Properties

Label 1053.2.a.l.1.3
Level $1053$
Weight $2$
Character 1053.1
Self dual yes
Analytic conductor $8.408$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(1,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,-2,0,6,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.40824733284\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.22931361.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 7x^{4} + 12x^{3} + 10x^{2} - 11x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(0.496094\) of defining polynomial
Character \(\chi\) \(=\) 1053.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.496094 q^{2} -1.75389 q^{4} -1.32688 q^{5} +3.12929 q^{7} +1.86228 q^{8} +0.658258 q^{10} -3.41470 q^{11} -1.00000 q^{13} -1.55242 q^{14} +2.58391 q^{16} -0.912179 q^{17} -1.03576 q^{19} +2.32721 q^{20} +1.69401 q^{22} +5.37222 q^{23} -3.23938 q^{25} +0.496094 q^{26} -5.48843 q^{28} -6.50423 q^{29} +2.54537 q^{31} -5.00643 q^{32} +0.452527 q^{34} -4.15219 q^{35} +7.99800 q^{37} +0.513832 q^{38} -2.47103 q^{40} -5.45361 q^{41} +4.40936 q^{43} +5.98902 q^{44} -2.66513 q^{46} -9.19730 q^{47} +2.79243 q^{49} +1.60704 q^{50} +1.75389 q^{52} -12.1878 q^{53} +4.53091 q^{55} +5.82762 q^{56} +3.22671 q^{58} -7.08032 q^{59} -14.3744 q^{61} -1.26274 q^{62} -2.68417 q^{64} +1.32688 q^{65} -9.35421 q^{67} +1.59986 q^{68} +2.05988 q^{70} -12.0670 q^{71} -5.22771 q^{73} -3.96776 q^{74} +1.81660 q^{76} -10.6856 q^{77} -12.1088 q^{79} -3.42855 q^{80} +2.70551 q^{82} +11.0036 q^{83} +1.21035 q^{85} -2.18746 q^{86} -6.35914 q^{88} -8.33216 q^{89} -3.12929 q^{91} -9.42229 q^{92} +4.56272 q^{94} +1.37432 q^{95} +14.0320 q^{97} -1.38531 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{2} + 6 q^{4} - 3 q^{5} - 6 q^{8} - 6 q^{10} - 7 q^{11} - 6 q^{13} - 13 q^{14} + 6 q^{16} - 14 q^{17} - 3 q^{19} - 17 q^{20} - 3 q^{22} - 17 q^{23} + 3 q^{25} + 2 q^{26} + 15 q^{28} - 14 q^{29}+ \cdots - 17 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.496094 −0.350791 −0.175396 0.984498i \(-0.556120\pi\)
−0.175396 + 0.984498i \(0.556120\pi\)
\(3\) 0 0
\(4\) −1.75389 −0.876945
\(5\) −1.32688 −0.593400 −0.296700 0.954971i \(-0.595886\pi\)
−0.296700 + 0.954971i \(0.595886\pi\)
\(6\) 0 0
\(7\) 3.12929 1.18276 0.591380 0.806393i \(-0.298584\pi\)
0.591380 + 0.806393i \(0.298584\pi\)
\(8\) 1.86228 0.658416
\(9\) 0 0
\(10\) 0.658258 0.208159
\(11\) −3.41470 −1.02957 −0.514786 0.857319i \(-0.672129\pi\)
−0.514786 + 0.857319i \(0.672129\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) −1.55242 −0.414902
\(15\) 0 0
\(16\) 2.58391 0.645979
\(17\) −0.912179 −0.221236 −0.110618 0.993863i \(-0.535283\pi\)
−0.110618 + 0.993863i \(0.535283\pi\)
\(18\) 0 0
\(19\) −1.03576 −0.237619 −0.118809 0.992917i \(-0.537908\pi\)
−0.118809 + 0.992917i \(0.537908\pi\)
\(20\) 2.32721 0.520379
\(21\) 0 0
\(22\) 1.69401 0.361165
\(23\) 5.37222 1.12019 0.560093 0.828430i \(-0.310765\pi\)
0.560093 + 0.828430i \(0.310765\pi\)
\(24\) 0 0
\(25\) −3.23938 −0.647877
\(26\) 0.496094 0.0972920
\(27\) 0 0
\(28\) −5.48843 −1.03722
\(29\) −6.50423 −1.20781 −0.603903 0.797058i \(-0.706388\pi\)
−0.603903 + 0.797058i \(0.706388\pi\)
\(30\) 0 0
\(31\) 2.54537 0.457162 0.228581 0.973525i \(-0.426591\pi\)
0.228581 + 0.973525i \(0.426591\pi\)
\(32\) −5.00643 −0.885020
\(33\) 0 0
\(34\) 0.452527 0.0776077
\(35\) −4.15219 −0.701849
\(36\) 0 0
\(37\) 7.99800 1.31486 0.657431 0.753514i \(-0.271643\pi\)
0.657431 + 0.753514i \(0.271643\pi\)
\(38\) 0.513832 0.0833545
\(39\) 0 0
\(40\) −2.47103 −0.390704
\(41\) −5.45361 −0.851711 −0.425856 0.904791i \(-0.640027\pi\)
−0.425856 + 0.904791i \(0.640027\pi\)
\(42\) 0 0
\(43\) 4.40936 0.672421 0.336211 0.941787i \(-0.390855\pi\)
0.336211 + 0.941787i \(0.390855\pi\)
\(44\) 5.98902 0.902878
\(45\) 0 0
\(46\) −2.66513 −0.392952
\(47\) −9.19730 −1.34156 −0.670782 0.741655i \(-0.734041\pi\)
−0.670782 + 0.741655i \(0.734041\pi\)
\(48\) 0 0
\(49\) 2.79243 0.398919
\(50\) 1.60704 0.227270
\(51\) 0 0
\(52\) 1.75389 0.243221
\(53\) −12.1878 −1.67412 −0.837060 0.547111i \(-0.815728\pi\)
−0.837060 + 0.547111i \(0.815728\pi\)
\(54\) 0 0
\(55\) 4.53091 0.610947
\(56\) 5.82762 0.778748
\(57\) 0 0
\(58\) 3.22671 0.423688
\(59\) −7.08032 −0.921779 −0.460890 0.887457i \(-0.652470\pi\)
−0.460890 + 0.887457i \(0.652470\pi\)
\(60\) 0 0
\(61\) −14.3744 −1.84045 −0.920226 0.391387i \(-0.871995\pi\)
−0.920226 + 0.391387i \(0.871995\pi\)
\(62\) −1.26274 −0.160369
\(63\) 0 0
\(64\) −2.68417 −0.335521
\(65\) 1.32688 0.164579
\(66\) 0 0
\(67\) −9.35421 −1.14280 −0.571399 0.820672i \(-0.693599\pi\)
−0.571399 + 0.820672i \(0.693599\pi\)
\(68\) 1.59986 0.194012
\(69\) 0 0
\(70\) 2.05988 0.246202
\(71\) −12.0670 −1.43209 −0.716045 0.698054i \(-0.754049\pi\)
−0.716045 + 0.698054i \(0.754049\pi\)
\(72\) 0 0
\(73\) −5.22771 −0.611857 −0.305928 0.952055i \(-0.598967\pi\)
−0.305928 + 0.952055i \(0.598967\pi\)
\(74\) −3.96776 −0.461243
\(75\) 0 0
\(76\) 1.81660 0.208378
\(77\) −10.6856 −1.21774
\(78\) 0 0
\(79\) −12.1088 −1.36234 −0.681172 0.732123i \(-0.738530\pi\)
−0.681172 + 0.732123i \(0.738530\pi\)
\(80\) −3.42855 −0.383323
\(81\) 0 0
\(82\) 2.70551 0.298773
\(83\) 11.0036 1.20780 0.603900 0.797060i \(-0.293613\pi\)
0.603900 + 0.797060i \(0.293613\pi\)
\(84\) 0 0
\(85\) 1.21035 0.131281
\(86\) −2.18746 −0.235880
\(87\) 0 0
\(88\) −6.35914 −0.677887
\(89\) −8.33216 −0.883207 −0.441604 0.897210i \(-0.645590\pi\)
−0.441604 + 0.897210i \(0.645590\pi\)
\(90\) 0 0
\(91\) −3.12929 −0.328038
\(92\) −9.42229 −0.982342
\(93\) 0 0
\(94\) 4.56272 0.470609
\(95\) 1.37432 0.141003
\(96\) 0 0
\(97\) 14.0320 1.42473 0.712365 0.701809i \(-0.247624\pi\)
0.712365 + 0.701809i \(0.247624\pi\)
\(98\) −1.38531 −0.139937
\(99\) 0 0
\(100\) 5.68153 0.568153
\(101\) 11.8378 1.17790 0.588951 0.808169i \(-0.299541\pi\)
0.588951 + 0.808169i \(0.299541\pi\)
\(102\) 0 0
\(103\) 8.20588 0.808549 0.404275 0.914638i \(-0.367524\pi\)
0.404275 + 0.914638i \(0.367524\pi\)
\(104\) −1.86228 −0.182612
\(105\) 0 0
\(106\) 6.04628 0.587267
\(107\) 0.156610 0.0151401 0.00757005 0.999971i \(-0.497590\pi\)
0.00757005 + 0.999971i \(0.497590\pi\)
\(108\) 0 0
\(109\) −7.52766 −0.721019 −0.360509 0.932756i \(-0.617397\pi\)
−0.360509 + 0.932756i \(0.617397\pi\)
\(110\) −2.24776 −0.214315
\(111\) 0 0
\(112\) 8.08581 0.764037
\(113\) 17.0734 1.60613 0.803067 0.595889i \(-0.203200\pi\)
0.803067 + 0.595889i \(0.203200\pi\)
\(114\) 0 0
\(115\) −7.12830 −0.664718
\(116\) 11.4077 1.05918
\(117\) 0 0
\(118\) 3.51250 0.323352
\(119\) −2.85447 −0.261669
\(120\) 0 0
\(121\) 0.660193 0.0600175
\(122\) 7.13105 0.645615
\(123\) 0 0
\(124\) −4.46430 −0.400906
\(125\) 10.9327 0.977849
\(126\) 0 0
\(127\) 0.476604 0.0422917 0.0211459 0.999776i \(-0.493269\pi\)
0.0211459 + 0.999776i \(0.493269\pi\)
\(128\) 11.3445 1.00272
\(129\) 0 0
\(130\) −0.658258 −0.0577330
\(131\) 8.81100 0.769821 0.384910 0.922954i \(-0.374232\pi\)
0.384910 + 0.922954i \(0.374232\pi\)
\(132\) 0 0
\(133\) −3.24117 −0.281045
\(134\) 4.64056 0.400884
\(135\) 0 0
\(136\) −1.69874 −0.145665
\(137\) −10.1972 −0.871206 −0.435603 0.900139i \(-0.643465\pi\)
−0.435603 + 0.900139i \(0.643465\pi\)
\(138\) 0 0
\(139\) −10.7257 −0.909739 −0.454870 0.890558i \(-0.650314\pi\)
−0.454870 + 0.890558i \(0.650314\pi\)
\(140\) 7.28249 0.615483
\(141\) 0 0
\(142\) 5.98637 0.502365
\(143\) 3.41470 0.285552
\(144\) 0 0
\(145\) 8.63034 0.716711
\(146\) 2.59343 0.214634
\(147\) 0 0
\(148\) −14.0276 −1.15306
\(149\) −15.1361 −1.24000 −0.619999 0.784603i \(-0.712867\pi\)
−0.619999 + 0.784603i \(0.712867\pi\)
\(150\) 0 0
\(151\) 12.1898 0.991992 0.495996 0.868325i \(-0.334803\pi\)
0.495996 + 0.868325i \(0.334803\pi\)
\(152\) −1.92887 −0.156452
\(153\) 0 0
\(154\) 5.30105 0.427171
\(155\) −3.37741 −0.271280
\(156\) 0 0
\(157\) −3.84432 −0.306810 −0.153405 0.988163i \(-0.549024\pi\)
−0.153405 + 0.988163i \(0.549024\pi\)
\(158\) 6.00709 0.477899
\(159\) 0 0
\(160\) 6.64294 0.525170
\(161\) 16.8112 1.32491
\(162\) 0 0
\(163\) 5.24217 0.410599 0.205299 0.978699i \(-0.434183\pi\)
0.205299 + 0.978699i \(0.434183\pi\)
\(164\) 9.56504 0.746904
\(165\) 0 0
\(166\) −5.45881 −0.423686
\(167\) 17.7837 1.37615 0.688074 0.725641i \(-0.258457\pi\)
0.688074 + 0.725641i \(0.258457\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −0.600449 −0.0460524
\(171\) 0 0
\(172\) −7.73354 −0.589677
\(173\) 1.58081 0.120187 0.0600935 0.998193i \(-0.480860\pi\)
0.0600935 + 0.998193i \(0.480860\pi\)
\(174\) 0 0
\(175\) −10.1370 −0.766282
\(176\) −8.82330 −0.665081
\(177\) 0 0
\(178\) 4.13353 0.309822
\(179\) 15.2270 1.13812 0.569060 0.822296i \(-0.307307\pi\)
0.569060 + 0.822296i \(0.307307\pi\)
\(180\) 0 0
\(181\) −22.9726 −1.70754 −0.853770 0.520650i \(-0.825690\pi\)
−0.853770 + 0.520650i \(0.825690\pi\)
\(182\) 1.55242 0.115073
\(183\) 0 0
\(184\) 10.0046 0.737549
\(185\) −10.6124 −0.780239
\(186\) 0 0
\(187\) 3.11482 0.227778
\(188\) 16.1311 1.17648
\(189\) 0 0
\(190\) −0.681794 −0.0494625
\(191\) −7.07319 −0.511798 −0.255899 0.966704i \(-0.582371\pi\)
−0.255899 + 0.966704i \(0.582371\pi\)
\(192\) 0 0
\(193\) 8.01263 0.576762 0.288381 0.957516i \(-0.406883\pi\)
0.288381 + 0.957516i \(0.406883\pi\)
\(194\) −6.96117 −0.499783
\(195\) 0 0
\(196\) −4.89762 −0.349830
\(197\) 10.2986 0.733748 0.366874 0.930271i \(-0.380428\pi\)
0.366874 + 0.930271i \(0.380428\pi\)
\(198\) 0 0
\(199\) −5.56945 −0.394808 −0.197404 0.980322i \(-0.563251\pi\)
−0.197404 + 0.980322i \(0.563251\pi\)
\(200\) −6.03265 −0.426573
\(201\) 0 0
\(202\) −5.87265 −0.413198
\(203\) −20.3536 −1.42854
\(204\) 0 0
\(205\) 7.23630 0.505405
\(206\) −4.07089 −0.283632
\(207\) 0 0
\(208\) −2.58391 −0.179162
\(209\) 3.53680 0.244645
\(210\) 0 0
\(211\) −9.43148 −0.649290 −0.324645 0.945836i \(-0.605245\pi\)
−0.324645 + 0.945836i \(0.605245\pi\)
\(212\) 21.3760 1.46811
\(213\) 0 0
\(214\) −0.0776935 −0.00531102
\(215\) −5.85070 −0.399014
\(216\) 0 0
\(217\) 7.96520 0.540713
\(218\) 3.73442 0.252927
\(219\) 0 0
\(220\) −7.94671 −0.535767
\(221\) 0.912179 0.0613598
\(222\) 0 0
\(223\) −18.6255 −1.24725 −0.623626 0.781723i \(-0.714341\pi\)
−0.623626 + 0.781723i \(0.714341\pi\)
\(224\) −15.6666 −1.04677
\(225\) 0 0
\(226\) −8.47003 −0.563418
\(227\) −14.1009 −0.935910 −0.467955 0.883752i \(-0.655009\pi\)
−0.467955 + 0.883752i \(0.655009\pi\)
\(228\) 0 0
\(229\) 2.05069 0.135514 0.0677569 0.997702i \(-0.478416\pi\)
0.0677569 + 0.997702i \(0.478416\pi\)
\(230\) 3.53631 0.233177
\(231\) 0 0
\(232\) −12.1127 −0.795239
\(233\) 8.01472 0.525062 0.262531 0.964924i \(-0.415443\pi\)
0.262531 + 0.964924i \(0.415443\pi\)
\(234\) 0 0
\(235\) 12.2037 0.796084
\(236\) 12.4181 0.808350
\(237\) 0 0
\(238\) 1.41609 0.0917912
\(239\) −3.49522 −0.226087 −0.113043 0.993590i \(-0.536060\pi\)
−0.113043 + 0.993590i \(0.536060\pi\)
\(240\) 0 0
\(241\) 7.12783 0.459144 0.229572 0.973292i \(-0.426267\pi\)
0.229572 + 0.973292i \(0.426267\pi\)
\(242\) −0.327518 −0.0210536
\(243\) 0 0
\(244\) 25.2111 1.61398
\(245\) −3.70523 −0.236718
\(246\) 0 0
\(247\) 1.03576 0.0659035
\(248\) 4.74020 0.301003
\(249\) 0 0
\(250\) −5.42364 −0.343021
\(251\) −10.8057 −0.682052 −0.341026 0.940054i \(-0.610774\pi\)
−0.341026 + 0.940054i \(0.610774\pi\)
\(252\) 0 0
\(253\) −18.3445 −1.15331
\(254\) −0.236440 −0.0148356
\(255\) 0 0
\(256\) −0.259577 −0.0162236
\(257\) 24.0427 1.49974 0.749870 0.661585i \(-0.230116\pi\)
0.749870 + 0.661585i \(0.230116\pi\)
\(258\) 0 0
\(259\) 25.0280 1.55517
\(260\) −2.32721 −0.144327
\(261\) 0 0
\(262\) −4.37108 −0.270047
\(263\) −1.17408 −0.0723969 −0.0361984 0.999345i \(-0.511525\pi\)
−0.0361984 + 0.999345i \(0.511525\pi\)
\(264\) 0 0
\(265\) 16.1717 0.993422
\(266\) 1.60793 0.0985883
\(267\) 0 0
\(268\) 16.4063 1.00217
\(269\) −16.4749 −1.00449 −0.502247 0.864724i \(-0.667493\pi\)
−0.502247 + 0.864724i \(0.667493\pi\)
\(270\) 0 0
\(271\) 30.9493 1.88004 0.940018 0.341124i \(-0.110807\pi\)
0.940018 + 0.341124i \(0.110807\pi\)
\(272\) −2.35699 −0.142914
\(273\) 0 0
\(274\) 5.05877 0.305612
\(275\) 11.0615 0.667036
\(276\) 0 0
\(277\) −16.8419 −1.01193 −0.505967 0.862553i \(-0.668864\pi\)
−0.505967 + 0.862553i \(0.668864\pi\)
\(278\) 5.32094 0.319129
\(279\) 0 0
\(280\) −7.73256 −0.462109
\(281\) 21.6086 1.28906 0.644530 0.764579i \(-0.277053\pi\)
0.644530 + 0.764579i \(0.277053\pi\)
\(282\) 0 0
\(283\) 3.91652 0.232813 0.116406 0.993202i \(-0.462862\pi\)
0.116406 + 0.993202i \(0.462862\pi\)
\(284\) 21.1642 1.25586
\(285\) 0 0
\(286\) −1.69401 −0.100169
\(287\) −17.0659 −1.00737
\(288\) 0 0
\(289\) −16.1679 −0.951055
\(290\) −4.28146 −0.251416
\(291\) 0 0
\(292\) 9.16883 0.536565
\(293\) −13.3064 −0.777367 −0.388683 0.921371i \(-0.627070\pi\)
−0.388683 + 0.921371i \(0.627070\pi\)
\(294\) 0 0
\(295\) 9.39475 0.546983
\(296\) 14.8945 0.865727
\(297\) 0 0
\(298\) 7.50893 0.434981
\(299\) −5.37222 −0.310684
\(300\) 0 0
\(301\) 13.7982 0.795312
\(302\) −6.04729 −0.347982
\(303\) 0 0
\(304\) −2.67630 −0.153497
\(305\) 19.0731 1.09212
\(306\) 0 0
\(307\) 2.50370 0.142894 0.0714469 0.997444i \(-0.477238\pi\)
0.0714469 + 0.997444i \(0.477238\pi\)
\(308\) 18.7413 1.06789
\(309\) 0 0
\(310\) 1.67551 0.0951626
\(311\) −4.11297 −0.233225 −0.116613 0.993177i \(-0.537204\pi\)
−0.116613 + 0.993177i \(0.537204\pi\)
\(312\) 0 0
\(313\) −3.47941 −0.196668 −0.0983340 0.995153i \(-0.531351\pi\)
−0.0983340 + 0.995153i \(0.531351\pi\)
\(314\) 1.90715 0.107626
\(315\) 0 0
\(316\) 21.2375 1.19470
\(317\) 25.0608 1.40756 0.703778 0.710420i \(-0.251495\pi\)
0.703778 + 0.710420i \(0.251495\pi\)
\(318\) 0 0
\(319\) 22.2100 1.24352
\(320\) 3.56158 0.199098
\(321\) 0 0
\(322\) −8.33995 −0.464767
\(323\) 0.944794 0.0525698
\(324\) 0 0
\(325\) 3.23938 0.179689
\(326\) −2.60061 −0.144034
\(327\) 0 0
\(328\) −10.1562 −0.560781
\(329\) −28.7810 −1.58675
\(330\) 0 0
\(331\) 0.270186 0.0148508 0.00742539 0.999972i \(-0.497636\pi\)
0.00742539 + 0.999972i \(0.497636\pi\)
\(332\) −19.2991 −1.05917
\(333\) 0 0
\(334\) −8.82241 −0.482741
\(335\) 12.4119 0.678136
\(336\) 0 0
\(337\) −24.6622 −1.34344 −0.671718 0.740807i \(-0.734443\pi\)
−0.671718 + 0.740807i \(0.734443\pi\)
\(338\) −0.496094 −0.0269840
\(339\) 0 0
\(340\) −2.12283 −0.115127
\(341\) −8.69169 −0.470681
\(342\) 0 0
\(343\) −13.1667 −0.710934
\(344\) 8.21148 0.442733
\(345\) 0 0
\(346\) −0.784232 −0.0421606
\(347\) −26.1451 −1.40354 −0.701771 0.712403i \(-0.747607\pi\)
−0.701771 + 0.712403i \(0.747607\pi\)
\(348\) 0 0
\(349\) −19.9427 −1.06751 −0.533753 0.845640i \(-0.679219\pi\)
−0.533753 + 0.845640i \(0.679219\pi\)
\(350\) 5.02889 0.268805
\(351\) 0 0
\(352\) 17.0955 0.911191
\(353\) 17.1534 0.912986 0.456493 0.889727i \(-0.349105\pi\)
0.456493 + 0.889727i \(0.349105\pi\)
\(354\) 0 0
\(355\) 16.0115 0.849801
\(356\) 14.6137 0.774525
\(357\) 0 0
\(358\) −7.55403 −0.399243
\(359\) 3.15925 0.166739 0.0833694 0.996519i \(-0.473432\pi\)
0.0833694 + 0.996519i \(0.473432\pi\)
\(360\) 0 0
\(361\) −17.9272 −0.943537
\(362\) 11.3966 0.598990
\(363\) 0 0
\(364\) 5.48843 0.287672
\(365\) 6.93655 0.363076
\(366\) 0 0
\(367\) 4.03943 0.210856 0.105428 0.994427i \(-0.466379\pi\)
0.105428 + 0.994427i \(0.466379\pi\)
\(368\) 13.8814 0.723616
\(369\) 0 0
\(370\) 5.26475 0.273701
\(371\) −38.1391 −1.98008
\(372\) 0 0
\(373\) 11.8455 0.613335 0.306667 0.951817i \(-0.400786\pi\)
0.306667 + 0.951817i \(0.400786\pi\)
\(374\) −1.54524 −0.0799026
\(375\) 0 0
\(376\) −17.1280 −0.883308
\(377\) 6.50423 0.334985
\(378\) 0 0
\(379\) 0.705984 0.0362640 0.0181320 0.999836i \(-0.494228\pi\)
0.0181320 + 0.999836i \(0.494228\pi\)
\(380\) −2.41042 −0.123652
\(381\) 0 0
\(382\) 3.50897 0.179534
\(383\) 24.8084 1.26765 0.633826 0.773476i \(-0.281484\pi\)
0.633826 + 0.773476i \(0.281484\pi\)
\(384\) 0 0
\(385\) 14.1785 0.722603
\(386\) −3.97502 −0.202323
\(387\) 0 0
\(388\) −24.6105 −1.24941
\(389\) 10.3748 0.526025 0.263013 0.964792i \(-0.415284\pi\)
0.263013 + 0.964792i \(0.415284\pi\)
\(390\) 0 0
\(391\) −4.90043 −0.247825
\(392\) 5.20030 0.262655
\(393\) 0 0
\(394\) −5.10909 −0.257392
\(395\) 16.0669 0.808415
\(396\) 0 0
\(397\) 19.5931 0.983351 0.491675 0.870779i \(-0.336385\pi\)
0.491675 + 0.870779i \(0.336385\pi\)
\(398\) 2.76297 0.138495
\(399\) 0 0
\(400\) −8.37029 −0.418515
\(401\) 22.3087 1.11404 0.557022 0.830498i \(-0.311944\pi\)
0.557022 + 0.830498i \(0.311944\pi\)
\(402\) 0 0
\(403\) −2.54537 −0.126794
\(404\) −20.7622 −1.03296
\(405\) 0 0
\(406\) 10.0973 0.501120
\(407\) −27.3108 −1.35375
\(408\) 0 0
\(409\) −3.49960 −0.173044 −0.0865220 0.996250i \(-0.527575\pi\)
−0.0865220 + 0.996250i \(0.527575\pi\)
\(410\) −3.58989 −0.177292
\(411\) 0 0
\(412\) −14.3922 −0.709053
\(413\) −22.1564 −1.09024
\(414\) 0 0
\(415\) −14.6004 −0.716708
\(416\) 5.00643 0.245460
\(417\) 0 0
\(418\) −1.75458 −0.0858195
\(419\) −21.2495 −1.03811 −0.519054 0.854742i \(-0.673716\pi\)
−0.519054 + 0.854742i \(0.673716\pi\)
\(420\) 0 0
\(421\) 2.22792 0.108582 0.0542911 0.998525i \(-0.482710\pi\)
0.0542911 + 0.998525i \(0.482710\pi\)
\(422\) 4.67890 0.227765
\(423\) 0 0
\(424\) −22.6971 −1.10227
\(425\) 2.95490 0.143334
\(426\) 0 0
\(427\) −44.9816 −2.17681
\(428\) −0.274678 −0.0132770
\(429\) 0 0
\(430\) 2.90250 0.139971
\(431\) 10.3044 0.496343 0.248172 0.968716i \(-0.420170\pi\)
0.248172 + 0.968716i \(0.420170\pi\)
\(432\) 0 0
\(433\) −10.0517 −0.483056 −0.241528 0.970394i \(-0.577649\pi\)
−0.241528 + 0.970394i \(0.577649\pi\)
\(434\) −3.95149 −0.189677
\(435\) 0 0
\(436\) 13.2027 0.632294
\(437\) −5.56431 −0.266177
\(438\) 0 0
\(439\) 15.7389 0.751175 0.375587 0.926787i \(-0.377441\pi\)
0.375587 + 0.926787i \(0.377441\pi\)
\(440\) 8.43783 0.402258
\(441\) 0 0
\(442\) −0.452527 −0.0215245
\(443\) −9.55924 −0.454173 −0.227087 0.973875i \(-0.572920\pi\)
−0.227087 + 0.973875i \(0.572920\pi\)
\(444\) 0 0
\(445\) 11.0558 0.524095
\(446\) 9.23997 0.437525
\(447\) 0 0
\(448\) −8.39954 −0.396841
\(449\) −15.7163 −0.741696 −0.370848 0.928694i \(-0.620933\pi\)
−0.370848 + 0.928694i \(0.620933\pi\)
\(450\) 0 0
\(451\) 18.6225 0.876898
\(452\) −29.9450 −1.40849
\(453\) 0 0
\(454\) 6.99538 0.328309
\(455\) 4.15219 0.194658
\(456\) 0 0
\(457\) 32.9041 1.53919 0.769594 0.638533i \(-0.220458\pi\)
0.769594 + 0.638533i \(0.220458\pi\)
\(458\) −1.01734 −0.0475370
\(459\) 0 0
\(460\) 12.5023 0.582921
\(461\) 12.7772 0.595094 0.297547 0.954707i \(-0.403831\pi\)
0.297547 + 0.954707i \(0.403831\pi\)
\(462\) 0 0
\(463\) −5.27466 −0.245134 −0.122567 0.992460i \(-0.539113\pi\)
−0.122567 + 0.992460i \(0.539113\pi\)
\(464\) −16.8064 −0.780216
\(465\) 0 0
\(466\) −3.97605 −0.184187
\(467\) −18.5837 −0.859953 −0.429977 0.902840i \(-0.641478\pi\)
−0.429977 + 0.902840i \(0.641478\pi\)
\(468\) 0 0
\(469\) −29.2720 −1.35165
\(470\) −6.05420 −0.279259
\(471\) 0 0
\(472\) −13.1856 −0.606914
\(473\) −15.0567 −0.692306
\(474\) 0 0
\(475\) 3.35521 0.153948
\(476\) 5.00643 0.229469
\(477\) 0 0
\(478\) 1.73396 0.0793093
\(479\) −1.08236 −0.0494541 −0.0247271 0.999694i \(-0.507872\pi\)
−0.0247271 + 0.999694i \(0.507872\pi\)
\(480\) 0 0
\(481\) −7.99800 −0.364677
\(482\) −3.53607 −0.161064
\(483\) 0 0
\(484\) −1.15791 −0.0526321
\(485\) −18.6188 −0.845434
\(486\) 0 0
\(487\) 17.4217 0.789451 0.394726 0.918799i \(-0.370840\pi\)
0.394726 + 0.918799i \(0.370840\pi\)
\(488\) −26.7692 −1.21178
\(489\) 0 0
\(490\) 1.83814 0.0830388
\(491\) −16.8097 −0.758612 −0.379306 0.925271i \(-0.623837\pi\)
−0.379306 + 0.925271i \(0.623837\pi\)
\(492\) 0 0
\(493\) 5.93302 0.267210
\(494\) −0.513832 −0.0231184
\(495\) 0 0
\(496\) 6.57702 0.295317
\(497\) −37.7611 −1.69382
\(498\) 0 0
\(499\) −20.8840 −0.934898 −0.467449 0.884020i \(-0.654827\pi\)
−0.467449 + 0.884020i \(0.654827\pi\)
\(500\) −19.1747 −0.857521
\(501\) 0 0
\(502\) 5.36066 0.239258
\(503\) 2.96223 0.132079 0.0660397 0.997817i \(-0.478964\pi\)
0.0660397 + 0.997817i \(0.478964\pi\)
\(504\) 0 0
\(505\) −15.7073 −0.698967
\(506\) 9.10062 0.404572
\(507\) 0 0
\(508\) −0.835911 −0.0370876
\(509\) 20.9766 0.929771 0.464885 0.885371i \(-0.346096\pi\)
0.464885 + 0.885371i \(0.346096\pi\)
\(510\) 0 0
\(511\) −16.3590 −0.723679
\(512\) −22.5601 −0.997027
\(513\) 0 0
\(514\) −11.9274 −0.526096
\(515\) −10.8882 −0.479793
\(516\) 0 0
\(517\) 31.4060 1.38124
\(518\) −12.4163 −0.545539
\(519\) 0 0
\(520\) 2.47103 0.108362
\(521\) 34.1685 1.49695 0.748474 0.663164i \(-0.230787\pi\)
0.748474 + 0.663164i \(0.230787\pi\)
\(522\) 0 0
\(523\) 19.3302 0.845250 0.422625 0.906305i \(-0.361109\pi\)
0.422625 + 0.906305i \(0.361109\pi\)
\(524\) −15.4535 −0.675091
\(525\) 0 0
\(526\) 0.582454 0.0253962
\(527\) −2.32184 −0.101141
\(528\) 0 0
\(529\) 5.86078 0.254817
\(530\) −8.02270 −0.348484
\(531\) 0 0
\(532\) 5.68467 0.246462
\(533\) 5.45361 0.236222
\(534\) 0 0
\(535\) −0.207804 −0.00898413
\(536\) −17.4202 −0.752437
\(537\) 0 0
\(538\) 8.17311 0.352368
\(539\) −9.53533 −0.410716
\(540\) 0 0
\(541\) 8.72119 0.374953 0.187477 0.982269i \(-0.439969\pi\)
0.187477 + 0.982269i \(0.439969\pi\)
\(542\) −15.3538 −0.659501
\(543\) 0 0
\(544\) 4.56676 0.195798
\(545\) 9.98831 0.427852
\(546\) 0 0
\(547\) −21.7198 −0.928670 −0.464335 0.885660i \(-0.653707\pi\)
−0.464335 + 0.885660i \(0.653707\pi\)
\(548\) 17.8848 0.764001
\(549\) 0 0
\(550\) −5.48756 −0.233990
\(551\) 6.73679 0.286997
\(552\) 0 0
\(553\) −37.8918 −1.61133
\(554\) 8.35519 0.354978
\(555\) 0 0
\(556\) 18.8116 0.797791
\(557\) 18.3186 0.776183 0.388091 0.921621i \(-0.373135\pi\)
0.388091 + 0.921621i \(0.373135\pi\)
\(558\) 0 0
\(559\) −4.40936 −0.186496
\(560\) −10.7289 −0.453379
\(561\) 0 0
\(562\) −10.7199 −0.452191
\(563\) −44.9062 −1.89257 −0.946286 0.323330i \(-0.895198\pi\)
−0.946286 + 0.323330i \(0.895198\pi\)
\(564\) 0 0
\(565\) −22.6544 −0.953079
\(566\) −1.94296 −0.0816688
\(567\) 0 0
\(568\) −22.4722 −0.942911
\(569\) 34.2914 1.43757 0.718786 0.695231i \(-0.244698\pi\)
0.718786 + 0.695231i \(0.244698\pi\)
\(570\) 0 0
\(571\) 15.8328 0.662583 0.331292 0.943528i \(-0.392516\pi\)
0.331292 + 0.943528i \(0.392516\pi\)
\(572\) −5.98902 −0.250413
\(573\) 0 0
\(574\) 8.46630 0.353377
\(575\) −17.4027 −0.725743
\(576\) 0 0
\(577\) 17.1698 0.714789 0.357395 0.933953i \(-0.383665\pi\)
0.357395 + 0.933953i \(0.383665\pi\)
\(578\) 8.02081 0.333622
\(579\) 0 0
\(580\) −15.1367 −0.628516
\(581\) 34.4334 1.42854
\(582\) 0 0
\(583\) 41.6176 1.72363
\(584\) −9.73547 −0.402856
\(585\) 0 0
\(586\) 6.60121 0.272694
\(587\) −14.6558 −0.604910 −0.302455 0.953164i \(-0.597806\pi\)
−0.302455 + 0.953164i \(0.597806\pi\)
\(588\) 0 0
\(589\) −2.63638 −0.108630
\(590\) −4.66068 −0.191877
\(591\) 0 0
\(592\) 20.6661 0.849373
\(593\) 20.3341 0.835021 0.417510 0.908672i \(-0.362903\pi\)
0.417510 + 0.908672i \(0.362903\pi\)
\(594\) 0 0
\(595\) 3.78754 0.155274
\(596\) 26.5471 1.08741
\(597\) 0 0
\(598\) 2.66513 0.108985
\(599\) −45.9476 −1.87737 −0.938684 0.344780i \(-0.887954\pi\)
−0.938684 + 0.344780i \(0.887954\pi\)
\(600\) 0 0
\(601\) 24.1036 0.983205 0.491602 0.870820i \(-0.336411\pi\)
0.491602 + 0.870820i \(0.336411\pi\)
\(602\) −6.84518 −0.278989
\(603\) 0 0
\(604\) −21.3796 −0.869923
\(605\) −0.875998 −0.0356144
\(606\) 0 0
\(607\) −36.7210 −1.49046 −0.745229 0.666809i \(-0.767660\pi\)
−0.745229 + 0.666809i \(0.767660\pi\)
\(608\) 5.18543 0.210297
\(609\) 0 0
\(610\) −9.46206 −0.383108
\(611\) 9.19730 0.372083
\(612\) 0 0
\(613\) 12.6282 0.510047 0.255024 0.966935i \(-0.417917\pi\)
0.255024 + 0.966935i \(0.417917\pi\)
\(614\) −1.24207 −0.0501259
\(615\) 0 0
\(616\) −19.8996 −0.801777
\(617\) 10.3329 0.415988 0.207994 0.978130i \(-0.433307\pi\)
0.207994 + 0.978130i \(0.433307\pi\)
\(618\) 0 0
\(619\) −36.6505 −1.47311 −0.736554 0.676378i \(-0.763548\pi\)
−0.736554 + 0.676378i \(0.763548\pi\)
\(620\) 5.92360 0.237898
\(621\) 0 0
\(622\) 2.04042 0.0818133
\(623\) −26.0737 −1.04462
\(624\) 0 0
\(625\) 1.69054 0.0676216
\(626\) 1.72611 0.0689894
\(627\) 0 0
\(628\) 6.74252 0.269056
\(629\) −7.29561 −0.290895
\(630\) 0 0
\(631\) 5.45904 0.217321 0.108660 0.994079i \(-0.465344\pi\)
0.108660 + 0.994079i \(0.465344\pi\)
\(632\) −22.5500 −0.896990
\(633\) 0 0
\(634\) −12.4325 −0.493758
\(635\) −0.632397 −0.0250959
\(636\) 0 0
\(637\) −2.79243 −0.110640
\(638\) −11.0183 −0.436217
\(639\) 0 0
\(640\) −15.0528 −0.595012
\(641\) 6.62539 0.261687 0.130844 0.991403i \(-0.458231\pi\)
0.130844 + 0.991403i \(0.458231\pi\)
\(642\) 0 0
\(643\) 31.4582 1.24059 0.620294 0.784369i \(-0.287013\pi\)
0.620294 + 0.784369i \(0.287013\pi\)
\(644\) −29.4851 −1.16187
\(645\) 0 0
\(646\) −0.468707 −0.0184410
\(647\) 20.2079 0.794456 0.397228 0.917720i \(-0.369972\pi\)
0.397228 + 0.917720i \(0.369972\pi\)
\(648\) 0 0
\(649\) 24.1772 0.949038
\(650\) −1.60704 −0.0630333
\(651\) 0 0
\(652\) −9.19420 −0.360073
\(653\) −2.59372 −0.101500 −0.0507500 0.998711i \(-0.516161\pi\)
−0.0507500 + 0.998711i \(0.516161\pi\)
\(654\) 0 0
\(655\) −11.6912 −0.456811
\(656\) −14.0917 −0.550187
\(657\) 0 0
\(658\) 14.2781 0.556617
\(659\) −15.9077 −0.619678 −0.309839 0.950789i \(-0.600275\pi\)
−0.309839 + 0.950789i \(0.600275\pi\)
\(660\) 0 0
\(661\) 37.1737 1.44589 0.722945 0.690905i \(-0.242788\pi\)
0.722945 + 0.690905i \(0.242788\pi\)
\(662\) −0.134038 −0.00520953
\(663\) 0 0
\(664\) 20.4918 0.795235
\(665\) 4.30066 0.166772
\(666\) 0 0
\(667\) −34.9422 −1.35297
\(668\) −31.1907 −1.20681
\(669\) 0 0
\(670\) −6.15748 −0.237884
\(671\) 49.0843 1.89488
\(672\) 0 0
\(673\) −40.3983 −1.55724 −0.778621 0.627495i \(-0.784080\pi\)
−0.778621 + 0.627495i \(0.784080\pi\)
\(674\) 12.2348 0.471265
\(675\) 0 0
\(676\) −1.75389 −0.0674573
\(677\) −0.802538 −0.0308440 −0.0154220 0.999881i \(-0.504909\pi\)
−0.0154220 + 0.999881i \(0.504909\pi\)
\(678\) 0 0
\(679\) 43.9100 1.68511
\(680\) 2.25402 0.0864378
\(681\) 0 0
\(682\) 4.31189 0.165111
\(683\) −50.3853 −1.92794 −0.963971 0.266008i \(-0.914295\pi\)
−0.963971 + 0.266008i \(0.914295\pi\)
\(684\) 0 0
\(685\) 13.5305 0.516974
\(686\) 6.53191 0.249389
\(687\) 0 0
\(688\) 11.3934 0.434370
\(689\) 12.1878 0.464317
\(690\) 0 0
\(691\) −17.4429 −0.663558 −0.331779 0.943357i \(-0.607649\pi\)
−0.331779 + 0.943357i \(0.607649\pi\)
\(692\) −2.77257 −0.105397
\(693\) 0 0
\(694\) 12.9704 0.492350
\(695\) 14.2317 0.539839
\(696\) 0 0
\(697\) 4.97467 0.188429
\(698\) 9.89344 0.374472
\(699\) 0 0
\(700\) 17.7791 0.671988
\(701\) −29.9544 −1.13136 −0.565680 0.824625i \(-0.691386\pi\)
−0.565680 + 0.824625i \(0.691386\pi\)
\(702\) 0 0
\(703\) −8.28397 −0.312436
\(704\) 9.16564 0.345443
\(705\) 0 0
\(706\) −8.50972 −0.320268
\(707\) 37.0438 1.39318
\(708\) 0 0
\(709\) 3.43733 0.129092 0.0645458 0.997915i \(-0.479440\pi\)
0.0645458 + 0.997915i \(0.479440\pi\)
\(710\) −7.94320 −0.298103
\(711\) 0 0
\(712\) −15.5168 −0.581518
\(713\) 13.6743 0.512107
\(714\) 0 0
\(715\) −4.53091 −0.169446
\(716\) −26.7065 −0.998070
\(717\) 0 0
\(718\) −1.56729 −0.0584906
\(719\) −34.0368 −1.26936 −0.634680 0.772775i \(-0.718868\pi\)
−0.634680 + 0.772775i \(0.718868\pi\)
\(720\) 0 0
\(721\) 25.6785 0.956319
\(722\) 8.89358 0.330985
\(723\) 0 0
\(724\) 40.2914 1.49742
\(725\) 21.0697 0.782509
\(726\) 0 0
\(727\) −37.1392 −1.37742 −0.688708 0.725039i \(-0.741822\pi\)
−0.688708 + 0.725039i \(0.741822\pi\)
\(728\) −5.82762 −0.215986
\(729\) 0 0
\(730\) −3.44118 −0.127364
\(731\) −4.02213 −0.148764
\(732\) 0 0
\(733\) 27.3998 1.01204 0.506018 0.862523i \(-0.331117\pi\)
0.506018 + 0.862523i \(0.331117\pi\)
\(734\) −2.00393 −0.0739666
\(735\) 0 0
\(736\) −26.8957 −0.991387
\(737\) 31.9418 1.17659
\(738\) 0 0
\(739\) −22.9544 −0.844390 −0.422195 0.906505i \(-0.638740\pi\)
−0.422195 + 0.906505i \(0.638740\pi\)
\(740\) 18.6130 0.684227
\(741\) 0 0
\(742\) 18.9206 0.694595
\(743\) −17.7792 −0.652256 −0.326128 0.945326i \(-0.605744\pi\)
−0.326128 + 0.945326i \(0.605744\pi\)
\(744\) 0 0
\(745\) 20.0838 0.735814
\(746\) −5.87646 −0.215153
\(747\) 0 0
\(748\) −5.46306 −0.199749
\(749\) 0.490079 0.0179071
\(750\) 0 0
\(751\) 27.9757 1.02085 0.510424 0.859923i \(-0.329489\pi\)
0.510424 + 0.859923i \(0.329489\pi\)
\(752\) −23.7650 −0.866622
\(753\) 0 0
\(754\) −3.22671 −0.117510
\(755\) −16.1744 −0.588648
\(756\) 0 0
\(757\) 25.6113 0.930860 0.465430 0.885085i \(-0.345900\pi\)
0.465430 + 0.885085i \(0.345900\pi\)
\(758\) −0.350234 −0.0127211
\(759\) 0 0
\(760\) 2.55938 0.0928385
\(761\) 4.89702 0.177517 0.0887583 0.996053i \(-0.471710\pi\)
0.0887583 + 0.996053i \(0.471710\pi\)
\(762\) 0 0
\(763\) −23.5562 −0.852791
\(764\) 12.4056 0.448819
\(765\) 0 0
\(766\) −12.3073 −0.444681
\(767\) 7.08032 0.255656
\(768\) 0 0
\(769\) −20.0246 −0.722106 −0.361053 0.932545i \(-0.617583\pi\)
−0.361053 + 0.932545i \(0.617583\pi\)
\(770\) −7.03387 −0.253483
\(771\) 0 0
\(772\) −14.0533 −0.505789
\(773\) −0.827218 −0.0297530 −0.0148765 0.999889i \(-0.504736\pi\)
−0.0148765 + 0.999889i \(0.504736\pi\)
\(774\) 0 0
\(775\) −8.24544 −0.296185
\(776\) 26.1315 0.938065
\(777\) 0 0
\(778\) −5.14690 −0.184525
\(779\) 5.64861 0.202382
\(780\) 0 0
\(781\) 41.2052 1.47444
\(782\) 2.43107 0.0869350
\(783\) 0 0
\(784\) 7.21541 0.257693
\(785\) 5.10096 0.182061
\(786\) 0 0
\(787\) −4.20205 −0.149787 −0.0748934 0.997192i \(-0.523862\pi\)
−0.0748934 + 0.997192i \(0.523862\pi\)
\(788\) −18.0627 −0.643457
\(789\) 0 0
\(790\) −7.97070 −0.283585
\(791\) 53.4277 1.89967
\(792\) 0 0
\(793\) 14.3744 0.510450
\(794\) −9.72003 −0.344951
\(795\) 0 0
\(796\) 9.76821 0.346225
\(797\) −13.4875 −0.477753 −0.238876 0.971050i \(-0.576779\pi\)
−0.238876 + 0.971050i \(0.576779\pi\)
\(798\) 0 0
\(799\) 8.38959 0.296802
\(800\) 16.2178 0.573384
\(801\) 0 0
\(802\) −11.0672 −0.390797
\(803\) 17.8511 0.629950
\(804\) 0 0
\(805\) −22.3065 −0.786201
\(806\) 1.26274 0.0444782
\(807\) 0 0
\(808\) 22.0453 0.775550
\(809\) 3.02951 0.106512 0.0532559 0.998581i \(-0.483040\pi\)
0.0532559 + 0.998581i \(0.483040\pi\)
\(810\) 0 0
\(811\) −31.9363 −1.12143 −0.560717 0.828008i \(-0.689474\pi\)
−0.560717 + 0.828008i \(0.689474\pi\)
\(812\) 35.6980 1.25275
\(813\) 0 0
\(814\) 13.5487 0.474882
\(815\) −6.95574 −0.243649
\(816\) 0 0
\(817\) −4.56702 −0.159780
\(818\) 1.73613 0.0607023
\(819\) 0 0
\(820\) −12.6917 −0.443213
\(821\) 23.8708 0.833097 0.416548 0.909114i \(-0.363240\pi\)
0.416548 + 0.909114i \(0.363240\pi\)
\(822\) 0 0
\(823\) −18.8072 −0.655576 −0.327788 0.944751i \(-0.606303\pi\)
−0.327788 + 0.944751i \(0.606303\pi\)
\(824\) 15.2817 0.532362
\(825\) 0 0
\(826\) 10.9916 0.382448
\(827\) −53.8381 −1.87213 −0.936067 0.351822i \(-0.885562\pi\)
−0.936067 + 0.351822i \(0.885562\pi\)
\(828\) 0 0
\(829\) 31.1172 1.08074 0.540372 0.841426i \(-0.318283\pi\)
0.540372 + 0.841426i \(0.318283\pi\)
\(830\) 7.24319 0.251415
\(831\) 0 0
\(832\) 2.68417 0.0930569
\(833\) −2.54720 −0.0882553
\(834\) 0 0
\(835\) −23.5969 −0.816605
\(836\) −6.20315 −0.214541
\(837\) 0 0
\(838\) 10.5418 0.364159
\(839\) 52.0832 1.79811 0.899056 0.437835i \(-0.144254\pi\)
0.899056 + 0.437835i \(0.144254\pi\)
\(840\) 0 0
\(841\) 13.3050 0.458793
\(842\) −1.10526 −0.0380897
\(843\) 0 0
\(844\) 16.5418 0.569392
\(845\) −1.32688 −0.0456461
\(846\) 0 0
\(847\) 2.06593 0.0709863
\(848\) −31.4922 −1.08145
\(849\) 0 0
\(850\) −1.46591 −0.0502802
\(851\) 42.9670 1.47289
\(852\) 0 0
\(853\) −51.9182 −1.77765 −0.888823 0.458250i \(-0.848476\pi\)
−0.888823 + 0.458250i \(0.848476\pi\)
\(854\) 22.3151 0.763607
\(855\) 0 0
\(856\) 0.291653 0.00996849
\(857\) −28.9273 −0.988138 −0.494069 0.869423i \(-0.664491\pi\)
−0.494069 + 0.869423i \(0.664491\pi\)
\(858\) 0 0
\(859\) −6.27173 −0.213989 −0.106994 0.994260i \(-0.534123\pi\)
−0.106994 + 0.994260i \(0.534123\pi\)
\(860\) 10.2615 0.349914
\(861\) 0 0
\(862\) −5.11193 −0.174113
\(863\) 5.95115 0.202580 0.101290 0.994857i \(-0.467703\pi\)
0.101290 + 0.994857i \(0.467703\pi\)
\(864\) 0 0
\(865\) −2.09755 −0.0713189
\(866\) 4.98661 0.169452
\(867\) 0 0
\(868\) −13.9701 −0.474176
\(869\) 41.3479 1.40263
\(870\) 0 0
\(871\) 9.35421 0.316955
\(872\) −14.0186 −0.474730
\(873\) 0 0
\(874\) 2.76042 0.0933726
\(875\) 34.2115 1.15656
\(876\) 0 0
\(877\) −54.5515 −1.84207 −0.921036 0.389476i \(-0.872656\pi\)
−0.921036 + 0.389476i \(0.872656\pi\)
\(878\) −7.80795 −0.263506
\(879\) 0 0
\(880\) 11.7075 0.394659
\(881\) 34.6855 1.16858 0.584292 0.811543i \(-0.301372\pi\)
0.584292 + 0.811543i \(0.301372\pi\)
\(882\) 0 0
\(883\) 29.1891 0.982290 0.491145 0.871078i \(-0.336578\pi\)
0.491145 + 0.871078i \(0.336578\pi\)
\(884\) −1.59986 −0.0538092
\(885\) 0 0
\(886\) 4.74228 0.159320
\(887\) 2.41418 0.0810601 0.0405300 0.999178i \(-0.487095\pi\)
0.0405300 + 0.999178i \(0.487095\pi\)
\(888\) 0 0
\(889\) 1.49143 0.0500210
\(890\) −5.48471 −0.183848
\(891\) 0 0
\(892\) 32.6670 1.09377
\(893\) 9.52615 0.318780
\(894\) 0 0
\(895\) −20.2045 −0.675360
\(896\) 35.5001 1.18597
\(897\) 0 0
\(898\) 7.79674 0.260181
\(899\) −16.5557 −0.552163
\(900\) 0 0
\(901\) 11.1174 0.370376
\(902\) −9.23849 −0.307608
\(903\) 0 0
\(904\) 31.7956 1.05750
\(905\) 30.4819 1.01325
\(906\) 0 0
\(907\) 46.4429 1.54211 0.771056 0.636768i \(-0.219729\pi\)
0.771056 + 0.636768i \(0.219729\pi\)
\(908\) 24.7315 0.820742
\(909\) 0 0
\(910\) −2.05988 −0.0682843
\(911\) 0.144960 0.00480273 0.00240137 0.999997i \(-0.499236\pi\)
0.00240137 + 0.999997i \(0.499236\pi\)
\(912\) 0 0
\(913\) −37.5740 −1.24352
\(914\) −16.3235 −0.539934
\(915\) 0 0
\(916\) −3.59669 −0.118838
\(917\) 27.5722 0.910513
\(918\) 0 0
\(919\) −37.8928 −1.24997 −0.624983 0.780638i \(-0.714894\pi\)
−0.624983 + 0.780638i \(0.714894\pi\)
\(920\) −13.2749 −0.437661
\(921\) 0 0
\(922\) −6.33870 −0.208754
\(923\) 12.0670 0.397190
\(924\) 0 0
\(925\) −25.9086 −0.851869
\(926\) 2.61673 0.0859910
\(927\) 0 0
\(928\) 32.5630 1.06893
\(929\) −51.1602 −1.67851 −0.839257 0.543736i \(-0.817009\pi\)
−0.839257 + 0.543736i \(0.817009\pi\)
\(930\) 0 0
\(931\) −2.89228 −0.0947906
\(932\) −14.0569 −0.460451
\(933\) 0 0
\(934\) 9.21928 0.301664
\(935\) −4.13300 −0.135164
\(936\) 0 0
\(937\) −33.4925 −1.09415 −0.547076 0.837083i \(-0.684259\pi\)
−0.547076 + 0.837083i \(0.684259\pi\)
\(938\) 14.5217 0.474149
\(939\) 0 0
\(940\) −21.4040 −0.698122
\(941\) −16.8675 −0.549866 −0.274933 0.961463i \(-0.588656\pi\)
−0.274933 + 0.961463i \(0.588656\pi\)
\(942\) 0 0
\(943\) −29.2980 −0.954075
\(944\) −18.2949 −0.595450
\(945\) 0 0
\(946\) 7.46952 0.242855
\(947\) 16.0139 0.520381 0.260191 0.965557i \(-0.416215\pi\)
0.260191 + 0.965557i \(0.416215\pi\)
\(948\) 0 0
\(949\) 5.22771 0.169699
\(950\) −1.66450 −0.0540035
\(951\) 0 0
\(952\) −5.31583 −0.172287
\(953\) 35.3365 1.14466 0.572331 0.820023i \(-0.306039\pi\)
0.572331 + 0.820023i \(0.306039\pi\)
\(954\) 0 0
\(955\) 9.38528 0.303701
\(956\) 6.13023 0.198266
\(957\) 0 0
\(958\) 0.536950 0.0173481
\(959\) −31.9100 −1.03043
\(960\) 0 0
\(961\) −24.5211 −0.791003
\(962\) 3.96776 0.127926
\(963\) 0 0
\(964\) −12.5014 −0.402644
\(965\) −10.6318 −0.342250
\(966\) 0 0
\(967\) 53.3379 1.71523 0.857616 0.514290i \(-0.171945\pi\)
0.857616 + 0.514290i \(0.171945\pi\)
\(968\) 1.22947 0.0395165
\(969\) 0 0
\(970\) 9.23665 0.296571
\(971\) 50.1657 1.60989 0.804946 0.593348i \(-0.202194\pi\)
0.804946 + 0.593348i \(0.202194\pi\)
\(972\) 0 0
\(973\) −33.5637 −1.07600
\(974\) −8.64279 −0.276933
\(975\) 0 0
\(976\) −37.1422 −1.18889
\(977\) −22.9432 −0.734016 −0.367008 0.930218i \(-0.619618\pi\)
−0.367008 + 0.930218i \(0.619618\pi\)
\(978\) 0 0
\(979\) 28.4519 0.909325
\(980\) 6.49857 0.207589
\(981\) 0 0
\(982\) 8.33919 0.266114
\(983\) −0.258313 −0.00823892 −0.00411946 0.999992i \(-0.501311\pi\)
−0.00411946 + 0.999992i \(0.501311\pi\)
\(984\) 0 0
\(985\) −13.6651 −0.435406
\(986\) −2.94334 −0.0937349
\(987\) 0 0
\(988\) −1.81660 −0.0577938
\(989\) 23.6881 0.753237
\(990\) 0 0
\(991\) −23.1558 −0.735568 −0.367784 0.929911i \(-0.619883\pi\)
−0.367784 + 0.929911i \(0.619883\pi\)
\(992\) −12.7432 −0.404598
\(993\) 0 0
\(994\) 18.7331 0.594176
\(995\) 7.39000 0.234279
\(996\) 0 0
\(997\) 41.7866 1.32339 0.661697 0.749772i \(-0.269837\pi\)
0.661697 + 0.749772i \(0.269837\pi\)
\(998\) 10.3605 0.327954
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.a.l.1.3 6
3.2 odd 2 1053.2.a.m.1.4 6
9.2 odd 6 351.2.e.c.118.3 12
9.4 even 3 117.2.e.c.79.4 yes 12
9.5 odd 6 351.2.e.c.235.3 12
9.7 even 3 117.2.e.c.40.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.c.40.4 12 9.7 even 3
117.2.e.c.79.4 yes 12 9.4 even 3
351.2.e.c.118.3 12 9.2 odd 6
351.2.e.c.235.3 12 9.5 odd 6
1053.2.a.l.1.3 6 1.1 even 1 trivial
1053.2.a.m.1.4 6 3.2 odd 2