Defining parameters
Level: | \( N \) | \(=\) | \( 1053 = 3^{4} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1053.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 11 \) | ||
Sturm bound: | \(252\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(2\), \(5\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1053, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 138 | 60 | 78 |
Cusp forms | 114 | 52 | 62 |
Eisenstein series | 24 | 8 | 16 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1053, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1053, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1053, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(117, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(351, [\chi])\)\(^{\oplus 2}\)