 1.a $8$ $62.424$ \(\mathbb{Q}[x]/(x^{8} - \cdots)\) None 1058.4.a.r \(16\) \(6\) \(0\) \(0\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+(1-\beta _{3})q^{3}+4q^{4}+(\beta _{1}+\beta _{4}+\cdots)q^{5}+\cdots\)
1058.4.a.s 1058.a 1.a $12$ $62.424$ \(\mathbb{Q}[x]/(x^{12} - \cdots)\) None 1058.4.a.s \(-24\) \(0\) \(0\) \(0\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+(-\beta _{1}+\beta _{2})q^{3}+4q^{4}+(\beta _{7}+\cdots)q^{5}+\cdots\)
1058.4.a.t 1058.a 1.a $15$ $62.424$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 46.4.c.b \(-30\) \(1\) \(0\) \(-80\) $+$ $-$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{4}q^{3}+4q^{4}-\beta _{7}q^{5}-2\beta _{4}q^{6}+\cdots\)
1058.4.a.u 1058.a 1.a $15$ $62.424$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 46.4.c.b \(-30\) \(1\) \(0\) \(80\) $+$ $+$ $\mathrm{SU}(2)$ \(q-2q^{2}+\beta _{4}q^{3}+4q^{4}+\beta _{7}q^{5}-2\beta _{4}q^{6}+\cdots\)
1058.4.a.v 1058.a 1.a $15$ $62.424$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 46.4.c.a \(30\) \(3\) \(-50\) \(-84\) $-$ $+$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+(-3+\beta _{10}+\cdots)q^{5}+\cdots\)
1058.4.a.w 1058.a 1.a $15$ $62.424$ \(\mathbb{Q}[x]/(x^{15} - \cdots)\) None 46.4.c.a \(30\) \(3\) \(50\) \(84\) $-$ $-$ $\mathrm{SU}(2)$ \(q+2q^{2}+\beta _{1}q^{3}+4q^{4}+(3-\beta _{10})q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1058))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_0(1058)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 2}\)