Properties

Label 1053.2.b.i
Level $1053$
Weight $2$
Character orbit 1053.b
Analytic conductor $8.408$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1053,2,Mod(649,1053)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1053.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 91x^{6} + 222x^{4} + 228x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{9}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} + (\beta_{2} - 1) q^{4} - \beta_{7} q^{5} + ( - \beta_{5} + \beta_1) q^{7} + (\beta_{5} + \beta_{4} - \beta_1) q^{8} + ( - \beta_{6} - 1) q^{10} - \beta_{8} q^{11} + ( - \beta_{7} - \beta_{5} + \beta_{3}) q^{13}+ \cdots + ( - \beta_{8} + 2 \beta_{7} + \cdots + 3 \beta_1) q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{4} - 8 q^{10} + 4 q^{13} - 18 q^{14} - 4 q^{16} + 6 q^{17} + 10 q^{22} + 24 q^{23} + 12 q^{25} + 6 q^{26} + 12 q^{29} + 6 q^{35} + 12 q^{38} + 8 q^{40} - 4 q^{43} + 10 q^{49} - 54 q^{53} + 10 q^{55}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{10} + 16x^{8} + 91x^{6} + 222x^{4} + 228x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 3 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{4} + 7\nu^{2} + 8 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{9} - 16\nu^{7} - 91\nu^{5} - 204\nu^{3} - 120\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( \nu^{9} + 16\nu^{7} + 91\nu^{5} + 213\nu^{3} + 165\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{6} + 10\nu^{4} + 27\nu^{2} + 17 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{9} - 32\nu^{7} - 173\nu^{5} - 354\nu^{3} - 213\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 7\nu^{9} + 103\nu^{7} + 511\nu^{5} + 960\nu^{3} + 534\nu ) / 9 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( \nu^{8} + 15\nu^{6} + 76\nu^{4} + 146\nu^{2} + 82 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 3 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} - 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{3} - 7\beta_{2} + 13 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{7} - 6\beta_{5} - 8\beta_{4} + 27\beta_1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{6} - 10\beta_{3} + 43\beta_{2} - 66 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( -\beta_{8} - 14\beta_{7} + 32\beta_{5} + 53\beta_{4} - 152\beta_1 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( \beta_{9} - 15\beta_{6} + 74\beta_{3} - 259\beta_{2} + 358 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( 16\beta_{8} + 133\beta_{7} - 170\beta_{5} - 333\beta_{4} + 875\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
649.1
2.47728i
2.28298i
1.63641i
1.07384i
0.905597i
0.905597i
1.07384i
1.63641i
2.28298i
2.47728i
2.47728i 0 −4.13693 0.890732i 0 0.982330i 5.29379i 0 2.20660
649.2 2.28298i 0 −3.21200 3.21586i 0 2.42273i 2.76698i 0 −7.34174
649.3 1.63641i 0 −0.677835 1.09738i 0 3.20939i 2.16360i 0 1.79576
649.4 1.07384i 0 0.846877 1.27644i 0 1.02875i 3.05708i 0 1.37069
649.5 0.905597i 0 1.17989 2.24306i 0 3.43611i 2.87970i 0 −2.03130
649.6 0.905597i 0 1.17989 2.24306i 0 3.43611i 2.87970i 0 −2.03130
649.7 1.07384i 0 0.846877 1.27644i 0 1.02875i 3.05708i 0 1.37069
649.8 1.63641i 0 −0.677835 1.09738i 0 3.20939i 2.16360i 0 1.79576
649.9 2.28298i 0 −3.21200 3.21586i 0 2.42273i 2.76698i 0 −7.34174
649.10 2.47728i 0 −4.13693 0.890732i 0 0.982330i 5.29379i 0 2.20660
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 649.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1053.2.b.i 10
3.b odd 2 1 1053.2.b.j 10
9.c even 3 2 351.2.t.c 20
9.d odd 6 2 117.2.t.c 20
13.b even 2 1 inner 1053.2.b.i 10
39.d odd 2 1 1053.2.b.j 10
117.n odd 6 2 117.2.t.c 20
117.t even 6 2 351.2.t.c 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
117.2.t.c 20 9.d odd 6 2
117.2.t.c 20 117.n odd 6 2
351.2.t.c 20 9.c even 3 2
351.2.t.c 20 117.t even 6 2
1053.2.b.i 10 1.a even 1 1 trivial
1053.2.b.i 10 13.b even 2 1 inner
1053.2.b.j 10 3.b odd 2 1
1053.2.b.j 10 39.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1053, [\chi])\):

\( T_{2}^{10} + 16T_{2}^{8} + 91T_{2}^{6} + 222T_{2}^{4} + 228T_{2}^{2} + 81 \) Copy content Toggle raw display
\( T_{5}^{10} + 19T_{5}^{8} + 112T_{5}^{6} + 255T_{5}^{4} + 243T_{5}^{2} + 81 \) Copy content Toggle raw display
\( T_{17}^{5} - 3T_{17}^{4} - 33T_{17}^{3} + 90T_{17}^{2} + 135T_{17} - 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{10} + 16 T^{8} + \cdots + 81 \) Copy content Toggle raw display
$3$ \( T^{10} \) Copy content Toggle raw display
$5$ \( T^{10} + 19 T^{8} + \cdots + 81 \) Copy content Toggle raw display
$7$ \( T^{10} + 30 T^{8} + \cdots + 729 \) Copy content Toggle raw display
$11$ \( T^{10} + 49 T^{8} + \cdots + 16641 \) Copy content Toggle raw display
$13$ \( T^{10} - 4 T^{9} + \cdots + 371293 \) Copy content Toggle raw display
$17$ \( (T^{5} - 3 T^{4} - 33 T^{3} + \cdots - 81)^{2} \) Copy content Toggle raw display
$19$ \( T^{10} + 129 T^{8} + \cdots + 700569 \) Copy content Toggle raw display
$23$ \( (T^{5} - 12 T^{4} + \cdots - 729)^{2} \) Copy content Toggle raw display
$29$ \( (T^{5} - 6 T^{4} - 33 T^{3} + \cdots + 81)^{2} \) Copy content Toggle raw display
$31$ \( T^{10} + 216 T^{8} + \cdots + 11758041 \) Copy content Toggle raw display
$37$ \( T^{10} + 231 T^{8} + \cdots + 41641209 \) Copy content Toggle raw display
$41$ \( T^{10} + 118 T^{8} + \cdots + 522729 \) Copy content Toggle raw display
$43$ \( (T^{5} + 2 T^{4} + \cdots - 179)^{2} \) Copy content Toggle raw display
$47$ \( T^{10} + 205 T^{8} + \cdots + 7017201 \) Copy content Toggle raw display
$53$ \( (T^{5} + 27 T^{4} + \cdots + 243)^{2} \) Copy content Toggle raw display
$59$ \( T^{10} + 145 T^{8} + \cdots + 8661249 \) Copy content Toggle raw display
$61$ \( (T^{5} - T^{4} + \cdots - 10867)^{2} \) Copy content Toggle raw display
$67$ \( T^{10} + 270 T^{8} + \cdots + 531441 \) Copy content Toggle raw display
$71$ \( T^{10} + 97 T^{8} + \cdots + 178929 \) Copy content Toggle raw display
$73$ \( T^{10} + 369 T^{8} + \cdots + 56746089 \) Copy content Toggle raw display
$79$ \( (T^{5} - 7 T^{4} + \cdots + 1217)^{2} \) Copy content Toggle raw display
$83$ \( T^{10} + 580 T^{8} + \cdots + 45279441 \) Copy content Toggle raw display
$89$ \( T^{10} + \cdots + 5851791009 \) Copy content Toggle raw display
$97$ \( T^{10} + 612 T^{8} + \cdots + 6859161 \) Copy content Toggle raw display
show more
show less