Properties

Label 1053.2.b.i.649.4
Level $1053$
Weight $2$
Character 1053.649
Analytic conductor $8.408$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1053,2,Mod(649,1053)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1053, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1053.649");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 16x^{8} + 91x^{6} + 222x^{4} + 228x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.4
Root \(-1.07384i\) of defining polynomial
Character \(\chi\) \(=\) 1053.649
Dual form 1053.2.b.i.649.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.07384i q^{2} +0.846877 q^{4} +1.27644i q^{5} +1.02875i q^{7} -3.05708i q^{8} +1.37069 q^{10} -4.66263i q^{11} +(1.25783 + 3.37903i) q^{13} +1.10471 q^{14} -1.58904 q^{16} +0.476187 q^{17} -6.69096i q^{19} +1.08099i q^{20} -5.00690 q^{22} -0.959735 q^{23} +3.37069 q^{25} +(3.62852 - 1.35071i) q^{26} +0.871227i q^{28} +9.37759 q^{29} +1.92751i q^{31} -4.40778i q^{32} -0.511346i q^{34} -1.31314 q^{35} +4.94666i q^{37} -7.18499 q^{38} +3.90219 q^{40} -1.52414i q^{41} +2.62852 q^{43} -3.94868i q^{44} +1.03060i q^{46} -6.83948i q^{47} +5.94167 q^{49} -3.61957i q^{50} +(1.06523 + 2.86163i) q^{52} -0.582145 q^{53} +5.95159 q^{55} +3.14498 q^{56} -10.0700i q^{58} -4.21233i q^{59} +9.43290 q^{61} +2.06983 q^{62} -7.91132 q^{64} +(-4.31314 + 1.60555i) q^{65} +2.32275i q^{67} +0.403272 q^{68} +1.41010i q^{70} -1.35071i q^{71} +12.8687i q^{73} +5.31190 q^{74} -5.66642i q^{76} +4.79669 q^{77} -12.9083 q^{79} -2.02833i q^{80} -1.63667 q^{82} +10.2328i q^{83} +0.607825i q^{85} -2.82260i q^{86} -14.2540 q^{88} +6.85985i q^{89} +(-3.47619 + 1.29400i) q^{91} -0.812778 q^{92} -7.34448 q^{94} +8.54063 q^{95} -17.2784i q^{97} -6.38037i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 12 q^{4} - 8 q^{10} + 4 q^{13} - 18 q^{14} - 4 q^{16} + 6 q^{17} + 10 q^{22} + 24 q^{23} + 12 q^{25} + 6 q^{26} + 12 q^{29} + 6 q^{35} + 12 q^{38} + 8 q^{40} - 4 q^{43} + 10 q^{49} - 54 q^{53} + 10 q^{55}+ \cdots + 24 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1053\mathbb{Z}\right)^\times\).

\(n\) \(326\) \(730\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.07384i 0.759316i −0.925127 0.379658i \(-0.876042\pi\)
0.925127 0.379658i \(-0.123958\pi\)
\(3\) 0 0
\(4\) 0.846877 0.423439
\(5\) 1.27644i 0.570843i 0.958402 + 0.285422i \(0.0921336\pi\)
−0.958402 + 0.285422i \(0.907866\pi\)
\(6\) 0 0
\(7\) 1.02875i 0.388832i 0.980919 + 0.194416i \(0.0622811\pi\)
−0.980919 + 0.194416i \(0.937719\pi\)
\(8\) 3.05708i 1.08084i
\(9\) 0 0
\(10\) 1.37069 0.433450
\(11\) 4.66263i 1.40584i −0.711271 0.702918i \(-0.751880\pi\)
0.711271 0.702918i \(-0.248120\pi\)
\(12\) 0 0
\(13\) 1.25783 + 3.37903i 0.348860 + 0.937175i
\(14\) 1.10471 0.295246
\(15\) 0 0
\(16\) −1.58904 −0.397261
\(17\) 0.476187 0.115492 0.0577461 0.998331i \(-0.481609\pi\)
0.0577461 + 0.998331i \(0.481609\pi\)
\(18\) 0 0
\(19\) 6.69096i 1.53501i −0.641042 0.767505i \(-0.721498\pi\)
0.641042 0.767505i \(-0.278502\pi\)
\(20\) 1.08099i 0.241717i
\(21\) 0 0
\(22\) −5.00690 −1.06747
\(23\) −0.959735 −0.200119 −0.100059 0.994981i \(-0.531903\pi\)
−0.100059 + 0.994981i \(0.531903\pi\)
\(24\) 0 0
\(25\) 3.37069 0.674138
\(26\) 3.62852 1.35071i 0.711612 0.264895i
\(27\) 0 0
\(28\) 0.871227i 0.164646i
\(29\) 9.37759 1.74137 0.870687 0.491837i \(-0.163674\pi\)
0.870687 + 0.491837i \(0.163674\pi\)
\(30\) 0 0
\(31\) 1.92751i 0.346191i 0.984905 + 0.173095i \(0.0553769\pi\)
−0.984905 + 0.173095i \(0.944623\pi\)
\(32\) 4.40778i 0.779193i
\(33\) 0 0
\(34\) 0.511346i 0.0876951i
\(35\) −1.31314 −0.221962
\(36\) 0 0
\(37\) 4.94666i 0.813226i 0.913601 + 0.406613i \(0.133290\pi\)
−0.913601 + 0.406613i \(0.866710\pi\)
\(38\) −7.18499 −1.16556
\(39\) 0 0
\(40\) 3.90219 0.616990
\(41\) 1.52414i 0.238030i −0.992892 0.119015i \(-0.962026\pi\)
0.992892 0.119015i \(-0.0379737\pi\)
\(42\) 0 0
\(43\) 2.62852 0.400846 0.200423 0.979709i \(-0.435768\pi\)
0.200423 + 0.979709i \(0.435768\pi\)
\(44\) 3.94868i 0.595285i
\(45\) 0 0
\(46\) 1.03060i 0.151953i
\(47\) 6.83948i 0.997641i −0.866705 0.498820i \(-0.833767\pi\)
0.866705 0.498820i \(-0.166233\pi\)
\(48\) 0 0
\(49\) 5.94167 0.848810
\(50\) 3.61957i 0.511884i
\(51\) 0 0
\(52\) 1.06523 + 2.86163i 0.147721 + 0.396836i
\(53\) −0.582145 −0.0799637 −0.0399819 0.999200i \(-0.512730\pi\)
−0.0399819 + 0.999200i \(0.512730\pi\)
\(54\) 0 0
\(55\) 5.95159 0.802512
\(56\) 3.14498 0.420265
\(57\) 0 0
\(58\) 10.0700i 1.32225i
\(59\) 4.21233i 0.548399i −0.961673 0.274199i \(-0.911587\pi\)
0.961673 0.274199i \(-0.0884128\pi\)
\(60\) 0 0
\(61\) 9.43290 1.20776 0.603880 0.797076i \(-0.293621\pi\)
0.603880 + 0.797076i \(0.293621\pi\)
\(62\) 2.06983 0.262868
\(63\) 0 0
\(64\) −7.91132 −0.988915
\(65\) −4.31314 + 1.60555i −0.534980 + 0.199144i
\(66\) 0 0
\(67\) 2.32275i 0.283769i 0.989883 + 0.141885i \(0.0453162\pi\)
−0.989883 + 0.141885i \(0.954684\pi\)
\(68\) 0.403272 0.0489039
\(69\) 0 0
\(70\) 1.41010i 0.168539i
\(71\) 1.35071i 0.160299i −0.996783 0.0801497i \(-0.974460\pi\)
0.996783 0.0801497i \(-0.0255398\pi\)
\(72\) 0 0
\(73\) 12.8687i 1.50617i 0.657923 + 0.753085i \(0.271435\pi\)
−0.657923 + 0.753085i \(0.728565\pi\)
\(74\) 5.31190 0.617496
\(75\) 0 0
\(76\) 5.66642i 0.649983i
\(77\) 4.79669 0.546634
\(78\) 0 0
\(79\) −12.9083 −1.45230 −0.726149 0.687538i \(-0.758692\pi\)
−0.726149 + 0.687538i \(0.758692\pi\)
\(80\) 2.02833i 0.226774i
\(81\) 0 0
\(82\) −1.63667 −0.180740
\(83\) 10.2328i 1.12320i 0.827409 + 0.561599i \(0.189814\pi\)
−0.827409 + 0.561599i \(0.810186\pi\)
\(84\) 0 0
\(85\) 0.607825i 0.0659279i
\(86\) 2.82260i 0.304369i
\(87\) 0 0
\(88\) −14.2540 −1.51948
\(89\) 6.85985i 0.727143i 0.931566 + 0.363572i \(0.118443\pi\)
−0.931566 + 0.363572i \(0.881557\pi\)
\(90\) 0 0
\(91\) −3.47619 + 1.29400i −0.364403 + 0.135648i
\(92\) −0.812778 −0.0847379
\(93\) 0 0
\(94\) −7.34448 −0.757525
\(95\) 8.54063 0.876250
\(96\) 0 0
\(97\) 17.2784i 1.75435i −0.480170 0.877175i \(-0.659425\pi\)
0.480170 0.877175i \(-0.340575\pi\)
\(98\) 6.38037i 0.644515i
\(99\) 0 0
\(100\) 2.85456 0.285456
\(101\) −13.5287 −1.34615 −0.673077 0.739572i \(-0.735028\pi\)
−0.673077 + 0.739572i \(0.735028\pi\)
\(102\) 0 0
\(103\) 0.104711 0.0103175 0.00515873 0.999987i \(-0.498358\pi\)
0.00515873 + 0.999987i \(0.498358\pi\)
\(104\) 10.3300 3.84529i 1.01294 0.377062i
\(105\) 0 0
\(106\) 0.625128i 0.0607178i
\(107\) −12.4240 −1.20107 −0.600535 0.799598i \(-0.705046\pi\)
−0.600535 + 0.799598i \(0.705046\pi\)
\(108\) 0 0
\(109\) 14.1160i 1.35207i −0.736869 0.676036i \(-0.763696\pi\)
0.736869 0.676036i \(-0.236304\pi\)
\(110\) 6.39103i 0.609360i
\(111\) 0 0
\(112\) 1.63473i 0.154468i
\(113\) −11.6856 −1.09929 −0.549645 0.835398i \(-0.685237\pi\)
−0.549645 + 0.835398i \(0.685237\pi\)
\(114\) 0 0
\(115\) 1.22505i 0.114236i
\(116\) 7.94167 0.737365
\(117\) 0 0
\(118\) −4.52335 −0.416408
\(119\) 0.489878i 0.0449070i
\(120\) 0 0
\(121\) −10.7401 −0.976376
\(122\) 10.1294i 0.917071i
\(123\) 0 0
\(124\) 1.63236i 0.146590i
\(125\) 10.6847i 0.955670i
\(126\) 0 0
\(127\) −8.11161 −0.719789 −0.359894 0.932993i \(-0.617187\pi\)
−0.359894 + 0.932993i \(0.617187\pi\)
\(128\) 0.320109i 0.0282939i
\(129\) 0 0
\(130\) 1.72410 + 4.63161i 0.151214 + 0.406219i
\(131\) −9.36077 −0.817854 −0.408927 0.912567i \(-0.634097\pi\)
−0.408927 + 0.912567i \(0.634097\pi\)
\(132\) 0 0
\(133\) 6.88334 0.596861
\(134\) 2.49425 0.215471
\(135\) 0 0
\(136\) 1.45574i 0.124829i
\(137\) 0.591668i 0.0505496i 0.999681 + 0.0252748i \(0.00804608\pi\)
−0.999681 + 0.0252748i \(0.991954\pi\)
\(138\) 0 0
\(139\) −12.6727 −1.07488 −0.537441 0.843301i \(-0.680609\pi\)
−0.537441 + 0.843301i \(0.680609\pi\)
\(140\) −1.11207 −0.0939873
\(141\) 0 0
\(142\) −1.45044 −0.121718
\(143\) 15.7552 5.86481i 1.31751 0.490440i
\(144\) 0 0
\(145\) 11.9700i 0.994052i
\(146\) 13.8189 1.14366
\(147\) 0 0
\(148\) 4.18921i 0.344351i
\(149\) 11.6904i 0.957716i 0.877892 + 0.478858i \(0.158949\pi\)
−0.877892 + 0.478858i \(0.841051\pi\)
\(150\) 0 0
\(151\) 10.2052i 0.830491i 0.909709 + 0.415245i \(0.136304\pi\)
−0.909709 + 0.415245i \(0.863696\pi\)
\(152\) −20.4548 −1.65910
\(153\) 0 0
\(154\) 5.15086i 0.415068i
\(155\) −2.46036 −0.197620
\(156\) 0 0
\(157\) 10.9404 0.873141 0.436570 0.899670i \(-0.356193\pi\)
0.436570 + 0.899670i \(0.356193\pi\)
\(158\) 13.8614i 1.10275i
\(159\) 0 0
\(160\) 5.62629 0.444797
\(161\) 0.987329i 0.0778125i
\(162\) 0 0
\(163\) 16.9633i 1.32867i −0.747436 0.664334i \(-0.768715\pi\)
0.747436 0.664334i \(-0.231285\pi\)
\(164\) 1.29076i 0.100791i
\(165\) 0 0
\(166\) 10.9884 0.852863
\(167\) 16.8077i 1.30062i 0.759670 + 0.650309i \(0.225360\pi\)
−0.759670 + 0.650309i \(0.774640\pi\)
\(168\) 0 0
\(169\) −9.83571 + 8.50052i −0.756593 + 0.653886i
\(170\) 0.652705 0.0500602
\(171\) 0 0
\(172\) 2.22604 0.169734
\(173\) 19.0864 1.45111 0.725556 0.688163i \(-0.241583\pi\)
0.725556 + 0.688163i \(0.241583\pi\)
\(174\) 0 0
\(175\) 3.46761i 0.262126i
\(176\) 7.40913i 0.558484i
\(177\) 0 0
\(178\) 7.36635 0.552132
\(179\) 8.33634 0.623087 0.311544 0.950232i \(-0.399154\pi\)
0.311544 + 0.950232i \(0.399154\pi\)
\(180\) 0 0
\(181\) 9.93629 0.738558 0.369279 0.929318i \(-0.379605\pi\)
0.369279 + 0.929318i \(0.379605\pi\)
\(182\) 1.38954 + 3.73285i 0.103000 + 0.276697i
\(183\) 0 0
\(184\) 2.93398i 0.216296i
\(185\) −6.31413 −0.464224
\(186\) 0 0
\(187\) 2.22028i 0.162363i
\(188\) 5.79220i 0.422440i
\(189\) 0 0
\(190\) 9.17123i 0.665351i
\(191\) 6.07594 0.439640 0.219820 0.975540i \(-0.429453\pi\)
0.219820 + 0.975540i \(0.429453\pi\)
\(192\) 0 0
\(193\) 16.5130i 1.18863i −0.804232 0.594316i \(-0.797423\pi\)
0.804232 0.594316i \(-0.202577\pi\)
\(194\) −18.5541 −1.33211
\(195\) 0 0
\(196\) 5.03186 0.359419
\(197\) 19.1696i 1.36578i 0.730523 + 0.682888i \(0.239276\pi\)
−0.730523 + 0.682888i \(0.760724\pi\)
\(198\) 0 0
\(199\) 9.06267 0.642436 0.321218 0.947005i \(-0.395908\pi\)
0.321218 + 0.947005i \(0.395908\pi\)
\(200\) 10.3045i 0.728636i
\(201\) 0 0
\(202\) 14.5276i 1.02216i
\(203\) 9.64722i 0.677102i
\(204\) 0 0
\(205\) 1.94547 0.135878
\(206\) 0.112442i 0.00783421i
\(207\) 0 0
\(208\) −1.99875 5.36943i −0.138589 0.372303i
\(209\) −31.1975 −2.15797
\(210\) 0 0
\(211\) −14.6976 −1.01183 −0.505913 0.862584i \(-0.668844\pi\)
−0.505913 + 0.862584i \(0.668844\pi\)
\(212\) −0.493005 −0.0338597
\(213\) 0 0
\(214\) 13.3413i 0.911992i
\(215\) 3.35516i 0.228820i
\(216\) 0 0
\(217\) −1.98293 −0.134610
\(218\) −15.1583 −1.02665
\(219\) 0 0
\(220\) 5.04027 0.339815
\(221\) 0.598963 + 1.60905i 0.0402906 + 0.108236i
\(222\) 0 0
\(223\) 20.2052i 1.35304i 0.736423 + 0.676521i \(0.236513\pi\)
−0.736423 + 0.676521i \(0.763487\pi\)
\(224\) 4.53452 0.302975
\(225\) 0 0
\(226\) 12.5484i 0.834709i
\(227\) 20.5540i 1.36422i 0.731251 + 0.682109i \(0.238937\pi\)
−0.731251 + 0.682109i \(0.761063\pi\)
\(228\) 0 0
\(229\) 19.8920i 1.31450i 0.753672 + 0.657251i \(0.228281\pi\)
−0.753672 + 0.657251i \(0.771719\pi\)
\(230\) −1.31550 −0.0867415
\(231\) 0 0
\(232\) 28.6680i 1.88215i
\(233\) −28.3932 −1.86010 −0.930049 0.367436i \(-0.880236\pi\)
−0.930049 + 0.367436i \(0.880236\pi\)
\(234\) 0 0
\(235\) 8.73021 0.569496
\(236\) 3.56733i 0.232213i
\(237\) 0 0
\(238\) 0.526048 0.0340987
\(239\) 14.7148i 0.951822i 0.879493 + 0.475911i \(0.157882\pi\)
−0.879493 + 0.475911i \(0.842118\pi\)
\(240\) 0 0
\(241\) 13.2364i 0.852634i −0.904574 0.426317i \(-0.859811\pi\)
0.904574 0.426317i \(-0.140189\pi\)
\(242\) 11.5331i 0.741378i
\(243\) 0 0
\(244\) 7.98851 0.511412
\(245\) 7.58421i 0.484537i
\(246\) 0 0
\(247\) 22.6090 8.41611i 1.43857 0.535504i
\(248\) 5.89254 0.374177
\(249\) 0 0
\(250\) 11.4736 0.725656
\(251\) 11.9439 0.753893 0.376946 0.926235i \(-0.376974\pi\)
0.376946 + 0.926235i \(0.376974\pi\)
\(252\) 0 0
\(253\) 4.47489i 0.281334i
\(254\) 8.71053i 0.546548i
\(255\) 0 0
\(256\) −16.1664 −1.01040
\(257\) 14.9649 0.933482 0.466741 0.884394i \(-0.345428\pi\)
0.466741 + 0.884394i \(0.345428\pi\)
\(258\) 0 0
\(259\) −5.08889 −0.316208
\(260\) −3.65270 + 1.35971i −0.226531 + 0.0843255i
\(261\) 0 0
\(262\) 10.0519i 0.621010i
\(263\) −1.54924 −0.0955303 −0.0477652 0.998859i \(-0.515210\pi\)
−0.0477652 + 0.998859i \(0.515210\pi\)
\(264\) 0 0
\(265\) 0.743075i 0.0456467i
\(266\) 7.39157i 0.453206i
\(267\) 0 0
\(268\) 1.96709i 0.120159i
\(269\) −21.0293 −1.28218 −0.641090 0.767466i \(-0.721517\pi\)
−0.641090 + 0.767466i \(0.721517\pi\)
\(270\) 0 0
\(271\) 12.7508i 0.774554i −0.921963 0.387277i \(-0.873416\pi\)
0.921963 0.387277i \(-0.126584\pi\)
\(272\) −0.756681 −0.0458805
\(273\) 0 0
\(274\) 0.635354 0.0383832
\(275\) 15.7163i 0.947728i
\(276\) 0 0
\(277\) −11.6273 −0.698615 −0.349308 0.937008i \(-0.613583\pi\)
−0.349308 + 0.937008i \(0.613583\pi\)
\(278\) 13.6084i 0.816175i
\(279\) 0 0
\(280\) 4.01439i 0.239905i
\(281\) 17.2837i 1.03106i 0.856872 + 0.515528i \(0.172404\pi\)
−0.856872 + 0.515528i \(0.827596\pi\)
\(282\) 0 0
\(283\) 21.6094 1.28455 0.642273 0.766476i \(-0.277991\pi\)
0.642273 + 0.766476i \(0.277991\pi\)
\(284\) 1.14388i 0.0678769i
\(285\) 0 0
\(286\) −6.29784 16.9185i −0.372399 1.00041i
\(287\) 1.56796 0.0925536
\(288\) 0 0
\(289\) −16.7732 −0.986662
\(290\) 12.8538 0.754800
\(291\) 0 0
\(292\) 10.8982i 0.637771i
\(293\) 0.0714448i 0.00417385i 0.999998 + 0.00208692i \(0.000664289\pi\)
−0.999998 + 0.00208692i \(0.999336\pi\)
\(294\) 0 0
\(295\) 5.37681 0.313050
\(296\) 15.1223 0.878967
\(297\) 0 0
\(298\) 12.5536 0.727209
\(299\) −1.20719 3.24297i −0.0698134 0.187546i
\(300\) 0 0
\(301\) 2.70410i 0.155862i
\(302\) 10.9587 0.630605
\(303\) 0 0
\(304\) 10.6322i 0.609800i
\(305\) 12.0406i 0.689441i
\(306\) 0 0
\(307\) 19.9335i 1.13766i 0.822454 + 0.568831i \(0.192604\pi\)
−0.822454 + 0.568831i \(0.807396\pi\)
\(308\) 4.06221 0.231466
\(309\) 0 0
\(310\) 2.64202i 0.150056i
\(311\) −6.08028 −0.344781 −0.172390 0.985029i \(-0.555149\pi\)
−0.172390 + 0.985029i \(0.555149\pi\)
\(312\) 0 0
\(313\) 6.09243 0.344365 0.172182 0.985065i \(-0.444918\pi\)
0.172182 + 0.985065i \(0.444918\pi\)
\(314\) 11.7482i 0.662990i
\(315\) 0 0
\(316\) −10.9317 −0.614959
\(317\) 9.52665i 0.535070i 0.963548 + 0.267535i \(0.0862091\pi\)
−0.963548 + 0.267535i \(0.913791\pi\)
\(318\) 0 0
\(319\) 43.7242i 2.44809i
\(320\) 10.0984i 0.564516i
\(321\) 0 0
\(322\) −1.06023 −0.0590843
\(323\) 3.18614i 0.177282i
\(324\) 0 0
\(325\) 4.23977 + 11.3897i 0.235180 + 0.631785i
\(326\) −18.2158 −1.00888
\(327\) 0 0
\(328\) −4.65940 −0.257272
\(329\) 7.03613 0.387915
\(330\) 0 0
\(331\) 18.1454i 0.997359i 0.866786 + 0.498680i \(0.166182\pi\)
−0.866786 + 0.498680i \(0.833818\pi\)
\(332\) 8.66595i 0.475606i
\(333\) 0 0
\(334\) 18.0487 0.987580
\(335\) −2.96486 −0.161988
\(336\) 0 0
\(337\) −8.01859 −0.436800 −0.218400 0.975859i \(-0.570084\pi\)
−0.218400 + 0.975859i \(0.570084\pi\)
\(338\) 9.12816 + 10.5619i 0.496506 + 0.574494i
\(339\) 0 0
\(340\) 0.514754i 0.0279164i
\(341\) 8.98726 0.486687
\(342\) 0 0
\(343\) 13.3138i 0.718876i
\(344\) 8.03560i 0.433251i
\(345\) 0 0
\(346\) 20.4956i 1.10185i
\(347\) −16.6273 −0.892599 −0.446299 0.894884i \(-0.647258\pi\)
−0.446299 + 0.894884i \(0.647258\pi\)
\(348\) 0 0
\(349\) 0.178993i 0.00958129i 0.999989 + 0.00479065i \(0.00152492\pi\)
−0.999989 + 0.00479065i \(0.998475\pi\)
\(350\) 3.72364 0.199037
\(351\) 0 0
\(352\) −20.5519 −1.09542
\(353\) 16.9210i 0.900616i 0.892873 + 0.450308i \(0.148686\pi\)
−0.892873 + 0.450308i \(0.851314\pi\)
\(354\) 0 0
\(355\) 1.72410 0.0915058
\(356\) 5.80945i 0.307900i
\(357\) 0 0
\(358\) 8.95186i 0.473120i
\(359\) 34.4410i 1.81773i −0.417093 0.908864i \(-0.636951\pi\)
0.417093 0.908864i \(-0.363049\pi\)
\(360\) 0 0
\(361\) −25.7689 −1.35626
\(362\) 10.6699i 0.560800i
\(363\) 0 0
\(364\) −2.94390 + 1.09586i −0.154302 + 0.0574386i
\(365\) −16.4262 −0.859787
\(366\) 0 0
\(367\) 25.0851 1.30943 0.654717 0.755874i \(-0.272788\pi\)
0.654717 + 0.755874i \(0.272788\pi\)
\(368\) 1.52506 0.0794993
\(369\) 0 0
\(370\) 6.78034i 0.352493i
\(371\) 0.598883i 0.0310924i
\(372\) 0 0
\(373\) 10.9506 0.567001 0.283500 0.958972i \(-0.408504\pi\)
0.283500 + 0.958972i \(0.408504\pi\)
\(374\) −2.38422 −0.123285
\(375\) 0 0
\(376\) −20.9088 −1.07829
\(377\) 11.7954 + 31.6872i 0.607496 + 1.63197i
\(378\) 0 0
\(379\) 11.1048i 0.570415i −0.958466 0.285208i \(-0.907937\pi\)
0.958466 0.285208i \(-0.0920626\pi\)
\(380\) 7.23287 0.371038
\(381\) 0 0
\(382\) 6.52456i 0.333826i
\(383\) 5.87871i 0.300388i −0.988657 0.150194i \(-0.952010\pi\)
0.988657 0.150194i \(-0.0479898\pi\)
\(384\) 0 0
\(385\) 6.12271i 0.312042i
\(386\) −17.7322 −0.902548
\(387\) 0 0
\(388\) 14.6326i 0.742860i
\(389\) 0.0802767 0.00407019 0.00203510 0.999998i \(-0.499352\pi\)
0.00203510 + 0.999998i \(0.499352\pi\)
\(390\) 0 0
\(391\) −0.457013 −0.0231121
\(392\) 18.1641i 0.917428i
\(393\) 0 0
\(394\) 20.5850 1.03706
\(395\) 16.4767i 0.829034i
\(396\) 0 0
\(397\) 1.33964i 0.0672345i −0.999435 0.0336172i \(-0.989297\pi\)
0.999435 0.0336172i \(-0.0107027\pi\)
\(398\) 9.73182i 0.487812i
\(399\) 0 0
\(400\) −5.35618 −0.267809
\(401\) 31.6772i 1.58188i −0.611891 0.790942i \(-0.709591\pi\)
0.611891 0.790942i \(-0.290409\pi\)
\(402\) 0 0
\(403\) −6.51311 + 2.42448i −0.324441 + 0.120772i
\(404\) −11.4571 −0.570014
\(405\) 0 0
\(406\) 10.3595 0.514135
\(407\) 23.0644 1.14326
\(408\) 0 0
\(409\) 3.37903i 0.167082i −0.996504 0.0835412i \(-0.973377\pi\)
0.996504 0.0835412i \(-0.0266230\pi\)
\(410\) 2.08912i 0.103174i
\(411\) 0 0
\(412\) 0.0886771 0.00436881
\(413\) 4.33345 0.213235
\(414\) 0 0
\(415\) −13.0616 −0.641170
\(416\) 14.8940 5.54426i 0.730240 0.271830i
\(417\) 0 0
\(418\) 33.5009i 1.63859i
\(419\) 21.6660 1.05846 0.529228 0.848480i \(-0.322482\pi\)
0.529228 + 0.848480i \(0.322482\pi\)
\(420\) 0 0
\(421\) 14.0513i 0.684819i −0.939551 0.342409i \(-0.888757\pi\)
0.939551 0.342409i \(-0.111243\pi\)
\(422\) 15.7828i 0.768297i
\(423\) 0 0
\(424\) 1.77966i 0.0864280i
\(425\) 1.60508 0.0778577
\(426\) 0 0
\(427\) 9.70412i 0.469615i
\(428\) −10.5216 −0.508580
\(429\) 0 0
\(430\) 3.60289 0.173747
\(431\) 26.5547i 1.27909i −0.768752 0.639547i \(-0.779122\pi\)
0.768752 0.639547i \(-0.220878\pi\)
\(432\) 0 0
\(433\) 21.7861 1.04697 0.523485 0.852035i \(-0.324631\pi\)
0.523485 + 0.852035i \(0.324631\pi\)
\(434\) 2.12934i 0.102212i
\(435\) 0 0
\(436\) 11.9546i 0.572520i
\(437\) 6.42154i 0.307184i
\(438\) 0 0
\(439\) −7.79380 −0.371978 −0.185989 0.982552i \(-0.559549\pi\)
−0.185989 + 0.982552i \(0.559549\pi\)
\(440\) 18.1945i 0.867387i
\(441\) 0 0
\(442\) 1.72785 0.643188i 0.0821857 0.0305933i
\(443\) −16.0031 −0.760330 −0.380165 0.924919i \(-0.624133\pi\)
−0.380165 + 0.924919i \(0.624133\pi\)
\(444\) 0 0
\(445\) −8.75622 −0.415085
\(446\) 21.6971 1.02739
\(447\) 0 0
\(448\) 8.13879i 0.384522i
\(449\) 8.58501i 0.405151i 0.979267 + 0.202576i \(0.0649312\pi\)
−0.979267 + 0.202576i \(0.935069\pi\)
\(450\) 0 0
\(451\) −7.10648 −0.334631
\(452\) −9.89628 −0.465482
\(453\) 0 0
\(454\) 22.0716 1.03587
\(455\) −1.65172 4.43716i −0.0774337 0.208017i
\(456\) 0 0
\(457\) 5.50364i 0.257450i −0.991680 0.128725i \(-0.958912\pi\)
0.991680 0.128725i \(-0.0410884\pi\)
\(458\) 21.3608 0.998123
\(459\) 0 0
\(460\) 1.03747i 0.0483721i
\(461\) 22.9875i 1.07063i −0.844651 0.535317i \(-0.820192\pi\)
0.844651 0.535317i \(-0.179808\pi\)
\(462\) 0 0
\(463\) 25.2200i 1.17207i 0.810284 + 0.586037i \(0.199313\pi\)
−0.810284 + 0.586037i \(0.800687\pi\)
\(464\) −14.9014 −0.691780
\(465\) 0 0
\(466\) 30.4896i 1.41240i
\(467\) −18.1098 −0.838023 −0.419012 0.907981i \(-0.637623\pi\)
−0.419012 + 0.907981i \(0.637623\pi\)
\(468\) 0 0
\(469\) −2.38954 −0.110338
\(470\) 9.37481i 0.432428i
\(471\) 0 0
\(472\) −12.8774 −0.592732
\(473\) 12.2558i 0.563524i
\(474\) 0 0
\(475\) 22.5531i 1.03481i
\(476\) 0.414867i 0.0190154i
\(477\) 0 0
\(478\) 15.8013 0.722734
\(479\) 16.5774i 0.757439i 0.925511 + 0.378720i \(0.123636\pi\)
−0.925511 + 0.378720i \(0.876364\pi\)
\(480\) 0 0
\(481\) −16.7149 + 6.22207i −0.762135 + 0.283702i
\(482\) −14.2138 −0.647419
\(483\) 0 0
\(484\) −9.09558 −0.413435
\(485\) 22.0548 1.00146
\(486\) 0 0
\(487\) 5.78932i 0.262339i −0.991360 0.131170i \(-0.958127\pi\)
0.991360 0.131170i \(-0.0418732\pi\)
\(488\) 28.8371i 1.30539i
\(489\) 0 0
\(490\) 8.14419 0.367917
\(491\) 10.4706 0.472532 0.236266 0.971688i \(-0.424076\pi\)
0.236266 + 0.971688i \(0.424076\pi\)
\(492\) 0 0
\(493\) 4.46548 0.201115
\(494\) −9.03752 24.2783i −0.406617 1.09233i
\(495\) 0 0
\(496\) 3.06289i 0.137528i
\(497\) 1.38954 0.0623295
\(498\) 0 0
\(499\) 9.03702i 0.404553i 0.979328 + 0.202276i \(0.0648339\pi\)
−0.979328 + 0.202276i \(0.935166\pi\)
\(500\) 9.04865i 0.404668i
\(501\) 0 0
\(502\) 12.8258i 0.572443i
\(503\) 9.96486 0.444311 0.222155 0.975011i \(-0.428691\pi\)
0.222155 + 0.975011i \(0.428691\pi\)
\(504\) 0 0
\(505\) 17.2686i 0.768443i
\(506\) 4.80530 0.213621
\(507\) 0 0
\(508\) −6.86954 −0.304787
\(509\) 35.2868i 1.56406i 0.623240 + 0.782030i \(0.285816\pi\)
−0.623240 + 0.782030i \(0.714184\pi\)
\(510\) 0 0
\(511\) −13.2387 −0.585647
\(512\) 16.7198i 0.738919i
\(513\) 0 0
\(514\) 16.0698i 0.708808i
\(515\) 0.133657i 0.00588965i
\(516\) 0 0
\(517\) −31.8900 −1.40252
\(518\) 5.46463i 0.240102i
\(519\) 0 0
\(520\) 4.90830 + 13.1856i 0.215243 + 0.578228i
\(521\) −12.9544 −0.567541 −0.283770 0.958892i \(-0.591585\pi\)
−0.283770 + 0.958892i \(0.591585\pi\)
\(522\) 0 0
\(523\) −0.367139 −0.0160539 −0.00802694 0.999968i \(-0.502555\pi\)
−0.00802694 + 0.999968i \(0.502555\pi\)
\(524\) −7.92743 −0.346311
\(525\) 0 0
\(526\) 1.66363i 0.0725377i
\(527\) 0.917853i 0.0399823i
\(528\) 0 0
\(529\) −22.0789 −0.959953
\(530\) −0.797940 −0.0346603
\(531\) 0 0
\(532\) 5.82934 0.252734
\(533\) 5.15010 1.91711i 0.223076 0.0830392i
\(534\) 0 0
\(535\) 15.8585i 0.685623i
\(536\) 7.10083 0.306709
\(537\) 0 0
\(538\) 22.5820i 0.973580i
\(539\) 27.7038i 1.19329i
\(540\) 0 0
\(541\) 42.0316i 1.80708i −0.428504 0.903540i \(-0.640959\pi\)
0.428504 0.903540i \(-0.359041\pi\)
\(542\) −13.6922 −0.588132
\(543\) 0 0
\(544\) 2.09893i 0.0899908i
\(545\) 18.0183 0.771821
\(546\) 0 0
\(547\) −28.5784 −1.22192 −0.610962 0.791660i \(-0.709217\pi\)
−0.610962 + 0.791660i \(0.709217\pi\)
\(548\) 0.501071i 0.0214047i
\(549\) 0 0
\(550\) −16.8767 −0.719625
\(551\) 62.7451i 2.67303i
\(552\) 0 0
\(553\) 13.2794i 0.564699i
\(554\) 12.4858i 0.530470i
\(555\) 0 0
\(556\) −10.7322 −0.455146
\(557\) 3.59187i 0.152192i −0.997100 0.0760961i \(-0.975754\pi\)
0.997100 0.0760961i \(-0.0242456\pi\)
\(558\) 0 0
\(559\) 3.30625 + 8.88187i 0.139839 + 0.375663i
\(560\) 2.08664 0.0881768
\(561\) 0 0
\(562\) 18.5598 0.782898
\(563\) 30.6453 1.29155 0.645774 0.763529i \(-0.276535\pi\)
0.645774 + 0.763529i \(0.276535\pi\)
\(564\) 0 0
\(565\) 14.9160i 0.627522i
\(566\) 23.2050i 0.975377i
\(567\) 0 0
\(568\) −4.12921 −0.173258
\(569\) 34.6648 1.45322 0.726612 0.687048i \(-0.241094\pi\)
0.726612 + 0.687048i \(0.241094\pi\)
\(570\) 0 0
\(571\) −15.5210 −0.649533 −0.324767 0.945794i \(-0.605286\pi\)
−0.324767 + 0.945794i \(0.605286\pi\)
\(572\) 13.3427 4.96678i 0.557887 0.207671i
\(573\) 0 0
\(574\) 1.68373i 0.0702775i
\(575\) −3.23497 −0.134908
\(576\) 0 0
\(577\) 18.6264i 0.775426i 0.921780 + 0.387713i \(0.126735\pi\)
−0.921780 + 0.387713i \(0.873265\pi\)
\(578\) 18.0117i 0.749188i
\(579\) 0 0
\(580\) 10.1371i 0.420920i
\(581\) −10.5270 −0.436735
\(582\) 0 0
\(583\) 2.71433i 0.112416i
\(584\) 39.3407 1.62793
\(585\) 0 0
\(586\) 0.0767199 0.00316927
\(587\) 35.3932i 1.46084i −0.683001 0.730418i \(-0.739325\pi\)
0.683001 0.730418i \(-0.260675\pi\)
\(588\) 0 0
\(589\) 12.8969 0.531406
\(590\) 5.77380i 0.237704i
\(591\) 0 0
\(592\) 7.86046i 0.323063i
\(593\) 2.41535i 0.0991864i −0.998770 0.0495932i \(-0.984208\pi\)
0.998770 0.0495932i \(-0.0157925\pi\)
\(594\) 0 0
\(595\) −0.625302 −0.0256349
\(596\) 9.90034i 0.405534i
\(597\) 0 0
\(598\) −3.48242 + 1.29632i −0.142407 + 0.0530105i
\(599\) −40.9367 −1.67263 −0.836314 0.548251i \(-0.815294\pi\)
−0.836314 + 0.548251i \(0.815294\pi\)
\(600\) 0 0
\(601\) −17.6415 −0.719613 −0.359807 0.933027i \(-0.617157\pi\)
−0.359807 + 0.933027i \(0.617157\pi\)
\(602\) 2.90376 0.118348
\(603\) 0 0
\(604\) 8.64259i 0.351662i
\(605\) 13.7092i 0.557357i
\(606\) 0 0
\(607\) −18.4591 −0.749232 −0.374616 0.927180i \(-0.622226\pi\)
−0.374616 + 0.927180i \(0.622226\pi\)
\(608\) −29.4923 −1.19607
\(609\) 0 0
\(610\) 12.9296 0.523504
\(611\) 23.1108 8.60293i 0.934964 0.348037i
\(612\) 0 0
\(613\) 7.01548i 0.283352i −0.989913 0.141676i \(-0.954751\pi\)
0.989913 0.141676i \(-0.0452492\pi\)
\(614\) 21.4053 0.863846
\(615\) 0 0
\(616\) 14.6639i 0.590824i
\(617\) 10.1422i 0.408311i 0.978938 + 0.204156i \(0.0654449\pi\)
−0.978938 + 0.204156i \(0.934555\pi\)
\(618\) 0 0
\(619\) 9.36568i 0.376439i 0.982127 + 0.188219i \(0.0602716\pi\)
−0.982127 + 0.188219i \(0.939728\pi\)
\(620\) −2.08362 −0.0836802
\(621\) 0 0
\(622\) 6.52922i 0.261798i
\(623\) −7.05709 −0.282736
\(624\) 0 0
\(625\) 3.21501 0.128600
\(626\) 6.54227i 0.261482i
\(627\) 0 0
\(628\) 9.26520 0.369722
\(629\) 2.35553i 0.0939212i
\(630\) 0 0
\(631\) 0.999379i 0.0397846i 0.999802 + 0.0198923i \(0.00633234\pi\)
−0.999802 + 0.0198923i \(0.993668\pi\)
\(632\) 39.4617i 1.56970i
\(633\) 0 0
\(634\) 10.2301 0.406287
\(635\) 10.3540i 0.410887i
\(636\) 0 0
\(637\) 7.47363 + 20.0771i 0.296116 + 0.795483i
\(638\) −46.9526 −1.85887
\(639\) 0 0
\(640\) 0.408601 0.0161514
\(641\) 8.54213 0.337394 0.168697 0.985668i \(-0.446044\pi\)
0.168697 + 0.985668i \(0.446044\pi\)
\(642\) 0 0
\(643\) 0.904290i 0.0356617i −0.999841 0.0178309i \(-0.994324\pi\)
0.999841 0.0178309i \(-0.00567604\pi\)
\(644\) 0.836147i 0.0329488i
\(645\) 0 0
\(646\) −3.42139 −0.134613
\(647\) −20.5148 −0.806518 −0.403259 0.915086i \(-0.632123\pi\)
−0.403259 + 0.915086i \(0.632123\pi\)
\(648\) 0 0
\(649\) −19.6406 −0.770959
\(650\) 12.2306 4.55281i 0.479725 0.178576i
\(651\) 0 0
\(652\) 14.3658i 0.562610i
\(653\) −9.36899 −0.366637 −0.183318 0.983054i \(-0.558684\pi\)
−0.183318 + 0.983054i \(0.558684\pi\)
\(654\) 0 0
\(655\) 11.9485i 0.466867i
\(656\) 2.42192i 0.0945600i
\(657\) 0 0
\(658\) 7.55565i 0.294550i
\(659\) −35.3042 −1.37525 −0.687627 0.726064i \(-0.741348\pi\)
−0.687627 + 0.726064i \(0.741348\pi\)
\(660\) 0 0
\(661\) 23.3442i 0.907983i 0.891006 + 0.453992i \(0.150000\pi\)
−0.891006 + 0.453992i \(0.850000\pi\)
\(662\) 19.4851 0.757311
\(663\) 0 0
\(664\) 31.2825 1.21400
\(665\) 8.78619i 0.340714i
\(666\) 0 0
\(667\) −9.00000 −0.348481
\(668\) 14.2340i 0.550732i
\(669\) 0 0
\(670\) 3.18377i 0.123000i
\(671\) 43.9821i 1.69791i
\(672\) 0 0
\(673\) 49.8528 1.92168 0.960842 0.277096i \(-0.0893720\pi\)
0.960842 + 0.277096i \(0.0893720\pi\)
\(674\) 8.61065i 0.331670i
\(675\) 0 0
\(676\) −8.32964 + 7.19890i −0.320371 + 0.276881i
\(677\) −10.9118 −0.419376 −0.209688 0.977768i \(-0.567245\pi\)
−0.209688 + 0.977768i \(0.567245\pi\)
\(678\) 0 0
\(679\) 17.7751 0.682147
\(680\) 1.85817 0.0712576
\(681\) 0 0
\(682\) 9.65084i 0.369550i
\(683\) 24.0595i 0.920610i 0.887761 + 0.460305i \(0.152260\pi\)
−0.887761 + 0.460305i \(0.847740\pi\)
\(684\) 0 0
\(685\) −0.755232 −0.0288559
\(686\) 14.2968 0.545854
\(687\) 0 0
\(688\) −4.17684 −0.159241
\(689\) −0.732241 1.96709i −0.0278962 0.0749400i
\(690\) 0 0
\(691\) 29.4307i 1.11960i −0.828629 0.559799i \(-0.810878\pi\)
0.828629 0.559799i \(-0.189122\pi\)
\(692\) 16.1638 0.614457
\(693\) 0 0
\(694\) 17.8550i 0.677765i
\(695\) 16.1760i 0.613589i
\(696\) 0 0
\(697\) 0.725773i 0.0274906i
\(698\) 0.192209 0.00727523
\(699\) 0 0
\(700\) 2.93664i 0.110994i
\(701\) −16.6961 −0.630604 −0.315302 0.948991i \(-0.602106\pi\)
−0.315302 + 0.948991i \(0.602106\pi\)
\(702\) 0 0
\(703\) 33.0979 1.24831
\(704\) 36.8876i 1.39025i
\(705\) 0 0
\(706\) 18.1704 0.683852
\(707\) 13.9177i 0.523427i
\(708\) 0 0
\(709\) 33.4537i 1.25638i 0.778059 + 0.628191i \(0.216204\pi\)
−0.778059 + 0.628191i \(0.783796\pi\)
\(710\) 1.85140i 0.0694818i
\(711\) 0 0
\(712\) 20.9711 0.785925
\(713\) 1.84990i 0.0692792i
\(714\) 0 0
\(715\) 7.48611 + 20.1106i 0.279964 + 0.752094i
\(716\) 7.05986 0.263839
\(717\) 0 0
\(718\) −36.9840 −1.38023
\(719\) 31.3183 1.16797 0.583987 0.811763i \(-0.301492\pi\)
0.583987 + 0.811763i \(0.301492\pi\)
\(720\) 0 0
\(721\) 0.107721i 0.00401175i
\(722\) 27.6716i 1.02983i
\(723\) 0 0
\(724\) 8.41482 0.312734
\(725\) 31.6090 1.17393
\(726\) 0 0
\(727\) 37.7830 1.40129 0.700646 0.713509i \(-0.252895\pi\)
0.700646 + 0.713509i \(0.252895\pi\)
\(728\) 3.95586 + 10.6270i 0.146614 + 0.393862i
\(729\) 0 0
\(730\) 17.6390i 0.652850i
\(731\) 1.25167 0.0462946
\(732\) 0 0
\(733\) 6.40942i 0.236737i −0.992970 0.118369i \(-0.962234\pi\)
0.992970 0.118369i \(-0.0377665\pi\)
\(734\) 26.9373i 0.994275i
\(735\) 0 0
\(736\) 4.23030i 0.155931i
\(737\) 10.8301 0.398933
\(738\) 0 0
\(739\) 26.2292i 0.964856i 0.875936 + 0.482428i \(0.160245\pi\)
−0.875936 + 0.482428i \(0.839755\pi\)
\(740\) −5.34730 −0.196570
\(741\) 0 0
\(742\) −0.643101 −0.0236090
\(743\) 27.4289i 1.00627i −0.864208 0.503134i \(-0.832180\pi\)
0.864208 0.503134i \(-0.167820\pi\)
\(744\) 0 0
\(745\) −14.9222 −0.546705
\(746\) 11.7591i 0.430533i
\(747\) 0 0
\(748\) 1.88031i 0.0687508i
\(749\) 12.7812i 0.467014i
\(750\) 0 0
\(751\) −14.6367 −0.534102 −0.267051 0.963682i \(-0.586049\pi\)
−0.267051 + 0.963682i \(0.586049\pi\)
\(752\) 10.8682i 0.396324i
\(753\) 0 0
\(754\) 34.0268 12.6664i 1.23918 0.461282i
\(755\) −13.0264 −0.474080
\(756\) 0 0
\(757\) 4.79203 0.174169 0.0870846 0.996201i \(-0.472245\pi\)
0.0870846 + 0.996201i \(0.472245\pi\)
\(758\) −11.9247 −0.433126
\(759\) 0 0
\(760\) 26.1094i 0.947087i
\(761\) 19.3385i 0.701022i −0.936559 0.350511i \(-0.886008\pi\)
0.936559 0.350511i \(-0.113992\pi\)
\(762\) 0 0
\(763\) 14.5219 0.525729
\(764\) 5.14558 0.186160
\(765\) 0 0
\(766\) −6.31277 −0.228089
\(767\) 14.2336 5.29841i 0.513946 0.191315i
\(768\) 0 0
\(769\) 10.0925i 0.363946i −0.983303 0.181973i \(-0.941752\pi\)
0.983303 0.181973i \(-0.0582484\pi\)
\(770\) 6.57478 0.236939
\(771\) 0 0
\(772\) 13.9845i 0.503313i
\(773\) 8.43470i 0.303375i −0.988428 0.151688i \(-0.951529\pi\)
0.988428 0.151688i \(-0.0484708\pi\)
\(774\) 0 0
\(775\) 6.49703i 0.233380i
\(776\) −52.8213 −1.89617
\(777\) 0 0
\(778\) 0.0862040i 0.00309056i
\(779\) −10.1979 −0.365379
\(780\) 0 0
\(781\) −6.29784 −0.225355
\(782\) 0.490757i 0.0175494i
\(783\) 0 0
\(784\) −9.44157 −0.337199
\(785\) 13.9648i 0.498426i
\(786\) 0 0
\(787\) 12.8145i 0.456787i 0.973569 + 0.228393i \(0.0733472\pi\)
−0.973569 + 0.228393i \(0.926653\pi\)
\(788\) 16.2343i 0.578323i
\(789\) 0 0
\(790\) −17.6933 −0.629499
\(791\) 12.0216i 0.427439i
\(792\) 0 0
\(793\) 11.8650 + 31.8741i 0.421339 + 1.13188i
\(794\) −1.43855 −0.0510522
\(795\) 0 0
\(796\) 7.67497 0.272032
\(797\) −29.2148 −1.03484 −0.517421 0.855731i \(-0.673108\pi\)
−0.517421 + 0.855731i \(0.673108\pi\)
\(798\) 0 0
\(799\) 3.25687i 0.115220i
\(800\) 14.8573i 0.525284i
\(801\) 0 0
\(802\) −34.0161 −1.20115
\(803\) 60.0021 2.11743
\(804\) 0 0
\(805\) 1.26027 0.0444187
\(806\) 2.60350 + 6.99401i 0.0917042 + 0.246353i
\(807\) 0 0
\(808\) 41.3582i 1.45498i
\(809\) 11.3570 0.399292 0.199646 0.979868i \(-0.436021\pi\)
0.199646 + 0.979868i \(0.436021\pi\)
\(810\) 0 0
\(811\) 26.8826i 0.943974i −0.881605 0.471987i \(-0.843537\pi\)
0.881605 0.471987i \(-0.156463\pi\)
\(812\) 8.17001i 0.286711i
\(813\) 0 0
\(814\) 24.7674i 0.868098i
\(815\) 21.6527 0.758461
\(816\) 0 0
\(817\) 17.5873i 0.615303i
\(818\) −3.62852 −0.126868
\(819\) 0 0
\(820\) 1.64758 0.0575359
\(821\) 16.4776i 0.575072i 0.957770 + 0.287536i \(0.0928361\pi\)
−0.957770 + 0.287536i \(0.907164\pi\)
\(822\) 0 0
\(823\) 8.20410 0.285977 0.142988 0.989724i \(-0.454329\pi\)
0.142988 + 0.989724i \(0.454329\pi\)
\(824\) 0.320109i 0.0111515i
\(825\) 0 0
\(826\) 4.65341i 0.161913i
\(827\) 43.6569i 1.51810i 0.651033 + 0.759049i \(0.274336\pi\)
−0.651033 + 0.759049i \(0.725664\pi\)
\(828\) 0 0
\(829\) 23.3338 0.810415 0.405208 0.914225i \(-0.367199\pi\)
0.405208 + 0.914225i \(0.367199\pi\)
\(830\) 14.0260i 0.486851i
\(831\) 0 0
\(832\) −9.95113 26.7326i −0.344993 0.926787i
\(833\) 2.82934 0.0980309
\(834\) 0 0
\(835\) −21.4541 −0.742448
\(836\) −26.4204 −0.913770
\(837\) 0 0
\(838\) 23.2658i 0.803702i
\(839\) 13.7220i 0.473735i −0.971542 0.236868i \(-0.923879\pi\)
0.971542 0.236868i \(-0.0761208\pi\)
\(840\) 0 0
\(841\) 58.9392 2.03239
\(842\) −15.0888 −0.519994
\(843\) 0 0
\(844\) −12.4471 −0.428447
\(845\) −10.8504 12.5547i −0.373266 0.431896i
\(846\) 0 0
\(847\) 11.0489i 0.379646i
\(848\) 0.925054 0.0317665
\(849\) 0 0
\(850\) 1.72359i 0.0591186i
\(851\) 4.74748i 0.162742i
\(852\) 0 0
\(853\) 15.3309i 0.524920i −0.964943 0.262460i \(-0.915466\pi\)
0.964943 0.262460i \(-0.0845337\pi\)
\(854\) 10.4206 0.356587
\(855\) 0 0
\(856\) 37.9810i 1.29817i
\(857\) −42.7921 −1.46175 −0.730875 0.682511i \(-0.760888\pi\)
−0.730875 + 0.682511i \(0.760888\pi\)
\(858\) 0 0
\(859\) −26.3071 −0.897587 −0.448793 0.893636i \(-0.648146\pi\)
−0.448793 + 0.893636i \(0.648146\pi\)
\(860\) 2.84141i 0.0968914i
\(861\) 0 0
\(862\) −28.5154 −0.971237
\(863\) 8.03444i 0.273495i 0.990606 + 0.136748i \(0.0436650\pi\)
−0.990606 + 0.136748i \(0.956335\pi\)
\(864\) 0 0
\(865\) 24.3627i 0.828357i
\(866\) 23.3946i 0.794982i
\(867\) 0 0
\(868\) −1.67930 −0.0569990
\(869\) 60.1867i 2.04169i
\(870\) 0 0
\(871\) −7.84865 + 2.92163i −0.265941 + 0.0989958i
\(872\) −43.1539 −1.46137
\(873\) 0 0
\(874\) 6.89568 0.233250
\(875\) −10.9919 −0.371595
\(876\) 0 0
\(877\) 6.97323i 0.235469i −0.993045 0.117735i \(-0.962437\pi\)
0.993045 0.117735i \(-0.0375632\pi\)
\(878\) 8.36926i 0.282449i
\(879\) 0 0
\(880\) −9.45734 −0.318807
\(881\) −30.4317 −1.02527 −0.512635 0.858606i \(-0.671331\pi\)
−0.512635 + 0.858606i \(0.671331\pi\)
\(882\) 0 0
\(883\) −1.51291 −0.0509134 −0.0254567 0.999676i \(-0.508104\pi\)
−0.0254567 + 0.999676i \(0.508104\pi\)
\(884\) 0.507248 + 1.36267i 0.0170606 + 0.0458315i
\(885\) 0 0
\(886\) 17.1847i 0.577331i
\(887\) 36.8943 1.23879 0.619395 0.785080i \(-0.287378\pi\)
0.619395 + 0.785080i \(0.287378\pi\)
\(888\) 0 0
\(889\) 8.34484i 0.279877i
\(890\) 9.40274i 0.315181i
\(891\) 0 0
\(892\) 17.1114i 0.572931i
\(893\) −45.7627 −1.53139
\(894\) 0 0
\(895\) 10.6409i 0.355685i
\(896\) 0.329313 0.0110016
\(897\) 0 0
\(898\) 9.21888 0.307638
\(899\) 18.0754i 0.602848i
\(900\) 0 0
\(901\) −0.277209 −0.00923519
\(902\) 7.63119i 0.254091i
\(903\) 0 0
\(904\) 35.7238i 1.18816i
\(905\) 12.6831i 0.421601i
\(906\) 0 0
\(907\) 28.7881 0.955893 0.477946 0.878389i \(-0.341381\pi\)
0.477946 + 0.878389i \(0.341381\pi\)
\(908\) 17.4067i 0.577662i
\(909\) 0 0
\(910\) −4.76478 + 1.77367i −0.157951 + 0.0587967i
\(911\) 39.7863 1.31818 0.659089 0.752065i \(-0.270942\pi\)
0.659089 + 0.752065i \(0.270942\pi\)
\(912\) 0 0
\(913\) 47.7119 1.57903
\(914\) −5.91001 −0.195486
\(915\) 0 0
\(916\) 16.8461i 0.556611i
\(917\) 9.62991i 0.318008i
\(918\) 0 0
\(919\) 28.4990 0.940095 0.470047 0.882641i \(-0.344237\pi\)
0.470047 + 0.882641i \(0.344237\pi\)
\(920\) −3.74507 −0.123471
\(921\) 0 0
\(922\) −24.6848 −0.812950
\(923\) 4.56408 1.69896i 0.150228 0.0559221i
\(924\) 0 0
\(925\) 16.6737i 0.548226i
\(926\) 27.0822 0.889975
\(927\) 0 0
\(928\) 41.3344i 1.35687i
\(929\) 30.2119i 0.991219i 0.868545 + 0.495610i \(0.165055\pi\)
−0.868545 + 0.495610i \(0.834945\pi\)
\(930\) 0 0
\(931\) 39.7555i 1.30293i
\(932\) −24.0455 −0.787637
\(933\) 0 0
\(934\) 19.4470i 0.636325i
\(935\) 2.83407 0.0926839
\(936\) 0 0
\(937\) 6.31683 0.206362 0.103181 0.994663i \(-0.467098\pi\)
0.103181 + 0.994663i \(0.467098\pi\)
\(938\) 2.56597i 0.0837818i
\(939\) 0 0
\(940\) 7.39342 0.241147
\(941\) 42.1966i 1.37557i 0.725915 + 0.687784i \(0.241416\pi\)
−0.725915 + 0.687784i \(0.758584\pi\)
\(942\) 0 0
\(943\) 1.46277i 0.0476342i
\(944\) 6.69358i 0.217857i
\(945\) 0 0
\(946\) −13.1608 −0.427893
\(947\) 13.6229i 0.442684i −0.975196 0.221342i \(-0.928956\pi\)
0.975196 0.221342i \(-0.0710437\pi\)
\(948\) 0 0
\(949\) −43.4838 + 16.1867i −1.41154 + 0.525443i
\(950\) −24.2184 −0.785748
\(951\) 0 0
\(952\) 1.49760 0.0485373
\(953\) 43.5443 1.41054 0.705268 0.708940i \(-0.250826\pi\)
0.705268 + 0.708940i \(0.250826\pi\)
\(954\) 0 0
\(955\) 7.75560i 0.250965i
\(956\) 12.4616i 0.403038i
\(957\) 0 0
\(958\) 17.8014 0.575136
\(959\) −0.608680 −0.0196553
\(960\) 0 0
\(961\) 27.2847 0.880152
\(962\) 6.68148 + 17.9491i 0.215420 + 0.578701i
\(963\) 0 0
\(964\) 11.2096i 0.361038i
\(965\) 21.0779 0.678522
\(966\) 0 0
\(967\) 16.1442i 0.519162i 0.965721 + 0.259581i \(0.0835845\pi\)
−0.965721 + 0.259581i \(0.916415\pi\)
\(968\) 32.8334i 1.05531i
\(969\) 0 0
\(970\) 23.6833i 0.760424i
\(971\) 0.206193 0.00661704 0.00330852 0.999995i \(-0.498947\pi\)
0.00330852 + 0.999995i \(0.498947\pi\)
\(972\) 0 0
\(973\) 13.0370i 0.417948i
\(974\) −6.21678 −0.199198
\(975\) 0 0
\(976\) −14.9893 −0.479796
\(977\) 7.98554i 0.255480i 0.991808 + 0.127740i \(0.0407723\pi\)
−0.991808 + 0.127740i \(0.959228\pi\)
\(978\) 0 0
\(979\) 31.9850 1.02224
\(980\) 6.42289i 0.205172i
\(981\) 0 0
\(982\) 11.2437i 0.358801i
\(983\) 27.8874i 0.889470i −0.895662 0.444735i \(-0.853298\pi\)
0.895662 0.444735i \(-0.146702\pi\)
\(984\) 0 0
\(985\) −24.4689 −0.779644
\(986\) 4.79519i 0.152710i
\(987\) 0 0
\(988\) 19.1470 7.12741i 0.609148 0.226753i
\(989\) −2.52269 −0.0802168
\(990\) 0 0
\(991\) −8.84780 −0.281059 −0.140530 0.990076i \(-0.544881\pi\)
−0.140530 + 0.990076i \(0.544881\pi\)
\(992\) 8.49604 0.269749
\(993\) 0 0
\(994\) 1.49214i 0.0473278i
\(995\) 11.5680i 0.366730i
\(996\) 0 0
\(997\) −25.4452 −0.805857 −0.402929 0.915231i \(-0.632008\pi\)
−0.402929 + 0.915231i \(0.632008\pi\)
\(998\) 9.70427 0.307183
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.b.i.649.4 10
3.2 odd 2 1053.2.b.j.649.7 10
9.2 odd 6 117.2.t.c.103.7 yes 20
9.4 even 3 351.2.t.c.181.7 20
9.5 odd 6 117.2.t.c.25.4 20
9.7 even 3 351.2.t.c.64.4 20
13.12 even 2 inner 1053.2.b.i.649.7 10
39.38 odd 2 1053.2.b.j.649.4 10
117.25 even 6 351.2.t.c.64.7 20
117.38 odd 6 117.2.t.c.103.4 yes 20
117.77 odd 6 117.2.t.c.25.7 yes 20
117.103 even 6 351.2.t.c.181.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.t.c.25.4 20 9.5 odd 6
117.2.t.c.25.7 yes 20 117.77 odd 6
117.2.t.c.103.4 yes 20 117.38 odd 6
117.2.t.c.103.7 yes 20 9.2 odd 6
351.2.t.c.64.4 20 9.7 even 3
351.2.t.c.64.7 20 117.25 even 6
351.2.t.c.181.4 20 117.103 even 6
351.2.t.c.181.7 20 9.4 even 3
1053.2.b.i.649.4 10 1.1 even 1 trivial
1053.2.b.i.649.7 10 13.12 even 2 inner
1053.2.b.j.649.4 10 39.38 odd 2
1053.2.b.j.649.7 10 3.2 odd 2