Properties

Label 351.2.e.c.118.3
Level $351$
Weight $2$
Character 351.118
Analytic conductor $2.803$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(118,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{11} - 3 x^{10} - x^{9} - 2 x^{8} + 9 x^{7} + 24 x^{6} + 27 x^{5} - 18 x^{4} - 27 x^{3} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.3
Root \(0.471837 - 1.66654i\) of defining polynomial
Character \(\chi\) \(=\) 351.118
Dual form 351.2.e.c.235.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.248047 - 0.429630i) q^{2} +(0.876945 - 1.51891i) q^{4} +(-0.663441 + 1.14911i) q^{5} +(-1.56464 - 2.71004i) q^{7} -1.86228 q^{8} +0.658258 q^{10} +(-1.70735 - 2.95722i) q^{11} +(0.500000 - 0.866025i) q^{13} +(-0.776210 + 1.34444i) q^{14} +(-1.29196 - 2.23774i) q^{16} +0.912179 q^{17} -1.03576 q^{19} +(1.16360 + 2.01542i) q^{20} +(-0.847007 + 1.46706i) q^{22} +(2.68611 - 4.65248i) q^{23} +(1.61969 + 2.80539i) q^{25} -0.496094 q^{26} -5.48843 q^{28} +(-3.25212 - 5.63283i) q^{29} +(-1.27269 + 2.20436i) q^{31} +(-2.50321 + 4.33569i) q^{32} +(-0.226263 - 0.391900i) q^{34} +4.15219 q^{35} +7.99800 q^{37} +(0.256916 + 0.444991i) q^{38} +(1.23551 - 2.13997i) q^{40} +(-2.72681 + 4.72297i) q^{41} +(-2.20468 - 3.81862i) q^{43} -5.98902 q^{44} -2.66513 q^{46} +(-4.59865 - 7.96510i) q^{47} +(-1.39622 + 2.41832i) q^{49} +(0.803520 - 1.39174i) q^{50} +(-0.876945 - 1.51891i) q^{52} +12.1878 q^{53} +4.53091 q^{55} +(2.91381 + 5.04686i) q^{56} +(-1.61335 + 2.79441i) q^{58} +(-3.54016 + 6.13174i) q^{59} +(7.18720 + 12.4486i) q^{61} +1.26274 q^{62} -2.68417 q^{64} +(0.663441 + 1.14911i) q^{65} +(4.67710 - 8.10098i) q^{67} +(0.799931 - 1.38552i) q^{68} +(-1.02994 - 1.78391i) q^{70} +12.0670 q^{71} -5.22771 q^{73} +(-1.98388 - 3.43618i) q^{74} +(-0.908301 + 1.57322i) q^{76} +(-5.34279 + 9.25399i) q^{77} +(6.05439 + 10.4865i) q^{79} +3.42855 q^{80} +2.70551 q^{82} +(5.50179 + 9.52938i) q^{83} +(-0.605177 + 1.04820i) q^{85} +(-1.09373 + 1.89439i) q^{86} +(3.17957 + 5.50718i) q^{88} +8.33216 q^{89} -3.12929 q^{91} +(-4.71115 - 8.15994i) q^{92} +(-2.28136 + 3.95144i) q^{94} +(0.687162 - 1.19020i) q^{95} +(-7.01598 - 12.1520i) q^{97} +1.38531 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 2 q^{2} - 6 q^{4} - 3 q^{5} + 12 q^{8} - 12 q^{10} - 7 q^{11} + 6 q^{13} - 13 q^{14} - 6 q^{16} + 28 q^{17} - 6 q^{19} - 17 q^{20} + 3 q^{22} - 17 q^{23} - 3 q^{25} - 4 q^{26} + 30 q^{28} - 14 q^{29}+ \cdots + 34 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.248047 0.429630i −0.175396 0.303794i 0.764902 0.644146i \(-0.222787\pi\)
−0.940298 + 0.340352i \(0.889454\pi\)
\(3\) 0 0
\(4\) 0.876945 1.51891i 0.438473 0.759457i
\(5\) −0.663441 + 1.14911i −0.296700 + 0.513899i −0.975379 0.220536i \(-0.929219\pi\)
0.678679 + 0.734435i \(0.262553\pi\)
\(6\) 0 0
\(7\) −1.56464 2.71004i −0.591380 1.02430i −0.994047 0.108953i \(-0.965250\pi\)
0.402667 0.915346i \(-0.368083\pi\)
\(8\) −1.86228 −0.658416
\(9\) 0 0
\(10\) 0.658258 0.208159
\(11\) −1.70735 2.95722i −0.514786 0.891635i −0.999853 0.0171581i \(-0.994538\pi\)
0.485067 0.874477i \(-0.338795\pi\)
\(12\) 0 0
\(13\) 0.500000 0.866025i 0.138675 0.240192i
\(14\) −0.776210 + 1.34444i −0.207451 + 0.359315i
\(15\) 0 0
\(16\) −1.29196 2.23774i −0.322989 0.559434i
\(17\) 0.912179 0.221236 0.110618 0.993863i \(-0.464717\pi\)
0.110618 + 0.993863i \(0.464717\pi\)
\(18\) 0 0
\(19\) −1.03576 −0.237619 −0.118809 0.992917i \(-0.537908\pi\)
−0.118809 + 0.992917i \(0.537908\pi\)
\(20\) 1.16360 + 2.01542i 0.260190 + 0.450661i
\(21\) 0 0
\(22\) −0.847007 + 1.46706i −0.180582 + 0.312778i
\(23\) 2.68611 4.65248i 0.560093 0.970109i −0.437395 0.899270i \(-0.644099\pi\)
0.997488 0.0708399i \(-0.0225679\pi\)
\(24\) 0 0
\(25\) 1.61969 + 2.80539i 0.323938 + 0.561078i
\(26\) −0.496094 −0.0972920
\(27\) 0 0
\(28\) −5.48843 −1.03722
\(29\) −3.25212 5.63283i −0.603903 1.04599i −0.992224 0.124466i \(-0.960278\pi\)
0.388321 0.921524i \(-0.373055\pi\)
\(30\) 0 0
\(31\) −1.27269 + 2.20436i −0.228581 + 0.395914i −0.957388 0.288805i \(-0.906742\pi\)
0.728807 + 0.684720i \(0.240075\pi\)
\(32\) −2.50321 + 4.33569i −0.442510 + 0.766450i
\(33\) 0 0
\(34\) −0.226263 0.391900i −0.0388038 0.0672102i
\(35\) 4.15219 0.701849
\(36\) 0 0
\(37\) 7.99800 1.31486 0.657431 0.753514i \(-0.271643\pi\)
0.657431 + 0.753514i \(0.271643\pi\)
\(38\) 0.256916 + 0.444991i 0.0416773 + 0.0721871i
\(39\) 0 0
\(40\) 1.23551 2.13997i 0.195352 0.338360i
\(41\) −2.72681 + 4.72297i −0.425856 + 0.737604i −0.996500 0.0835936i \(-0.973360\pi\)
0.570644 + 0.821197i \(0.306694\pi\)
\(42\) 0 0
\(43\) −2.20468 3.81862i −0.336211 0.582334i 0.647506 0.762060i \(-0.275812\pi\)
−0.983717 + 0.179726i \(0.942479\pi\)
\(44\) −5.98902 −0.902878
\(45\) 0 0
\(46\) −2.66513 −0.392952
\(47\) −4.59865 7.96510i −0.670782 1.16183i −0.977683 0.210087i \(-0.932625\pi\)
0.306901 0.951742i \(-0.400708\pi\)
\(48\) 0 0
\(49\) −1.39622 + 2.41832i −0.199460 + 0.345474i
\(50\) 0.803520 1.39174i 0.113635 0.196821i
\(51\) 0 0
\(52\) −0.876945 1.51891i −0.121610 0.210635i
\(53\) 12.1878 1.67412 0.837060 0.547111i \(-0.184272\pi\)
0.837060 + 0.547111i \(0.184272\pi\)
\(54\) 0 0
\(55\) 4.53091 0.610947
\(56\) 2.91381 + 5.04686i 0.389374 + 0.674415i
\(57\) 0 0
\(58\) −1.61335 + 2.79441i −0.211844 + 0.366924i
\(59\) −3.54016 + 6.13174i −0.460890 + 0.798284i −0.999006 0.0445866i \(-0.985803\pi\)
0.538116 + 0.842871i \(0.319136\pi\)
\(60\) 0 0
\(61\) 7.18720 + 12.4486i 0.920226 + 1.59388i 0.799064 + 0.601246i \(0.205329\pi\)
0.121162 + 0.992633i \(0.461338\pi\)
\(62\) 1.26274 0.160369
\(63\) 0 0
\(64\) −2.68417 −0.335521
\(65\) 0.663441 + 1.14911i 0.0822897 + 0.142530i
\(66\) 0 0
\(67\) 4.67710 8.10098i 0.571399 0.989692i −0.425024 0.905182i \(-0.639734\pi\)
0.996423 0.0845099i \(-0.0269325\pi\)
\(68\) 0.799931 1.38552i 0.0970059 0.168019i
\(69\) 0 0
\(70\) −1.02994 1.78391i −0.123101 0.213218i
\(71\) 12.0670 1.43209 0.716045 0.698054i \(-0.245951\pi\)
0.716045 + 0.698054i \(0.245951\pi\)
\(72\) 0 0
\(73\) −5.22771 −0.611857 −0.305928 0.952055i \(-0.598967\pi\)
−0.305928 + 0.952055i \(0.598967\pi\)
\(74\) −1.98388 3.43618i −0.230621 0.399448i
\(75\) 0 0
\(76\) −0.908301 + 1.57322i −0.104189 + 0.180461i
\(77\) −5.34279 + 9.25399i −0.608868 + 1.05459i
\(78\) 0 0
\(79\) 6.05439 + 10.4865i 0.681172 + 1.17982i 0.974623 + 0.223851i \(0.0718629\pi\)
−0.293451 + 0.955974i \(0.594804\pi\)
\(80\) 3.42855 0.383323
\(81\) 0 0
\(82\) 2.70551 0.298773
\(83\) 5.50179 + 9.52938i 0.603900 + 1.04599i 0.992224 + 0.124463i \(0.0397207\pi\)
−0.388324 + 0.921523i \(0.626946\pi\)
\(84\) 0 0
\(85\) −0.605177 + 1.04820i −0.0656407 + 0.113693i
\(86\) −1.09373 + 1.89439i −0.117940 + 0.204278i
\(87\) 0 0
\(88\) 3.17957 + 5.50718i 0.338943 + 0.587067i
\(89\) 8.33216 0.883207 0.441604 0.897210i \(-0.354410\pi\)
0.441604 + 0.897210i \(0.354410\pi\)
\(90\) 0 0
\(91\) −3.12929 −0.328038
\(92\) −4.71115 8.15994i −0.491171 0.850733i
\(93\) 0 0
\(94\) −2.28136 + 3.95144i −0.235305 + 0.407559i
\(95\) 0.687162 1.19020i 0.0705014 0.122112i
\(96\) 0 0
\(97\) −7.01598 12.1520i −0.712365 1.23385i −0.963967 0.266022i \(-0.914291\pi\)
0.251602 0.967831i \(-0.419043\pi\)
\(98\) 1.38531 0.139937
\(99\) 0 0
\(100\) 5.68153 0.568153
\(101\) 5.91889 + 10.2518i 0.588951 + 1.02009i 0.994370 + 0.105963i \(0.0337924\pi\)
−0.405419 + 0.914131i \(0.632874\pi\)
\(102\) 0 0
\(103\) −4.10294 + 7.10650i −0.404275 + 0.700224i −0.994237 0.107207i \(-0.965809\pi\)
0.589962 + 0.807431i \(0.299143\pi\)
\(104\) −0.931141 + 1.61278i −0.0913059 + 0.158146i
\(105\) 0 0
\(106\) −3.02314 5.23624i −0.293634 0.508588i
\(107\) −0.156610 −0.0151401 −0.00757005 0.999971i \(-0.502410\pi\)
−0.00757005 + 0.999971i \(0.502410\pi\)
\(108\) 0 0
\(109\) −7.52766 −0.721019 −0.360509 0.932756i \(-0.617397\pi\)
−0.360509 + 0.932756i \(0.617397\pi\)
\(110\) −1.12388 1.94661i −0.107158 0.185602i
\(111\) 0 0
\(112\) −4.04290 + 7.00252i −0.382019 + 0.661676i
\(113\) 8.53672 14.7860i 0.803067 1.39095i −0.114521 0.993421i \(-0.536533\pi\)
0.917588 0.397532i \(-0.130133\pi\)
\(114\) 0 0
\(115\) 3.56415 + 6.17329i 0.332359 + 0.575663i
\(116\) −11.4077 −1.05918
\(117\) 0 0
\(118\) 3.51250 0.323352
\(119\) −1.42724 2.47204i −0.130834 0.226612i
\(120\) 0 0
\(121\) −0.330096 + 0.571744i −0.0300088 + 0.0519767i
\(122\) 3.56552 6.17567i 0.322807 0.559119i
\(123\) 0 0
\(124\) 2.23215 + 3.86620i 0.200453 + 0.347195i
\(125\) −10.9327 −0.977849
\(126\) 0 0
\(127\) 0.476604 0.0422917 0.0211459 0.999776i \(-0.493269\pi\)
0.0211459 + 0.999776i \(0.493269\pi\)
\(128\) 5.67223 + 9.82459i 0.501359 + 0.868379i
\(129\) 0 0
\(130\) 0.329129 0.570068i 0.0288665 0.0499983i
\(131\) 4.40550 7.63055i 0.384910 0.666684i −0.606846 0.794819i \(-0.707566\pi\)
0.991757 + 0.128135i \(0.0408990\pi\)
\(132\) 0 0
\(133\) 1.62059 + 2.80694i 0.140523 + 0.243393i
\(134\) −4.64056 −0.400884
\(135\) 0 0
\(136\) −1.69874 −0.145665
\(137\) −5.09861 8.83104i −0.435603 0.754487i 0.561741 0.827313i \(-0.310132\pi\)
−0.997345 + 0.0728259i \(0.976798\pi\)
\(138\) 0 0
\(139\) 5.36283 9.28870i 0.454870 0.787857i −0.543811 0.839208i \(-0.683019\pi\)
0.998681 + 0.0513505i \(0.0163526\pi\)
\(140\) 3.64125 6.30682i 0.307742 0.533024i
\(141\) 0 0
\(142\) −2.99318 5.18434i −0.251182 0.435061i
\(143\) −3.41470 −0.285552
\(144\) 0 0
\(145\) 8.63034 0.716711
\(146\) 1.29672 + 2.24598i 0.107317 + 0.185879i
\(147\) 0 0
\(148\) 7.01381 12.1483i 0.576531 0.998582i
\(149\) −7.56805 + 13.1083i −0.619999 + 1.07387i 0.369486 + 0.929236i \(0.379534\pi\)
−0.989485 + 0.144634i \(0.953800\pi\)
\(150\) 0 0
\(151\) −6.09490 10.5567i −0.495996 0.859090i 0.503993 0.863708i \(-0.331864\pi\)
−0.999989 + 0.00461712i \(0.998530\pi\)
\(152\) 1.92887 0.156452
\(153\) 0 0
\(154\) 5.30105 0.427171
\(155\) −1.68870 2.92492i −0.135640 0.234935i
\(156\) 0 0
\(157\) 1.92216 3.32928i 0.153405 0.265706i −0.779072 0.626934i \(-0.784309\pi\)
0.932477 + 0.361229i \(0.117643\pi\)
\(158\) 3.00355 5.20230i 0.238949 0.413872i
\(159\) 0 0
\(160\) −3.32147 5.75295i −0.262585 0.454811i
\(161\) −16.8112 −1.32491
\(162\) 0 0
\(163\) 5.24217 0.410599 0.205299 0.978699i \(-0.434183\pi\)
0.205299 + 0.978699i \(0.434183\pi\)
\(164\) 4.78252 + 8.28357i 0.373452 + 0.646838i
\(165\) 0 0
\(166\) 2.72940 4.72747i 0.211843 0.366923i
\(167\) 8.89187 15.4012i 0.688074 1.19178i −0.284386 0.958710i \(-0.591790\pi\)
0.972460 0.233069i \(-0.0748768\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 0.600449 0.0460524
\(171\) 0 0
\(172\) −7.73354 −0.589677
\(173\) 0.790406 + 1.36902i 0.0600935 + 0.104085i 0.894507 0.447054i \(-0.147527\pi\)
−0.834414 + 0.551139i \(0.814193\pi\)
\(174\) 0 0
\(175\) 5.06848 8.77887i 0.383141 0.663620i
\(176\) −4.41165 + 7.64120i −0.332541 + 0.575977i
\(177\) 0 0
\(178\) −2.06677 3.57975i −0.154911 0.268313i
\(179\) −15.2270 −1.13812 −0.569060 0.822296i \(-0.692693\pi\)
−0.569060 + 0.822296i \(0.692693\pi\)
\(180\) 0 0
\(181\) −22.9726 −1.70754 −0.853770 0.520650i \(-0.825690\pi\)
−0.853770 + 0.520650i \(0.825690\pi\)
\(182\) 0.776210 + 1.34444i 0.0575365 + 0.0996562i
\(183\) 0 0
\(184\) −5.00230 + 8.66423i −0.368774 + 0.638736i
\(185\) −5.30620 + 9.19061i −0.390119 + 0.675707i
\(186\) 0 0
\(187\) −1.55741 2.69751i −0.113889 0.197262i
\(188\) −16.1311 −1.17648
\(189\) 0 0
\(190\) −0.681794 −0.0494625
\(191\) −3.53659 6.12556i −0.255899 0.443230i 0.709240 0.704967i \(-0.249038\pi\)
−0.965139 + 0.261737i \(0.915705\pi\)
\(192\) 0 0
\(193\) −4.00632 + 6.93914i −0.288381 + 0.499490i −0.973423 0.229013i \(-0.926450\pi\)
0.685043 + 0.728503i \(0.259784\pi\)
\(194\) −3.48059 + 6.02855i −0.249892 + 0.432825i
\(195\) 0 0
\(196\) 2.44881 + 4.24147i 0.174915 + 0.302962i
\(197\) −10.2986 −0.733748 −0.366874 0.930271i \(-0.619572\pi\)
−0.366874 + 0.930271i \(0.619572\pi\)
\(198\) 0 0
\(199\) −5.56945 −0.394808 −0.197404 0.980322i \(-0.563251\pi\)
−0.197404 + 0.980322i \(0.563251\pi\)
\(200\) −3.01632 5.22443i −0.213286 0.369423i
\(201\) 0 0
\(202\) 2.93632 5.08586i 0.206599 0.357840i
\(203\) −10.1768 + 17.6267i −0.714271 + 1.23715i
\(204\) 0 0
\(205\) −3.61815 6.26682i −0.252703 0.437694i
\(206\) 4.07089 0.283632
\(207\) 0 0
\(208\) −2.58391 −0.179162
\(209\) 1.76840 + 3.06295i 0.122323 + 0.211869i
\(210\) 0 0
\(211\) 4.71574 8.16790i 0.324645 0.562302i −0.656795 0.754069i \(-0.728089\pi\)
0.981440 + 0.191767i \(0.0614218\pi\)
\(212\) 10.6880 18.5122i 0.734056 1.27142i
\(213\) 0 0
\(214\) 0.0388468 + 0.0672846i 0.00265551 + 0.00459948i
\(215\) 5.85070 0.399014
\(216\) 0 0
\(217\) 7.96520 0.540713
\(218\) 1.86721 + 3.23411i 0.126464 + 0.219041i
\(219\) 0 0
\(220\) 3.97336 6.88206i 0.267884 0.463988i
\(221\) 0.456090 0.789970i 0.0306799 0.0531392i
\(222\) 0 0
\(223\) 9.31273 + 16.1301i 0.623626 + 1.08015i 0.988805 + 0.149215i \(0.0476746\pi\)
−0.365178 + 0.930938i \(0.618992\pi\)
\(224\) 15.6666 1.04677
\(225\) 0 0
\(226\) −8.47003 −0.563418
\(227\) −7.05046 12.2117i −0.467955 0.810522i 0.531374 0.847137i \(-0.321676\pi\)
−0.999329 + 0.0366150i \(0.988342\pi\)
\(228\) 0 0
\(229\) −1.02535 + 1.77595i −0.0677569 + 0.117358i −0.897914 0.440172i \(-0.854918\pi\)
0.830157 + 0.557530i \(0.188251\pi\)
\(230\) 1.76815 3.06253i 0.116589 0.201937i
\(231\) 0 0
\(232\) 6.05636 + 10.4899i 0.397619 + 0.688697i
\(233\) −8.01472 −0.525062 −0.262531 0.964924i \(-0.584557\pi\)
−0.262531 + 0.964924i \(0.584557\pi\)
\(234\) 0 0
\(235\) 12.2037 0.796084
\(236\) 6.20905 + 10.7544i 0.404175 + 0.700052i
\(237\) 0 0
\(238\) −0.708043 + 1.22637i −0.0458956 + 0.0794935i
\(239\) −1.74761 + 3.02695i −0.113043 + 0.195797i −0.916996 0.398897i \(-0.869393\pi\)
0.803953 + 0.594694i \(0.202727\pi\)
\(240\) 0 0
\(241\) −3.56391 6.17288i −0.229572 0.397630i 0.728109 0.685461i \(-0.240399\pi\)
−0.957681 + 0.287831i \(0.907066\pi\)
\(242\) 0.327518 0.0210536
\(243\) 0 0
\(244\) 25.2111 1.61398
\(245\) −1.85261 3.20882i −0.118359 0.205004i
\(246\) 0 0
\(247\) −0.517878 + 0.896990i −0.0329518 + 0.0570741i
\(248\) 2.37010 4.10513i 0.150502 0.260676i
\(249\) 0 0
\(250\) 2.71182 + 4.69701i 0.171511 + 0.297065i
\(251\) 10.8057 0.682052 0.341026 0.940054i \(-0.389226\pi\)
0.341026 + 0.940054i \(0.389226\pi\)
\(252\) 0 0
\(253\) −18.3445 −1.15331
\(254\) −0.118220 0.204763i −0.00741779 0.0128480i
\(255\) 0 0
\(256\) 0.129788 0.224800i 0.00811178 0.0140500i
\(257\) 12.0213 20.8215i 0.749870 1.29881i −0.198015 0.980199i \(-0.563449\pi\)
0.947885 0.318614i \(-0.103217\pi\)
\(258\) 0 0
\(259\) −12.5140 21.6749i −0.777583 1.34681i
\(260\) 2.32721 0.144327
\(261\) 0 0
\(262\) −4.37108 −0.270047
\(263\) −0.587040 1.01678i −0.0361984 0.0626975i 0.847359 0.531021i \(-0.178192\pi\)
−0.883557 + 0.468324i \(0.844858\pi\)
\(264\) 0 0
\(265\) −8.08587 + 14.0051i −0.496711 + 0.860329i
\(266\) 0.803964 1.39251i 0.0492942 0.0853800i
\(267\) 0 0
\(268\) −8.20313 14.2082i −0.501086 0.867906i
\(269\) 16.4749 1.00449 0.502247 0.864724i \(-0.332507\pi\)
0.502247 + 0.864724i \(0.332507\pi\)
\(270\) 0 0
\(271\) 30.9493 1.88004 0.940018 0.341124i \(-0.110807\pi\)
0.940018 + 0.341124i \(0.110807\pi\)
\(272\) −1.17850 2.04122i −0.0714569 0.123767i
\(273\) 0 0
\(274\) −2.52939 + 4.38103i −0.152806 + 0.264668i
\(275\) 5.53077 9.57957i 0.333518 0.577670i
\(276\) 0 0
\(277\) 8.42097 + 14.5856i 0.505967 + 0.876361i 0.999976 + 0.00690414i \(0.00219767\pi\)
−0.494009 + 0.869457i \(0.664469\pi\)
\(278\) −5.32094 −0.319129
\(279\) 0 0
\(280\) −7.73256 −0.462109
\(281\) 10.8043 + 18.7136i 0.644530 + 1.11636i 0.984410 + 0.175890i \(0.0562804\pi\)
−0.339879 + 0.940469i \(0.610386\pi\)
\(282\) 0 0
\(283\) −1.95826 + 3.39180i −0.116406 + 0.201622i −0.918341 0.395790i \(-0.870471\pi\)
0.801935 + 0.597412i \(0.203804\pi\)
\(284\) 10.5821 18.3287i 0.627932 1.08761i
\(285\) 0 0
\(286\) 0.847007 + 1.46706i 0.0500845 + 0.0867490i
\(287\) 17.0659 1.00737
\(288\) 0 0
\(289\) −16.1679 −0.951055
\(290\) −2.14073 3.70785i −0.125708 0.217733i
\(291\) 0 0
\(292\) −4.58441 + 7.94044i −0.268283 + 0.464679i
\(293\) −6.65319 + 11.5237i −0.388683 + 0.673219i −0.992273 0.124076i \(-0.960403\pi\)
0.603589 + 0.797295i \(0.293737\pi\)
\(294\) 0 0
\(295\) −4.69737 8.13609i −0.273492 0.473701i
\(296\) −14.8945 −0.865727
\(297\) 0 0
\(298\) 7.50893 0.434981
\(299\) −2.68611 4.65248i −0.155342 0.269060i
\(300\) 0 0
\(301\) −6.89908 + 11.9496i −0.397656 + 0.688761i
\(302\) −3.02364 + 5.23711i −0.173991 + 0.301362i
\(303\) 0 0
\(304\) 1.33815 + 2.31775i 0.0767483 + 0.132932i
\(305\) −19.0731 −1.09212
\(306\) 0 0
\(307\) 2.50370 0.142894 0.0714469 0.997444i \(-0.477238\pi\)
0.0714469 + 0.997444i \(0.477238\pi\)
\(308\) 9.37067 + 16.2305i 0.533944 + 0.924817i
\(309\) 0 0
\(310\) −0.837756 + 1.45104i −0.0475813 + 0.0824133i
\(311\) −2.05648 + 3.56194i −0.116613 + 0.201979i −0.918423 0.395599i \(-0.870537\pi\)
0.801811 + 0.597578i \(0.203870\pi\)
\(312\) 0 0
\(313\) 1.73971 + 3.01326i 0.0983340 + 0.170319i 0.910995 0.412417i \(-0.135315\pi\)
−0.812661 + 0.582736i \(0.801982\pi\)
\(314\) −1.90715 −0.107626
\(315\) 0 0
\(316\) 21.2375 1.19470
\(317\) 12.5304 + 21.7033i 0.703778 + 1.21898i 0.967131 + 0.254279i \(0.0818382\pi\)
−0.263353 + 0.964699i \(0.584828\pi\)
\(318\) 0 0
\(319\) −11.1050 + 19.2344i −0.621761 + 1.07692i
\(320\) 1.78079 3.08442i 0.0995491 0.172424i
\(321\) 0 0
\(322\) 4.16997 + 7.22261i 0.232384 + 0.402500i
\(323\) −0.944794 −0.0525698
\(324\) 0 0
\(325\) 3.23938 0.179689
\(326\) −1.30030 2.25219i −0.0720172 0.124738i
\(327\) 0 0
\(328\) 5.07809 8.79550i 0.280390 0.485650i
\(329\) −14.3905 + 24.9251i −0.793374 + 1.37416i
\(330\) 0 0
\(331\) −0.135093 0.233988i −0.00742539 0.0128612i 0.862289 0.506417i \(-0.169030\pi\)
−0.869714 + 0.493556i \(0.835697\pi\)
\(332\) 19.2991 1.05917
\(333\) 0 0
\(334\) −8.82241 −0.482741
\(335\) 6.20596 + 10.7490i 0.339068 + 0.587283i
\(336\) 0 0
\(337\) 12.3311 21.3581i 0.671718 1.16345i −0.305699 0.952128i \(-0.598890\pi\)
0.977417 0.211321i \(-0.0677765\pi\)
\(338\) −0.248047 + 0.429630i −0.0134920 + 0.0233688i
\(339\) 0 0
\(340\) 1.06141 + 1.83842i 0.0575633 + 0.0997025i
\(341\) 8.69169 0.470681
\(342\) 0 0
\(343\) −13.1667 −0.710934
\(344\) 4.10574 + 7.11135i 0.221367 + 0.383418i
\(345\) 0 0
\(346\) 0.392116 0.679165i 0.0210803 0.0365121i
\(347\) −13.0725 + 22.6423i −0.701771 + 1.21550i 0.266074 + 0.963953i \(0.414274\pi\)
−0.967844 + 0.251550i \(0.919060\pi\)
\(348\) 0 0
\(349\) 9.97134 + 17.2709i 0.533753 + 0.924488i 0.999223 + 0.0394240i \(0.0125523\pi\)
−0.465469 + 0.885064i \(0.654114\pi\)
\(350\) −5.02889 −0.268805
\(351\) 0 0
\(352\) 17.0955 0.911191
\(353\) 8.57672 + 14.8553i 0.456493 + 0.790669i 0.998773 0.0495290i \(-0.0157720\pi\)
−0.542280 + 0.840198i \(0.682439\pi\)
\(354\) 0 0
\(355\) −8.00574 + 13.8663i −0.424901 + 0.735949i
\(356\) 7.30685 12.6558i 0.387262 0.670758i
\(357\) 0 0
\(358\) 3.77702 + 6.54198i 0.199621 + 0.345755i
\(359\) −3.15925 −0.166739 −0.0833694 0.996519i \(-0.526568\pi\)
−0.0833694 + 0.996519i \(0.526568\pi\)
\(360\) 0 0
\(361\) −17.9272 −0.943537
\(362\) 5.69828 + 9.86972i 0.299495 + 0.518741i
\(363\) 0 0
\(364\) −2.74421 + 4.75312i −0.143836 + 0.249131i
\(365\) 3.46827 6.00723i 0.181538 0.314433i
\(366\) 0 0
\(367\) −2.01971 3.49824i −0.105428 0.182607i 0.808485 0.588517i \(-0.200288\pi\)
−0.913913 + 0.405910i \(0.866955\pi\)
\(368\) −13.8814 −0.723616
\(369\) 0 0
\(370\) 5.26475 0.273701
\(371\) −19.0695 33.0294i −0.990041 1.71480i
\(372\) 0 0
\(373\) −5.92273 + 10.2585i −0.306667 + 0.531164i −0.977631 0.210327i \(-0.932547\pi\)
0.670964 + 0.741490i \(0.265881\pi\)
\(374\) −0.772622 + 1.33822i −0.0399513 + 0.0691977i
\(375\) 0 0
\(376\) 8.56399 + 14.8333i 0.441654 + 0.764967i
\(377\) −6.50423 −0.334985
\(378\) 0 0
\(379\) 0.705984 0.0362640 0.0181320 0.999836i \(-0.494228\pi\)
0.0181320 + 0.999836i \(0.494228\pi\)
\(380\) −1.20521 2.08748i −0.0618258 0.107086i
\(381\) 0 0
\(382\) −1.75448 + 3.03885i −0.0897672 + 0.155481i
\(383\) 12.4042 21.4847i 0.633826 1.09782i −0.352937 0.935647i \(-0.614817\pi\)
0.986763 0.162171i \(-0.0518497\pi\)
\(384\) 0 0
\(385\) −7.08925 12.2789i −0.361302 0.625793i
\(386\) 3.97502 0.202323
\(387\) 0 0
\(388\) −24.6105 −1.24941
\(389\) 5.18742 + 8.98488i 0.263013 + 0.455551i 0.967041 0.254620i \(-0.0819505\pi\)
−0.704028 + 0.710172i \(0.748617\pi\)
\(390\) 0 0
\(391\) 2.45022 4.24390i 0.123913 0.214623i
\(392\) 2.60015 4.50359i 0.131327 0.227466i
\(393\) 0 0
\(394\) 2.55455 + 4.42461i 0.128696 + 0.222908i
\(395\) −16.0669 −0.808415
\(396\) 0 0
\(397\) 19.5931 0.983351 0.491675 0.870779i \(-0.336385\pi\)
0.491675 + 0.870779i \(0.336385\pi\)
\(398\) 1.38148 + 2.39280i 0.0692476 + 0.119940i
\(399\) 0 0
\(400\) 4.18515 7.24889i 0.209257 0.362444i
\(401\) 11.1544 19.3199i 0.557022 0.964790i −0.440721 0.897644i \(-0.645277\pi\)
0.997743 0.0671462i \(-0.0213894\pi\)
\(402\) 0 0
\(403\) 1.27269 + 2.20436i 0.0633970 + 0.109807i
\(404\) 20.7622 1.03296
\(405\) 0 0
\(406\) 10.0973 0.501120
\(407\) −13.6554 23.6518i −0.676873 1.17238i
\(408\) 0 0
\(409\) 1.74980 3.03074i 0.0865220 0.149860i −0.819517 0.573055i \(-0.805758\pi\)
0.906039 + 0.423195i \(0.139091\pi\)
\(410\) −1.79494 + 3.10893i −0.0886459 + 0.153539i
\(411\) 0 0
\(412\) 7.19611 + 12.4640i 0.354527 + 0.614058i
\(413\) 22.1564 1.09024
\(414\) 0 0
\(415\) −14.6004 −0.716708
\(416\) 2.50321 + 4.33569i 0.122730 + 0.212575i
\(417\) 0 0
\(418\) 0.877291 1.51951i 0.0429097 0.0743218i
\(419\) −10.6248 + 18.4026i −0.519054 + 0.899028i 0.480701 + 0.876885i \(0.340382\pi\)
−0.999755 + 0.0221430i \(0.992951\pi\)
\(420\) 0 0
\(421\) −1.11396 1.92943i −0.0542911 0.0940349i 0.837603 0.546280i \(-0.183957\pi\)
−0.891894 + 0.452245i \(0.850623\pi\)
\(422\) −4.67890 −0.227765
\(423\) 0 0
\(424\) −22.6971 −1.10227
\(425\) 1.47745 + 2.55902i 0.0716668 + 0.124131i
\(426\) 0 0
\(427\) 22.4908 38.9552i 1.08841 1.88517i
\(428\) −0.137339 + 0.237878i −0.00663852 + 0.0114983i
\(429\) 0 0
\(430\) −1.45125 2.51364i −0.0699854 0.121218i
\(431\) −10.3044 −0.496343 −0.248172 0.968716i \(-0.579830\pi\)
−0.248172 + 0.968716i \(0.579830\pi\)
\(432\) 0 0
\(433\) −10.0517 −0.483056 −0.241528 0.970394i \(-0.577649\pi\)
−0.241528 + 0.970394i \(0.577649\pi\)
\(434\) −1.97574 3.42209i −0.0948387 0.164265i
\(435\) 0 0
\(436\) −6.60134 + 11.4339i −0.316147 + 0.547583i
\(437\) −2.78215 + 4.81883i −0.133088 + 0.230516i
\(438\) 0 0
\(439\) −7.86943 13.6303i −0.375587 0.650536i 0.614827 0.788662i \(-0.289226\pi\)
−0.990415 + 0.138125i \(0.955892\pi\)
\(440\) −8.43783 −0.402258
\(441\) 0 0
\(442\) −0.452527 −0.0215245
\(443\) −4.77962 8.27855i −0.227087 0.393326i 0.729857 0.683600i \(-0.239587\pi\)
−0.956943 + 0.290275i \(0.906253\pi\)
\(444\) 0 0
\(445\) −5.52790 + 9.57460i −0.262047 + 0.453879i
\(446\) 4.61999 8.00205i 0.218763 0.378908i
\(447\) 0 0
\(448\) 4.19977 + 7.27421i 0.198420 + 0.343674i
\(449\) 15.7163 0.741696 0.370848 0.928694i \(-0.379067\pi\)
0.370848 + 0.928694i \(0.379067\pi\)
\(450\) 0 0
\(451\) 18.6225 0.876898
\(452\) −14.9725 25.9331i −0.704246 1.21979i
\(453\) 0 0
\(454\) −3.49769 + 6.05817i −0.164155 + 0.284324i
\(455\) 2.07610 3.59590i 0.0973289 0.168579i
\(456\) 0 0
\(457\) −16.4521 28.4958i −0.769594 1.33298i −0.937783 0.347222i \(-0.887125\pi\)
0.168189 0.985755i \(-0.446208\pi\)
\(458\) 1.01734 0.0475370
\(459\) 0 0
\(460\) 12.5023 0.582921
\(461\) 6.38861 + 11.0654i 0.297547 + 0.515367i 0.975574 0.219670i \(-0.0704982\pi\)
−0.678027 + 0.735037i \(0.737165\pi\)
\(462\) 0 0
\(463\) 2.63733 4.56799i 0.122567 0.212293i −0.798212 0.602376i \(-0.794221\pi\)
0.920779 + 0.390084i \(0.127554\pi\)
\(464\) −8.40319 + 14.5547i −0.390108 + 0.675687i
\(465\) 0 0
\(466\) 1.98803 + 3.44336i 0.0920936 + 0.159511i
\(467\) 18.5837 0.859953 0.429977 0.902840i \(-0.358522\pi\)
0.429977 + 0.902840i \(0.358522\pi\)
\(468\) 0 0
\(469\) −29.2720 −1.35165
\(470\) −3.02710 5.24309i −0.139630 0.241846i
\(471\) 0 0
\(472\) 6.59278 11.4190i 0.303457 0.525603i
\(473\) −7.52833 + 13.0394i −0.346153 + 0.599554i
\(474\) 0 0
\(475\) −1.67760 2.90570i −0.0769738 0.133323i
\(476\) −5.00643 −0.229469
\(477\) 0 0
\(478\) 1.73396 0.0793093
\(479\) −0.541178 0.937348i −0.0247271 0.0428285i 0.853397 0.521261i \(-0.174538\pi\)
−0.878124 + 0.478433i \(0.841205\pi\)
\(480\) 0 0
\(481\) 3.99900 6.92647i 0.182339 0.315820i
\(482\) −1.76804 + 3.06233i −0.0805318 + 0.139485i
\(483\) 0 0
\(484\) 0.578953 + 1.00278i 0.0263160 + 0.0455807i
\(485\) 18.6188 0.845434
\(486\) 0 0
\(487\) 17.4217 0.789451 0.394726 0.918799i \(-0.370840\pi\)
0.394726 + 0.918799i \(0.370840\pi\)
\(488\) −13.3846 23.1828i −0.605892 1.04944i
\(489\) 0 0
\(490\) −0.919071 + 1.59188i −0.0415194 + 0.0719137i
\(491\) −8.40485 + 14.5576i −0.379306 + 0.656977i −0.990961 0.134147i \(-0.957170\pi\)
0.611656 + 0.791124i \(0.290504\pi\)
\(492\) 0 0
\(493\) −2.96651 5.13815i −0.133605 0.231411i
\(494\) 0.513832 0.0231184
\(495\) 0 0
\(496\) 6.57702 0.295317
\(497\) −18.8805 32.7021i −0.846908 1.46689i
\(498\) 0 0
\(499\) 10.4420 18.0861i 0.467449 0.809646i −0.531859 0.846833i \(-0.678506\pi\)
0.999308 + 0.0371871i \(0.0118397\pi\)
\(500\) −9.58737 + 16.6058i −0.428760 + 0.742635i
\(501\) 0 0
\(502\) −2.68033 4.64247i −0.119629 0.207203i
\(503\) −2.96223 −0.132079 −0.0660397 0.997817i \(-0.521036\pi\)
−0.0660397 + 0.997817i \(0.521036\pi\)
\(504\) 0 0
\(505\) −15.7073 −0.698967
\(506\) 4.55031 + 7.88136i 0.202286 + 0.350369i
\(507\) 0 0
\(508\) 0.417956 0.723920i 0.0185438 0.0321188i
\(509\) 10.4883 18.1663i 0.464885 0.805205i −0.534311 0.845288i \(-0.679429\pi\)
0.999196 + 0.0400828i \(0.0127622\pi\)
\(510\) 0 0
\(511\) 8.17950 + 14.1673i 0.361840 + 0.626725i
\(512\) 22.5601 0.997027
\(513\) 0 0
\(514\) −11.9274 −0.526096
\(515\) −5.44411 9.42948i −0.239896 0.415513i
\(516\) 0 0
\(517\) −15.7030 + 27.1984i −0.690618 + 1.19619i
\(518\) −6.20813 + 10.7528i −0.272769 + 0.472450i
\(519\) 0 0
\(520\) −1.23551 2.13997i −0.0541809 0.0938440i
\(521\) −34.1685 −1.49695 −0.748474 0.663164i \(-0.769213\pi\)
−0.748474 + 0.663164i \(0.769213\pi\)
\(522\) 0 0
\(523\) 19.3302 0.845250 0.422625 0.906305i \(-0.361109\pi\)
0.422625 + 0.906305i \(0.361109\pi\)
\(524\) −7.72677 13.3832i −0.337545 0.584646i
\(525\) 0 0
\(526\) −0.291227 + 0.504420i −0.0126981 + 0.0219937i
\(527\) −1.16092 + 2.01077i −0.0505704 + 0.0875905i
\(528\) 0 0
\(529\) −2.93039 5.07558i −0.127408 0.220678i
\(530\) 8.02270 0.348484
\(531\) 0 0
\(532\) 5.68467 0.246462
\(533\) 2.72681 + 4.72297i 0.118111 + 0.204574i
\(534\) 0 0
\(535\) 0.103902 0.179963i 0.00449207 0.00778049i
\(536\) −8.71009 + 15.0863i −0.376218 + 0.651629i
\(537\) 0 0
\(538\) −4.08656 7.07812i −0.176184 0.305160i
\(539\) 9.53533 0.410716
\(540\) 0 0
\(541\) 8.72119 0.374953 0.187477 0.982269i \(-0.439969\pi\)
0.187477 + 0.982269i \(0.439969\pi\)
\(542\) −7.67688 13.2968i −0.329750 0.571144i
\(543\) 0 0
\(544\) −2.28338 + 3.95493i −0.0978991 + 0.169566i
\(545\) 4.99415 8.65013i 0.213926 0.370531i
\(546\) 0 0
\(547\) 10.8599 + 18.8099i 0.464335 + 0.804252i 0.999171 0.0407040i \(-0.0129601\pi\)
−0.534836 + 0.844956i \(0.679627\pi\)
\(548\) −17.8848 −0.764001
\(549\) 0 0
\(550\) −5.48756 −0.233990
\(551\) 3.36839 + 5.83423i 0.143498 + 0.248547i
\(552\) 0 0
\(553\) 18.9459 32.8153i 0.805663 1.39545i
\(554\) 4.17759 7.23580i 0.177489 0.307420i
\(555\) 0 0
\(556\) −9.40582 16.2914i −0.398896 0.690908i
\(557\) −18.3186 −0.776183 −0.388091 0.921621i \(-0.626865\pi\)
−0.388091 + 0.921621i \(0.626865\pi\)
\(558\) 0 0
\(559\) −4.40936 −0.186496
\(560\) −5.36446 9.29151i −0.226690 0.392638i
\(561\) 0 0
\(562\) 5.35995 9.28370i 0.226096 0.391609i
\(563\) −22.4531 + 38.8899i −0.946286 + 1.63902i −0.193131 + 0.981173i \(0.561864\pi\)
−0.753155 + 0.657843i \(0.771469\pi\)
\(564\) 0 0
\(565\) 11.3272 + 19.6193i 0.476540 + 0.825391i
\(566\) 1.94296 0.0816688
\(567\) 0 0
\(568\) −22.4722 −0.942911
\(569\) 17.1457 + 29.6973i 0.718786 + 1.24497i 0.961481 + 0.274871i \(0.0886352\pi\)
−0.242695 + 0.970103i \(0.578031\pi\)
\(570\) 0 0
\(571\) −7.91642 + 13.7116i −0.331292 + 0.573814i −0.982765 0.184857i \(-0.940818\pi\)
0.651474 + 0.758671i \(0.274151\pi\)
\(572\) −2.99451 + 5.18664i −0.125207 + 0.216864i
\(573\) 0 0
\(574\) −4.23315 7.33203i −0.176688 0.306033i
\(575\) 17.4027 0.725743
\(576\) 0 0
\(577\) 17.1698 0.714789 0.357395 0.933953i \(-0.383665\pi\)
0.357395 + 0.933953i \(0.383665\pi\)
\(578\) 4.01041 + 6.94623i 0.166811 + 0.288925i
\(579\) 0 0
\(580\) 7.56834 13.1088i 0.314258 0.544311i
\(581\) 17.2167 29.8202i 0.714268 1.23715i
\(582\) 0 0
\(583\) −20.8088 36.0419i −0.861813 1.49270i
\(584\) 9.73547 0.402856
\(585\) 0 0
\(586\) 6.60121 0.272694
\(587\) −7.32790 12.6923i −0.302455 0.523867i 0.674237 0.738515i \(-0.264473\pi\)
−0.976691 + 0.214648i \(0.931139\pi\)
\(588\) 0 0
\(589\) 1.31819 2.28317i 0.0543151 0.0940765i
\(590\) −2.33034 + 4.03626i −0.0959385 + 0.166170i
\(591\) 0 0
\(592\) −10.3331 17.8974i −0.424687 0.735579i
\(593\) −20.3341 −0.835021 −0.417510 0.908672i \(-0.637097\pi\)
−0.417510 + 0.908672i \(0.637097\pi\)
\(594\) 0 0
\(595\) 3.78754 0.155274
\(596\) 13.2735 + 22.9904i 0.543705 + 0.941725i
\(597\) 0 0
\(598\) −1.33256 + 2.30807i −0.0544926 + 0.0943839i
\(599\) −22.9738 + 39.7918i −0.938684 + 1.62585i −0.170754 + 0.985314i \(0.554620\pi\)
−0.767930 + 0.640534i \(0.778713\pi\)
\(600\) 0 0
\(601\) −12.0518 20.8743i −0.491602 0.851480i 0.508351 0.861150i \(-0.330255\pi\)
−0.999953 + 0.00966978i \(0.996922\pi\)
\(602\) 6.84518 0.278989
\(603\) 0 0
\(604\) −21.3796 −0.869923
\(605\) −0.437999 0.758636i −0.0178072 0.0308429i
\(606\) 0 0
\(607\) 18.3605 31.8013i 0.745229 1.29077i −0.204859 0.978791i \(-0.565674\pi\)
0.950088 0.311983i \(-0.100993\pi\)
\(608\) 2.59272 4.49072i 0.105149 0.182123i
\(609\) 0 0
\(610\) 4.73103 + 8.19438i 0.191554 + 0.331781i
\(611\) −9.19730 −0.372083
\(612\) 0 0
\(613\) 12.6282 0.510047 0.255024 0.966935i \(-0.417917\pi\)
0.255024 + 0.966935i \(0.417917\pi\)
\(614\) −0.621035 1.07566i −0.0250629 0.0434103i
\(615\) 0 0
\(616\) 9.94979 17.2335i 0.400888 0.694359i
\(617\) 5.16646 8.94857i 0.207994 0.360256i −0.743089 0.669193i \(-0.766640\pi\)
0.951082 + 0.308937i \(0.0999733\pi\)
\(618\) 0 0
\(619\) 18.3253 + 31.7403i 0.736554 + 1.27575i 0.954038 + 0.299685i \(0.0968817\pi\)
−0.217484 + 0.976064i \(0.569785\pi\)
\(620\) −5.92360 −0.237898
\(621\) 0 0
\(622\) 2.04042 0.0818133
\(623\) −13.0369 22.5805i −0.522311 0.904669i
\(624\) 0 0
\(625\) −0.845270 + 1.46405i −0.0338108 + 0.0585620i
\(626\) 0.863057 1.49486i 0.0344947 0.0597466i
\(627\) 0 0
\(628\) −3.37126 5.83920i −0.134528 0.233009i
\(629\) 7.29561 0.290895
\(630\) 0 0
\(631\) 5.45904 0.217321 0.108660 0.994079i \(-0.465344\pi\)
0.108660 + 0.994079i \(0.465344\pi\)
\(632\) −11.2750 19.5288i −0.448495 0.776816i
\(633\) 0 0
\(634\) 6.21626 10.7669i 0.246879 0.427607i
\(635\) −0.316198 + 0.547672i −0.0125480 + 0.0217337i
\(636\) 0 0
\(637\) 1.39622 + 2.41832i 0.0553201 + 0.0958173i
\(638\) 11.0183 0.436217
\(639\) 0 0
\(640\) −15.0528 −0.595012
\(641\) 3.31269 + 5.73775i 0.130844 + 0.226628i 0.924002 0.382388i \(-0.124898\pi\)
−0.793158 + 0.609015i \(0.791565\pi\)
\(642\) 0 0
\(643\) −15.7291 + 27.2436i −0.620294 + 1.07438i 0.369137 + 0.929375i \(0.379653\pi\)
−0.989431 + 0.145006i \(0.953680\pi\)
\(644\) −14.7425 + 25.5348i −0.580937 + 1.00621i
\(645\) 0 0
\(646\) 0.234353 + 0.405912i 0.00922051 + 0.0159704i
\(647\) −20.2079 −0.794456 −0.397228 0.917720i \(-0.630028\pi\)
−0.397228 + 0.917720i \(0.630028\pi\)
\(648\) 0 0
\(649\) 24.1772 0.949038
\(650\) −0.803520 1.39174i −0.0315166 0.0545884i
\(651\) 0 0
\(652\) 4.59710 7.96241i 0.180036 0.311832i
\(653\) −1.29686 + 2.24622i −0.0507500 + 0.0879015i −0.890284 0.455405i \(-0.849494\pi\)
0.839534 + 0.543306i \(0.182828\pi\)
\(654\) 0 0
\(655\) 5.84558 + 10.1248i 0.228406 + 0.395610i
\(656\) 14.0917 0.550187
\(657\) 0 0
\(658\) 14.2781 0.556617
\(659\) −7.95387 13.7765i −0.309839 0.536657i 0.668488 0.743723i \(-0.266942\pi\)
−0.978327 + 0.207066i \(0.933608\pi\)
\(660\) 0 0
\(661\) −18.5869 + 32.1934i −0.722945 + 1.25218i 0.236869 + 0.971542i \(0.423879\pi\)
−0.959814 + 0.280636i \(0.909455\pi\)
\(662\) −0.0670189 + 0.116080i −0.00260476 + 0.00451158i
\(663\) 0 0
\(664\) −10.2459 17.7464i −0.397618 0.688694i
\(665\) −4.30066 −0.166772
\(666\) 0 0
\(667\) −34.9422 −1.35297
\(668\) −15.5954 27.0120i −0.603403 1.04512i
\(669\) 0 0
\(670\) 3.07874 5.33253i 0.118942 0.206014i
\(671\) 24.5421 42.5082i 0.947439 1.64101i
\(672\) 0 0
\(673\) 20.1992 + 34.9860i 0.778621 + 1.34861i 0.932737 + 0.360558i \(0.117414\pi\)
−0.154116 + 0.988053i \(0.549253\pi\)
\(674\) −12.2348 −0.471265
\(675\) 0 0
\(676\) −1.75389 −0.0674573
\(677\) −0.401269 0.695018i −0.0154220 0.0267117i 0.858211 0.513296i \(-0.171576\pi\)
−0.873633 + 0.486585i \(0.838243\pi\)
\(678\) 0 0
\(679\) −21.9550 + 38.0272i −0.842556 + 1.45935i
\(680\) 1.12701 1.95204i 0.0432189 0.0748573i
\(681\) 0 0
\(682\) −2.15595 3.73421i −0.0825555 0.142990i
\(683\) 50.3853 1.92794 0.963971 0.266008i \(-0.0857049\pi\)
0.963971 + 0.266008i \(0.0857049\pi\)
\(684\) 0 0
\(685\) 13.5305 0.516974
\(686\) 3.26596 + 5.65680i 0.124695 + 0.215978i
\(687\) 0 0
\(688\) −5.69671 + 9.86698i −0.217185 + 0.376175i
\(689\) 6.09389 10.5549i 0.232159 0.402111i
\(690\) 0 0
\(691\) 8.72144 + 15.1060i 0.331779 + 0.574658i 0.982861 0.184349i \(-0.0590178\pi\)
−0.651082 + 0.759008i \(0.725684\pi\)
\(692\) 2.77257 0.105397
\(693\) 0 0
\(694\) 12.9704 0.492350
\(695\) 7.11584 + 12.3250i 0.269919 + 0.467514i
\(696\) 0 0
\(697\) −2.48734 + 4.30819i −0.0942146 + 0.163184i
\(698\) 4.94672 8.56797i 0.187236 0.324302i
\(699\) 0 0
\(700\) −8.88956 15.3972i −0.335994 0.581959i
\(701\) 29.9544 1.13136 0.565680 0.824625i \(-0.308614\pi\)
0.565680 + 0.824625i \(0.308614\pi\)
\(702\) 0 0
\(703\) −8.28397 −0.312436
\(704\) 4.58282 + 7.93768i 0.172722 + 0.299163i
\(705\) 0 0
\(706\) 4.25486 7.36964i 0.160134 0.277360i
\(707\) 18.5219 32.0809i 0.696588 1.20652i
\(708\) 0 0
\(709\) −1.71866 2.97681i −0.0645458 0.111797i 0.831947 0.554856i \(-0.187227\pi\)
−0.896492 + 0.443059i \(0.853893\pi\)
\(710\) 7.94320 0.298103
\(711\) 0 0
\(712\) −15.5168 −0.581518
\(713\) 6.83715 + 11.8423i 0.256053 + 0.443497i
\(714\) 0 0
\(715\) 2.26545 3.92388i 0.0847231 0.146745i
\(716\) −13.3533 + 23.1285i −0.499035 + 0.864354i
\(717\) 0 0
\(718\) 0.783643 + 1.35731i 0.0292453 + 0.0506543i
\(719\) 34.0368 1.26936 0.634680 0.772775i \(-0.281132\pi\)
0.634680 + 0.772775i \(0.281132\pi\)
\(720\) 0 0
\(721\) 25.6785 0.956319
\(722\) 4.44679 + 7.70207i 0.165492 + 0.286641i
\(723\) 0 0
\(724\) −20.1457 + 34.8934i −0.748710 + 1.29680i
\(725\) 10.5349 18.2469i 0.391255 0.677673i
\(726\) 0 0
\(727\) 18.5696 + 32.1635i 0.688708 + 1.19288i 0.972256 + 0.233919i \(0.0751551\pi\)
−0.283548 + 0.958958i \(0.591512\pi\)
\(728\) 5.82762 0.215986
\(729\) 0 0
\(730\) −3.44118 −0.127364
\(731\) −2.01106 3.48326i −0.0743819 0.128833i
\(732\) 0 0
\(733\) −13.6999 + 23.7290i −0.506018 + 0.876449i 0.493958 + 0.869486i \(0.335550\pi\)
−0.999976 + 0.00696311i \(0.997784\pi\)
\(734\) −1.00197 + 1.73546i −0.0369833 + 0.0640569i
\(735\) 0 0
\(736\) 13.4478 + 23.2923i 0.495693 + 0.858566i
\(737\) −31.9418 −1.17659
\(738\) 0 0
\(739\) −22.9544 −0.844390 −0.422195 0.906505i \(-0.638740\pi\)
−0.422195 + 0.906505i \(0.638740\pi\)
\(740\) 9.30649 + 16.1193i 0.342113 + 0.592558i
\(741\) 0 0
\(742\) −9.46028 + 16.3857i −0.347298 + 0.601537i
\(743\) −8.88960 + 15.3972i −0.326128 + 0.564870i −0.981740 0.190228i \(-0.939077\pi\)
0.655612 + 0.755098i \(0.272411\pi\)
\(744\) 0 0
\(745\) −10.0419 17.3931i −0.367907 0.637234i
\(746\) 5.87646 0.215153
\(747\) 0 0
\(748\) −5.46306 −0.199749
\(749\) 0.245040 + 0.424421i 0.00895355 + 0.0155080i
\(750\) 0 0
\(751\) −13.9878 + 24.2276i −0.510424 + 0.884079i 0.489504 + 0.872001i \(0.337178\pi\)
−0.999927 + 0.0120781i \(0.996155\pi\)
\(752\) −11.8825 + 20.5811i −0.433311 + 0.750516i
\(753\) 0 0
\(754\) 1.61335 + 2.79441i 0.0587549 + 0.101766i
\(755\) 16.1744 0.588648
\(756\) 0 0
\(757\) 25.6113 0.930860 0.465430 0.885085i \(-0.345900\pi\)
0.465430 + 0.885085i \(0.345900\pi\)
\(758\) −0.175117 0.303312i −0.00636054 0.0110168i
\(759\) 0 0
\(760\) −1.27969 + 2.21649i −0.0464192 + 0.0804005i
\(761\) 2.44851 4.24094i 0.0887583 0.153734i −0.818228 0.574894i \(-0.805043\pi\)
0.906987 + 0.421160i \(0.138377\pi\)
\(762\) 0 0
\(763\) 11.7781 + 20.4003i 0.426396 + 0.738539i
\(764\) −12.4056 −0.448819
\(765\) 0 0
\(766\) −12.3073 −0.444681
\(767\) 3.54016 + 6.13174i 0.127828 + 0.221404i
\(768\) 0 0
\(769\) 10.0123 17.3418i 0.361053 0.625362i −0.627081 0.778954i \(-0.715751\pi\)
0.988134 + 0.153592i \(0.0490840\pi\)
\(770\) −3.51693 + 6.09151i −0.126742 + 0.219523i
\(771\) 0 0
\(772\) 7.02664 + 12.1705i 0.252894 + 0.438026i
\(773\) 0.827218 0.0297530 0.0148765 0.999889i \(-0.495264\pi\)
0.0148765 + 0.999889i \(0.495264\pi\)
\(774\) 0 0
\(775\) −8.24544 −0.296185
\(776\) 13.0657 + 22.6305i 0.469033 + 0.812388i
\(777\) 0 0
\(778\) 2.57345 4.45734i 0.0922626 0.159804i
\(779\) 2.82430 4.89184i 0.101191 0.175268i
\(780\) 0 0
\(781\) −20.6026 35.6848i −0.737219 1.27690i
\(782\) −2.43107 −0.0869350
\(783\) 0 0
\(784\) 7.21541 0.257693
\(785\) 2.55048 + 4.41756i 0.0910306 + 0.157670i
\(786\) 0 0
\(787\) 2.10102 3.63908i 0.0748934 0.129719i −0.826147 0.563455i \(-0.809472\pi\)
0.901040 + 0.433736i \(0.142805\pi\)
\(788\) −9.03135 + 15.6428i −0.321728 + 0.557250i
\(789\) 0 0
\(790\) 3.98535 + 6.90283i 0.141792 + 0.245592i
\(791\) −53.4277 −1.89967
\(792\) 0 0
\(793\) 14.3744 0.510450
\(794\) −4.86002 8.41779i −0.172476 0.298736i
\(795\) 0 0
\(796\) −4.88410 + 8.45951i −0.173112 + 0.299840i
\(797\) −6.74376 + 11.6805i −0.238876 + 0.413746i −0.960392 0.278652i \(-0.910112\pi\)
0.721516 + 0.692398i \(0.243446\pi\)
\(798\) 0 0
\(799\) −4.19479 7.26560i −0.148401 0.257038i
\(800\) −16.2178 −0.573384
\(801\) 0 0
\(802\) −11.0672 −0.390797
\(803\) 8.92553 + 15.4595i 0.314975 + 0.545553i
\(804\) 0 0
\(805\) 11.1533 19.3180i 0.393101 0.680870i
\(806\) 0.631372 1.09357i 0.0222391 0.0385193i
\(807\) 0 0
\(808\) −11.0226 19.0918i −0.387775 0.671646i
\(809\) −3.02951 −0.106512 −0.0532559 0.998581i \(-0.516960\pi\)
−0.0532559 + 0.998581i \(0.516960\pi\)
\(810\) 0 0
\(811\) −31.9363 −1.12143 −0.560717 0.828008i \(-0.689474\pi\)
−0.560717 + 0.828008i \(0.689474\pi\)
\(812\) 17.8490 + 30.9154i 0.626377 + 1.08492i
\(813\) 0 0
\(814\) −6.77436 + 11.7335i −0.237441 + 0.411260i
\(815\) −3.47787 + 6.02385i −0.121825 + 0.211006i
\(816\) 0 0
\(817\) 2.28351 + 3.95515i 0.0798899 + 0.138373i
\(818\) −1.73613 −0.0607023
\(819\) 0 0
\(820\) −12.6917 −0.443213
\(821\) 11.9354 + 20.6727i 0.416548 + 0.721483i 0.995590 0.0938153i \(-0.0299063\pi\)
−0.579041 + 0.815298i \(0.696573\pi\)
\(822\) 0 0
\(823\) 9.40358 16.2875i 0.327788 0.567746i −0.654285 0.756248i \(-0.727030\pi\)
0.982073 + 0.188503i \(0.0603635\pi\)
\(824\) 7.64083 13.2343i 0.266181 0.461039i
\(825\) 0 0
\(826\) −5.49582 9.51903i −0.191224 0.331209i
\(827\) 53.8381 1.87213 0.936067 0.351822i \(-0.114438\pi\)
0.936067 + 0.351822i \(0.114438\pi\)
\(828\) 0 0
\(829\) 31.1172 1.08074 0.540372 0.841426i \(-0.318283\pi\)
0.540372 + 0.841426i \(0.318283\pi\)
\(830\) 3.62160 + 6.27279i 0.125707 + 0.217732i
\(831\) 0 0
\(832\) −1.34209 + 2.32456i −0.0465284 + 0.0805896i
\(833\) −1.27360 + 2.20594i −0.0441276 + 0.0764313i
\(834\) 0 0
\(835\) 11.7985 + 20.4355i 0.408303 + 0.707201i
\(836\) 6.20315 0.214541
\(837\) 0 0
\(838\) 10.5418 0.364159
\(839\) 26.0416 + 45.1054i 0.899056 + 1.55721i 0.828704 + 0.559688i \(0.189079\pi\)
0.0703519 + 0.997522i \(0.477588\pi\)
\(840\) 0 0
\(841\) −6.65250 + 11.5225i −0.229397 + 0.397327i
\(842\) −0.552629 + 0.957181i −0.0190448 + 0.0329866i
\(843\) 0 0
\(844\) −8.27089 14.3256i −0.284696 0.493108i
\(845\) 1.32688 0.0456461
\(846\) 0 0
\(847\) 2.06593 0.0709863
\(848\) −15.7461 27.2730i −0.540723 0.936560i
\(849\) 0 0
\(850\) 0.732954 1.26951i 0.0251401 0.0435440i
\(851\) 21.4835 37.2105i 0.736445 1.27556i
\(852\) 0 0
\(853\) 25.9591 + 44.9625i 0.888823 + 1.53949i 0.841268 + 0.540618i \(0.181810\pi\)
0.0475550 + 0.998869i \(0.484857\pi\)
\(854\) −22.3151 −0.763607
\(855\) 0 0
\(856\) 0.291653 0.00996849
\(857\) −14.4637 25.0518i −0.494069 0.855753i 0.505908 0.862588i \(-0.331158\pi\)
−0.999977 + 0.00683492i \(0.997824\pi\)
\(858\) 0 0
\(859\) 3.13587 5.43148i 0.106994 0.185320i −0.807557 0.589790i \(-0.799211\pi\)
0.914551 + 0.404470i \(0.132544\pi\)
\(860\) 5.13075 8.88671i 0.174957 0.303034i
\(861\) 0 0
\(862\) 2.55596 + 4.42706i 0.0870565 + 0.150786i
\(863\) −5.95115 −0.202580 −0.101290 0.994857i \(-0.532297\pi\)
−0.101290 + 0.994857i \(0.532297\pi\)
\(864\) 0 0
\(865\) −2.09755 −0.0713189
\(866\) 2.49330 + 4.31853i 0.0847259 + 0.146750i
\(867\) 0 0
\(868\) 6.98504 12.0985i 0.237088 0.410648i
\(869\) 20.6739 35.8083i 0.701316 1.21471i
\(870\) 0 0
\(871\) −4.67710 8.10098i −0.158478 0.274491i
\(872\) 14.0186 0.474730
\(873\) 0 0
\(874\) 2.76042 0.0933726
\(875\) 17.1058 + 29.6280i 0.578280 + 1.00161i
\(876\) 0 0
\(877\) 27.2757 47.2430i 0.921036 1.59528i 0.123222 0.992379i \(-0.460677\pi\)
0.797815 0.602903i \(-0.205989\pi\)
\(878\) −3.90398 + 6.76189i −0.131753 + 0.228203i
\(879\) 0 0
\(880\) −5.85374 10.1390i −0.197329 0.341785i
\(881\) −34.6855 −1.16858 −0.584292 0.811543i \(-0.698628\pi\)
−0.584292 + 0.811543i \(0.698628\pi\)
\(882\) 0 0
\(883\) 29.1891 0.982290 0.491145 0.871078i \(-0.336578\pi\)
0.491145 + 0.871078i \(0.336578\pi\)
\(884\) −0.799931 1.38552i −0.0269046 0.0466001i
\(885\) 0 0
\(886\) −2.37114 + 4.10694i −0.0796600 + 0.137975i
\(887\) 1.20709 2.09074i 0.0405300 0.0702001i −0.845049 0.534689i \(-0.820429\pi\)
0.885579 + 0.464489i \(0.153762\pi\)
\(888\) 0 0
\(889\) −0.745715 1.29162i −0.0250105 0.0433194i
\(890\) 5.48471 0.183848
\(891\) 0 0
\(892\) 32.6670 1.09377
\(893\) 4.76308 + 8.24989i 0.159390 + 0.276072i
\(894\) 0 0
\(895\) 10.1022 17.4976i 0.337680 0.584879i
\(896\) 17.7500 30.7440i 0.592987 1.02708i
\(897\) 0 0
\(898\) −3.89837 6.75218i −0.130090 0.225323i
\(899\) 16.5557 0.552163
\(900\) 0 0
\(901\) 11.1174 0.370376
\(902\) −4.61925 8.00077i −0.153804 0.266397i
\(903\) 0 0
\(904\) −15.8978 + 27.5358i −0.528752 + 0.915826i
\(905\) 15.2410 26.3981i 0.506627 0.877503i
\(906\) 0 0
\(907\) −23.2215 40.2207i −0.771056 1.33551i −0.936985 0.349370i \(-0.886396\pi\)
0.165929 0.986138i \(-0.446938\pi\)
\(908\) −24.7315 −0.820742
\(909\) 0 0
\(910\) −2.05988 −0.0682843
\(911\) 0.0724799 + 0.125539i 0.00240137 + 0.00415929i 0.867224 0.497919i \(-0.165902\pi\)
−0.864822 + 0.502078i \(0.832569\pi\)
\(912\) 0 0
\(913\) 18.7870 32.5400i 0.621758 1.07692i
\(914\) −8.16176 + 14.1366i −0.269967 + 0.467597i
\(915\) 0 0
\(916\) 1.79835 + 3.11483i 0.0594191 + 0.102917i
\(917\) −27.5722 −0.910513
\(918\) 0 0
\(919\) −37.8928 −1.24997 −0.624983 0.780638i \(-0.714894\pi\)
−0.624983 + 0.780638i \(0.714894\pi\)
\(920\) −6.63746 11.4964i −0.218831 0.379026i
\(921\) 0 0
\(922\) 3.16935 5.48947i 0.104377 0.180786i
\(923\) 6.03350 10.4503i 0.198595 0.343977i
\(924\) 0 0
\(925\) 12.9543 + 22.4375i 0.425935 + 0.737740i
\(926\) −2.61673 −0.0859910
\(927\) 0 0
\(928\) 32.5630 1.06893
\(929\) −25.5801 44.3061i −0.839257 1.45364i −0.890517 0.454950i \(-0.849657\pi\)
0.0512606 0.998685i \(-0.483676\pi\)
\(930\) 0 0
\(931\) 1.44614 2.50479i 0.0473953 0.0820910i
\(932\) −7.02847 + 12.1737i −0.230225 + 0.398762i
\(933\) 0 0
\(934\) −4.60964 7.98413i −0.150832 0.261249i
\(935\) 4.13300 0.135164
\(936\) 0 0
\(937\) −33.4925 −1.09415 −0.547076 0.837083i \(-0.684259\pi\)
−0.547076 + 0.837083i \(0.684259\pi\)
\(938\) 7.26083 + 12.5761i 0.237074 + 0.410625i
\(939\) 0 0
\(940\) 10.7020 18.5364i 0.349061 0.604591i
\(941\) −8.43377 + 14.6077i −0.274933 + 0.476198i −0.970118 0.242633i \(-0.921989\pi\)
0.695185 + 0.718831i \(0.255322\pi\)
\(942\) 0 0
\(943\) 14.6490 + 25.3728i 0.477038 + 0.826253i
\(944\) 18.2949 0.595450
\(945\) 0 0
\(946\) 7.46952 0.242855
\(947\) 8.00694 + 13.8684i 0.260191 + 0.450663i 0.966292 0.257447i \(-0.0828812\pi\)
−0.706102 + 0.708110i \(0.749548\pi\)
\(948\) 0 0
\(949\) −2.61385 + 4.52733i −0.0848493 + 0.146963i
\(950\) −0.832250 + 1.44150i −0.0270017 + 0.0467684i
\(951\) 0 0
\(952\) 2.65791 + 4.60364i 0.0861435 + 0.149205i
\(953\) −35.3365 −1.14466 −0.572331 0.820023i \(-0.693961\pi\)
−0.572331 + 0.820023i \(0.693961\pi\)
\(954\) 0 0
\(955\) 9.38528 0.303701
\(956\) 3.06512 + 5.30894i 0.0991329 + 0.171703i
\(957\) 0 0
\(958\) −0.268475 + 0.465013i −0.00867404 + 0.0150239i
\(959\) −15.9550 + 27.6349i −0.515214 + 0.892376i
\(960\) 0 0
\(961\) 12.2605 + 21.2359i 0.395501 + 0.685028i
\(962\) −3.96776 −0.127926
\(963\) 0 0
\(964\) −12.5014 −0.402644
\(965\) −5.31591 9.20742i −0.171125 0.296397i
\(966\) 0 0
\(967\) −26.6690 + 46.1920i −0.857616 + 1.48543i 0.0165803 + 0.999863i \(0.494722\pi\)
−0.874196 + 0.485572i \(0.838611\pi\)
\(968\) 0.614733 1.06475i 0.0197583 0.0342223i
\(969\) 0 0
\(970\) −4.61833 7.99917i −0.148286 0.256838i
\(971\) −50.1657 −1.60989 −0.804946 0.593348i \(-0.797806\pi\)
−0.804946 + 0.593348i \(0.797806\pi\)
\(972\) 0 0
\(973\) −33.5637 −1.07600
\(974\) −4.32139 7.48487i −0.138466 0.239831i
\(975\) 0 0
\(976\) 18.5711 32.1661i 0.594446 1.02961i
\(977\) −11.4716 + 19.8694i −0.367008 + 0.635677i −0.989096 0.147270i \(-0.952951\pi\)
0.622088 + 0.782947i \(0.286285\pi\)
\(978\) 0 0
\(979\) −14.2259 24.6400i −0.454663 0.787499i
\(980\) −6.49857 −0.207589
\(981\) 0 0
\(982\) 8.33919 0.266114
\(983\) −0.129157 0.223706i −0.00411946 0.00713511i 0.863958 0.503563i \(-0.167978\pi\)
−0.868078 + 0.496428i \(0.834645\pi\)
\(984\) 0 0
\(985\) 6.83254 11.8343i 0.217703 0.377072i
\(986\) −1.47167 + 2.54900i −0.0468675 + 0.0811768i
\(987\) 0 0
\(988\) 0.908301 + 1.57322i 0.0288969 + 0.0500509i
\(989\) −23.6881 −0.753237
\(990\) 0 0
\(991\) −23.1558 −0.735568 −0.367784 0.929911i \(-0.619883\pi\)
−0.367784 + 0.929911i \(0.619883\pi\)
\(992\) −6.37161 11.0360i −0.202299 0.350392i
\(993\) 0 0
\(994\) −9.36653 + 16.2233i −0.297088 + 0.514572i
\(995\) 3.69500 6.39993i 0.117139 0.202891i
\(996\) 0 0
\(997\) −20.8933 36.1882i −0.661697 1.14609i −0.980170 0.198160i \(-0.936503\pi\)
0.318473 0.947932i \(-0.396830\pi\)
\(998\) −10.3605 −0.327954
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.e.c.118.3 12
3.2 odd 2 117.2.e.c.40.4 12
9.2 odd 6 117.2.e.c.79.4 yes 12
9.4 even 3 1053.2.a.m.1.4 6
9.5 odd 6 1053.2.a.l.1.3 6
9.7 even 3 inner 351.2.e.c.235.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.c.40.4 12 3.2 odd 2
117.2.e.c.79.4 yes 12 9.2 odd 6
351.2.e.c.118.3 12 1.1 even 1 trivial
351.2.e.c.235.3 12 9.7 even 3 inner
1053.2.a.l.1.3 6 9.5 odd 6
1053.2.a.m.1.4 6 9.4 even 3