Defining parameters
Level: | \( N \) | \(=\) | \( 1058 = 2 \cdot 23^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 1058.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 23 \) | ||
Sturm bound: | \(552\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(1058))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 438 | 126 | 312 |
Cusp forms | 390 | 126 | 264 |
Eisenstein series | 48 | 0 | 48 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(23\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(33\) |
\(+\) | \(-\) | \(-\) | \(30\) |
\(-\) | \(+\) | \(-\) | \(27\) |
\(-\) | \(-\) | \(+\) | \(36\) |
Plus space | \(+\) | \(69\) | |
Minus space | \(-\) | \(57\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(1058))\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(1058))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(1058)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(23))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(46))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(529))\)\(^{\oplus 2}\)