Properties

Label 1053.2.a.k.1.4
Level $1053$
Weight $2$
Character 1053.1
Self dual yes
Analytic conductor $8.408$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1053,2,Mod(1,1053)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1053, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1053.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1053 = 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1053.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,2,0,4,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.40824733284\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.403137.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 6x^{2} + 6x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 117)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(1.50814\) of defining polynomial
Character \(\chi\) \(=\) 1053.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.50814 q^{2} +0.274488 q^{4} -2.64315 q^{5} +0.343091 q^{7} -2.60231 q^{8} -3.98624 q^{10} +5.88760 q^{11} +1.00000 q^{13} +0.517430 q^{14} -4.47363 q^{16} +7.72803 q^{17} +1.60678 q^{19} -0.725512 q^{20} +8.87933 q^{22} +5.23365 q^{23} +1.98624 q^{25} +1.50814 q^{26} +0.0941744 q^{28} -0.409497 q^{29} -2.62837 q^{31} -1.54224 q^{32} +11.6550 q^{34} -0.906842 q^{35} +5.94321 q^{37} +2.42326 q^{38} +6.87831 q^{40} +6.61311 q^{41} +1.31085 q^{43} +1.61607 q^{44} +7.89308 q^{46} -3.60086 q^{47} -6.88229 q^{49} +2.99553 q^{50} +0.274488 q^{52} -3.87831 q^{53} -15.5618 q^{55} -0.892832 q^{56} -0.617579 q^{58} +0.452530 q^{59} +3.74029 q^{61} -3.96396 q^{62} +6.62136 q^{64} -2.64315 q^{65} -2.80970 q^{67} +2.12125 q^{68} -1.36765 q^{70} +16.5889 q^{71} -5.15974 q^{73} +8.96319 q^{74} +0.441042 q^{76} +2.01998 q^{77} -9.29811 q^{79} +11.8245 q^{80} +9.97350 q^{82} -1.13904 q^{83} -20.4264 q^{85} +1.97695 q^{86} -15.3214 q^{88} -9.01137 q^{89} +0.343091 q^{91} +1.43657 q^{92} -5.43060 q^{94} -4.24697 q^{95} +4.32267 q^{97} -10.3795 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q + 2 q^{2} + 4 q^{4} + q^{5} - 2 q^{7} + 12 q^{8} - 2 q^{10} + 11 q^{11} + 5 q^{13} - 5 q^{14} + 10 q^{16} + 7 q^{17} + 3 q^{19} - q^{20} - 7 q^{22} + 18 q^{23} - 8 q^{25} + 2 q^{26} - 19 q^{28} + 4 q^{29}+ \cdots - 39 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.50814 1.06642 0.533208 0.845984i \(-0.320986\pi\)
0.533208 + 0.845984i \(0.320986\pi\)
\(3\) 0 0
\(4\) 0.274488 0.137244
\(5\) −2.64315 −1.18205 −0.591026 0.806652i \(-0.701277\pi\)
−0.591026 + 0.806652i \(0.701277\pi\)
\(6\) 0 0
\(7\) 0.343091 0.129676 0.0648382 0.997896i \(-0.479347\pi\)
0.0648382 + 0.997896i \(0.479347\pi\)
\(8\) −2.60231 −0.920057
\(9\) 0 0
\(10\) −3.98624 −1.26056
\(11\) 5.88760 1.77518 0.887589 0.460637i \(-0.152379\pi\)
0.887589 + 0.460637i \(0.152379\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0.517430 0.138289
\(15\) 0 0
\(16\) −4.47363 −1.11841
\(17\) 7.72803 1.87432 0.937162 0.348895i \(-0.113443\pi\)
0.937162 + 0.348895i \(0.113443\pi\)
\(18\) 0 0
\(19\) 1.60678 0.368621 0.184311 0.982868i \(-0.440995\pi\)
0.184311 + 0.982868i \(0.440995\pi\)
\(20\) −0.725512 −0.162229
\(21\) 0 0
\(22\) 8.87933 1.89308
\(23\) 5.23365 1.09129 0.545646 0.838016i \(-0.316284\pi\)
0.545646 + 0.838016i \(0.316284\pi\)
\(24\) 0 0
\(25\) 1.98624 0.397248
\(26\) 1.50814 0.295771
\(27\) 0 0
\(28\) 0.0941744 0.0177973
\(29\) −0.409497 −0.0760417 −0.0380209 0.999277i \(-0.512105\pi\)
−0.0380209 + 0.999277i \(0.512105\pi\)
\(30\) 0 0
\(31\) −2.62837 −0.472070 −0.236035 0.971745i \(-0.575848\pi\)
−0.236035 + 0.971745i \(0.575848\pi\)
\(32\) −1.54224 −0.272631
\(33\) 0 0
\(34\) 11.6550 1.99881
\(35\) −0.906842 −0.153284
\(36\) 0 0
\(37\) 5.94321 0.977057 0.488529 0.872548i \(-0.337534\pi\)
0.488529 + 0.872548i \(0.337534\pi\)
\(38\) 2.42326 0.393104
\(39\) 0 0
\(40\) 6.87831 1.08756
\(41\) 6.61311 1.03279 0.516397 0.856349i \(-0.327273\pi\)
0.516397 + 0.856349i \(0.327273\pi\)
\(42\) 0 0
\(43\) 1.31085 0.199903 0.0999517 0.994992i \(-0.468131\pi\)
0.0999517 + 0.994992i \(0.468131\pi\)
\(44\) 1.61607 0.243632
\(45\) 0 0
\(46\) 7.89308 1.16377
\(47\) −3.60086 −0.525239 −0.262620 0.964899i \(-0.584586\pi\)
−0.262620 + 0.964899i \(0.584586\pi\)
\(48\) 0 0
\(49\) −6.88229 −0.983184
\(50\) 2.99553 0.423632
\(51\) 0 0
\(52\) 0.274488 0.0380646
\(53\) −3.87831 −0.532727 −0.266363 0.963873i \(-0.585822\pi\)
−0.266363 + 0.963873i \(0.585822\pi\)
\(54\) 0 0
\(55\) −15.5618 −2.09835
\(56\) −0.892832 −0.119310
\(57\) 0 0
\(58\) −0.617579 −0.0810921
\(59\) 0.452530 0.0589144 0.0294572 0.999566i \(-0.490622\pi\)
0.0294572 + 0.999566i \(0.490622\pi\)
\(60\) 0 0
\(61\) 3.74029 0.478895 0.239447 0.970909i \(-0.423034\pi\)
0.239447 + 0.970909i \(0.423034\pi\)
\(62\) −3.96396 −0.503423
\(63\) 0 0
\(64\) 6.62136 0.827669
\(65\) −2.64315 −0.327842
\(66\) 0 0
\(67\) −2.80970 −0.343260 −0.171630 0.985161i \(-0.554903\pi\)
−0.171630 + 0.985161i \(0.554903\pi\)
\(68\) 2.12125 0.257239
\(69\) 0 0
\(70\) −1.36765 −0.163465
\(71\) 16.5889 1.96874 0.984369 0.176119i \(-0.0563542\pi\)
0.984369 + 0.176119i \(0.0563542\pi\)
\(72\) 0 0
\(73\) −5.15974 −0.603902 −0.301951 0.953323i \(-0.597638\pi\)
−0.301951 + 0.953323i \(0.597638\pi\)
\(74\) 8.96319 1.04195
\(75\) 0 0
\(76\) 0.441042 0.0505910
\(77\) 2.01998 0.230199
\(78\) 0 0
\(79\) −9.29811 −1.04612 −0.523060 0.852296i \(-0.675210\pi\)
−0.523060 + 0.852296i \(0.675210\pi\)
\(80\) 11.8245 1.32202
\(81\) 0 0
\(82\) 9.97350 1.10139
\(83\) −1.13904 −0.125026 −0.0625128 0.998044i \(-0.519911\pi\)
−0.0625128 + 0.998044i \(0.519911\pi\)
\(84\) 0 0
\(85\) −20.4264 −2.21555
\(86\) 1.97695 0.213180
\(87\) 0 0
\(88\) −15.3214 −1.63327
\(89\) −9.01137 −0.955203 −0.477602 0.878576i \(-0.658494\pi\)
−0.477602 + 0.878576i \(0.658494\pi\)
\(90\) 0 0
\(91\) 0.343091 0.0359658
\(92\) 1.43657 0.149773
\(93\) 0 0
\(94\) −5.43060 −0.560124
\(95\) −4.24697 −0.435730
\(96\) 0 0
\(97\) 4.32267 0.438900 0.219450 0.975624i \(-0.429574\pi\)
0.219450 + 0.975624i \(0.429574\pi\)
\(98\) −10.3795 −1.04848
\(99\) 0 0
\(100\) 0.545199 0.0545199
\(101\) 6.63159 0.659868 0.329934 0.944004i \(-0.392974\pi\)
0.329934 + 0.944004i \(0.392974\pi\)
\(102\) 0 0
\(103\) −14.2302 −1.40215 −0.701074 0.713088i \(-0.747296\pi\)
−0.701074 + 0.713088i \(0.747296\pi\)
\(104\) −2.60231 −0.255178
\(105\) 0 0
\(106\) −5.84903 −0.568108
\(107\) −0.957659 −0.0925804 −0.0462902 0.998928i \(-0.514740\pi\)
−0.0462902 + 0.998928i \(0.514740\pi\)
\(108\) 0 0
\(109\) 5.77436 0.553083 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(110\) −23.4694 −2.23772
\(111\) 0 0
\(112\) −1.53487 −0.145031
\(113\) 11.8771 1.11731 0.558653 0.829401i \(-0.311318\pi\)
0.558653 + 0.829401i \(0.311318\pi\)
\(114\) 0 0
\(115\) −13.8333 −1.28996
\(116\) −0.112402 −0.0104363
\(117\) 0 0
\(118\) 0.682479 0.0628273
\(119\) 2.65142 0.243056
\(120\) 0 0
\(121\) 23.6638 2.15126
\(122\) 5.64088 0.510701
\(123\) 0 0
\(124\) −0.721457 −0.0647887
\(125\) 7.96582 0.712484
\(126\) 0 0
\(127\) −11.9783 −1.06290 −0.531451 0.847089i \(-0.678353\pi\)
−0.531451 + 0.847089i \(0.678353\pi\)
\(128\) 13.0704 1.15527
\(129\) 0 0
\(130\) −3.98624 −0.349616
\(131\) −12.0381 −1.05178 −0.525888 0.850554i \(-0.676267\pi\)
−0.525888 + 0.850554i \(0.676267\pi\)
\(132\) 0 0
\(133\) 0.551274 0.0478015
\(134\) −4.23743 −0.366058
\(135\) 0 0
\(136\) −20.1108 −1.72449
\(137\) −0.0307320 −0.00262561 −0.00131280 0.999999i \(-0.500418\pi\)
−0.00131280 + 0.999999i \(0.500418\pi\)
\(138\) 0 0
\(139\) 11.2989 0.958356 0.479178 0.877718i \(-0.340935\pi\)
0.479178 + 0.877718i \(0.340935\pi\)
\(140\) −0.248917 −0.0210373
\(141\) 0 0
\(142\) 25.0184 2.09949
\(143\) 5.88760 0.492346
\(144\) 0 0
\(145\) 1.08236 0.0898853
\(146\) −7.78161 −0.644011
\(147\) 0 0
\(148\) 1.63134 0.134095
\(149\) −1.51879 −0.124424 −0.0622120 0.998063i \(-0.519815\pi\)
−0.0622120 + 0.998063i \(0.519815\pi\)
\(150\) 0 0
\(151\) −9.15198 −0.744778 −0.372389 0.928077i \(-0.621461\pi\)
−0.372389 + 0.928077i \(0.621461\pi\)
\(152\) −4.18136 −0.339153
\(153\) 0 0
\(154\) 3.04642 0.245488
\(155\) 6.94719 0.558012
\(156\) 0 0
\(157\) 2.02031 0.161238 0.0806191 0.996745i \(-0.474310\pi\)
0.0806191 + 0.996745i \(0.474310\pi\)
\(158\) −14.0229 −1.11560
\(159\) 0 0
\(160\) 4.07636 0.322265
\(161\) 1.79562 0.141515
\(162\) 0 0
\(163\) −13.4360 −1.05239 −0.526194 0.850365i \(-0.676381\pi\)
−0.526194 + 0.850365i \(0.676381\pi\)
\(164\) 1.81522 0.141745
\(165\) 0 0
\(166\) −1.71783 −0.133329
\(167\) 11.8367 0.915954 0.457977 0.888964i \(-0.348574\pi\)
0.457977 + 0.888964i \(0.348574\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) −30.8058 −2.36270
\(171\) 0 0
\(172\) 0.359813 0.0274355
\(173\) −18.5170 −1.40782 −0.703910 0.710289i \(-0.748564\pi\)
−0.703910 + 0.710289i \(0.748564\pi\)
\(174\) 0 0
\(175\) 0.681463 0.0515137
\(176\) −26.3389 −1.98537
\(177\) 0 0
\(178\) −13.5904 −1.01864
\(179\) 18.6972 1.39749 0.698745 0.715370i \(-0.253742\pi\)
0.698745 + 0.715370i \(0.253742\pi\)
\(180\) 0 0
\(181\) 5.93713 0.441304 0.220652 0.975353i \(-0.429182\pi\)
0.220652 + 0.975353i \(0.429182\pi\)
\(182\) 0.517430 0.0383545
\(183\) 0 0
\(184\) −13.6196 −1.00405
\(185\) −15.7088 −1.15493
\(186\) 0 0
\(187\) 45.4996 3.32726
\(188\) −0.988391 −0.0720858
\(189\) 0 0
\(190\) −6.40503 −0.464670
\(191\) −5.16424 −0.373671 −0.186835 0.982391i \(-0.559823\pi\)
−0.186835 + 0.982391i \(0.559823\pi\)
\(192\) 0 0
\(193\) 22.9193 1.64977 0.824883 0.565304i \(-0.191241\pi\)
0.824883 + 0.565304i \(0.191241\pi\)
\(194\) 6.51919 0.468050
\(195\) 0 0
\(196\) −1.88910 −0.134936
\(197\) −14.5085 −1.03369 −0.516843 0.856080i \(-0.672893\pi\)
−0.516843 + 0.856080i \(0.672893\pi\)
\(198\) 0 0
\(199\) −9.40273 −0.666542 −0.333271 0.942831i \(-0.608152\pi\)
−0.333271 + 0.942831i \(0.608152\pi\)
\(200\) −5.16883 −0.365491
\(201\) 0 0
\(202\) 10.0014 0.703694
\(203\) −0.140495 −0.00986082
\(204\) 0 0
\(205\) −17.4794 −1.22082
\(206\) −21.4612 −1.49527
\(207\) 0 0
\(208\) −4.47363 −0.310191
\(209\) 9.46010 0.654369
\(210\) 0 0
\(211\) 15.5659 1.07160 0.535801 0.844344i \(-0.320010\pi\)
0.535801 + 0.844344i \(0.320010\pi\)
\(212\) −1.06455 −0.0731135
\(213\) 0 0
\(214\) −1.44428 −0.0987293
\(215\) −3.46478 −0.236296
\(216\) 0 0
\(217\) −0.901773 −0.0612163
\(218\) 8.70854 0.589817
\(219\) 0 0
\(220\) −4.27152 −0.287986
\(221\) 7.72803 0.519844
\(222\) 0 0
\(223\) −3.84296 −0.257344 −0.128672 0.991687i \(-0.541071\pi\)
−0.128672 + 0.991687i \(0.541071\pi\)
\(224\) −0.529128 −0.0353538
\(225\) 0 0
\(226\) 17.9124 1.19151
\(227\) 24.0584 1.59681 0.798406 0.602120i \(-0.205677\pi\)
0.798406 + 0.602120i \(0.205677\pi\)
\(228\) 0 0
\(229\) −20.1459 −1.33128 −0.665641 0.746272i \(-0.731842\pi\)
−0.665641 + 0.746272i \(0.731842\pi\)
\(230\) −20.8626 −1.37564
\(231\) 0 0
\(232\) 1.06564 0.0699627
\(233\) 5.86085 0.383957 0.191978 0.981399i \(-0.438510\pi\)
0.191978 + 0.981399i \(0.438510\pi\)
\(234\) 0 0
\(235\) 9.51761 0.620860
\(236\) 0.124214 0.00808564
\(237\) 0 0
\(238\) 3.99872 0.259198
\(239\) 9.16945 0.593122 0.296561 0.955014i \(-0.404160\pi\)
0.296561 + 0.955014i \(0.404160\pi\)
\(240\) 0 0
\(241\) −24.3733 −1.57002 −0.785010 0.619483i \(-0.787342\pi\)
−0.785010 + 0.619483i \(0.787342\pi\)
\(242\) 35.6884 2.29413
\(243\) 0 0
\(244\) 1.02666 0.0657254
\(245\) 18.1909 1.16218
\(246\) 0 0
\(247\) 1.60678 0.102237
\(248\) 6.83986 0.434331
\(249\) 0 0
\(250\) 12.0136 0.759805
\(251\) −11.2925 −0.712775 −0.356387 0.934338i \(-0.615992\pi\)
−0.356387 + 0.934338i \(0.615992\pi\)
\(252\) 0 0
\(253\) 30.8136 1.93724
\(254\) −18.0649 −1.13350
\(255\) 0 0
\(256\) 6.46930 0.404331
\(257\) −24.6348 −1.53667 −0.768337 0.640045i \(-0.778916\pi\)
−0.768337 + 0.640045i \(0.778916\pi\)
\(258\) 0 0
\(259\) 2.03906 0.126701
\(260\) −0.725512 −0.0449944
\(261\) 0 0
\(262\) −18.1552 −1.12163
\(263\) −22.3752 −1.37971 −0.689856 0.723947i \(-0.742326\pi\)
−0.689856 + 0.723947i \(0.742326\pi\)
\(264\) 0 0
\(265\) 10.2510 0.629711
\(266\) 0.831398 0.0509763
\(267\) 0 0
\(268\) −0.771229 −0.0471103
\(269\) −24.7265 −1.50760 −0.753799 0.657105i \(-0.771781\pi\)
−0.753799 + 0.657105i \(0.771781\pi\)
\(270\) 0 0
\(271\) 10.1047 0.613817 0.306909 0.951739i \(-0.400705\pi\)
0.306909 + 0.951739i \(0.400705\pi\)
\(272\) −34.5724 −2.09626
\(273\) 0 0
\(274\) −0.0463481 −0.00279999
\(275\) 11.6942 0.705186
\(276\) 0 0
\(277\) 10.5940 0.636534 0.318267 0.948001i \(-0.396899\pi\)
0.318267 + 0.948001i \(0.396899\pi\)
\(278\) 17.0403 1.02201
\(279\) 0 0
\(280\) 2.35989 0.141030
\(281\) −21.2107 −1.26532 −0.632662 0.774428i \(-0.718038\pi\)
−0.632662 + 0.774428i \(0.718038\pi\)
\(282\) 0 0
\(283\) 0.210870 0.0125349 0.00626745 0.999980i \(-0.498005\pi\)
0.00626745 + 0.999980i \(0.498005\pi\)
\(284\) 4.55344 0.270197
\(285\) 0 0
\(286\) 8.87933 0.525045
\(287\) 2.26890 0.133929
\(288\) 0 0
\(289\) 42.7225 2.51309
\(290\) 1.63235 0.0958552
\(291\) 0 0
\(292\) −1.41629 −0.0828818
\(293\) 26.4926 1.54772 0.773858 0.633359i \(-0.218324\pi\)
0.773858 + 0.633359i \(0.218324\pi\)
\(294\) 0 0
\(295\) −1.19611 −0.0696399
\(296\) −15.4661 −0.898949
\(297\) 0 0
\(298\) −2.29054 −0.132688
\(299\) 5.23365 0.302670
\(300\) 0 0
\(301\) 0.449743 0.0259227
\(302\) −13.8025 −0.794243
\(303\) 0 0
\(304\) −7.18816 −0.412269
\(305\) −9.88614 −0.566079
\(306\) 0 0
\(307\) −6.00218 −0.342563 −0.171281 0.985222i \(-0.554791\pi\)
−0.171281 + 0.985222i \(0.554791\pi\)
\(308\) 0.554461 0.0315934
\(309\) 0 0
\(310\) 10.4773 0.595073
\(311\) −29.0153 −1.64530 −0.822652 0.568545i \(-0.807506\pi\)
−0.822652 + 0.568545i \(0.807506\pi\)
\(312\) 0 0
\(313\) −6.81984 −0.385480 −0.192740 0.981250i \(-0.561737\pi\)
−0.192740 + 0.981250i \(0.561737\pi\)
\(314\) 3.04691 0.171947
\(315\) 0 0
\(316\) −2.55222 −0.143573
\(317\) 17.2718 0.970081 0.485040 0.874492i \(-0.338805\pi\)
0.485040 + 0.874492i \(0.338805\pi\)
\(318\) 0 0
\(319\) −2.41095 −0.134988
\(320\) −17.5012 −0.978349
\(321\) 0 0
\(322\) 2.70805 0.150914
\(323\) 12.4173 0.690916
\(324\) 0 0
\(325\) 1.98624 0.110177
\(326\) −20.2634 −1.12228
\(327\) 0 0
\(328\) −17.2094 −0.950230
\(329\) −1.23542 −0.0681111
\(330\) 0 0
\(331\) 30.2097 1.66047 0.830237 0.557411i \(-0.188205\pi\)
0.830237 + 0.557411i \(0.188205\pi\)
\(332\) −0.312652 −0.0171590
\(333\) 0 0
\(334\) 17.8515 0.976788
\(335\) 7.42647 0.405751
\(336\) 0 0
\(337\) 9.40866 0.512522 0.256261 0.966608i \(-0.417509\pi\)
0.256261 + 0.966608i \(0.417509\pi\)
\(338\) 1.50814 0.0820320
\(339\) 0 0
\(340\) −5.60678 −0.304071
\(341\) −15.4748 −0.838008
\(342\) 0 0
\(343\) −4.76289 −0.257172
\(344\) −3.41125 −0.183923
\(345\) 0 0
\(346\) −27.9262 −1.50132
\(347\) 11.6833 0.627193 0.313597 0.949556i \(-0.398466\pi\)
0.313597 + 0.949556i \(0.398466\pi\)
\(348\) 0 0
\(349\) −4.74967 −0.254244 −0.127122 0.991887i \(-0.540574\pi\)
−0.127122 + 0.991887i \(0.540574\pi\)
\(350\) 1.02774 0.0549351
\(351\) 0 0
\(352\) −9.08006 −0.483969
\(353\) 0.273647 0.0145648 0.00728238 0.999973i \(-0.497682\pi\)
0.00728238 + 0.999973i \(0.497682\pi\)
\(354\) 0 0
\(355\) −43.8469 −2.32715
\(356\) −2.47351 −0.131096
\(357\) 0 0
\(358\) 28.1979 1.49031
\(359\) −11.3893 −0.601105 −0.300553 0.953765i \(-0.597171\pi\)
−0.300553 + 0.953765i \(0.597171\pi\)
\(360\) 0 0
\(361\) −16.4182 −0.864118
\(362\) 8.95403 0.470613
\(363\) 0 0
\(364\) 0.0941744 0.00493608
\(365\) 13.6380 0.713844
\(366\) 0 0
\(367\) −7.60908 −0.397191 −0.198595 0.980082i \(-0.563638\pi\)
−0.198595 + 0.980082i \(0.563638\pi\)
\(368\) −23.4134 −1.22051
\(369\) 0 0
\(370\) −23.6911 −1.23164
\(371\) −1.33061 −0.0690821
\(372\) 0 0
\(373\) −28.1189 −1.45594 −0.727970 0.685609i \(-0.759536\pi\)
−0.727970 + 0.685609i \(0.759536\pi\)
\(374\) 68.6197 3.54824
\(375\) 0 0
\(376\) 9.37056 0.483250
\(377\) −0.409497 −0.0210902
\(378\) 0 0
\(379\) −16.8213 −0.864052 −0.432026 0.901861i \(-0.642201\pi\)
−0.432026 + 0.901861i \(0.642201\pi\)
\(380\) −1.16574 −0.0598013
\(381\) 0 0
\(382\) −7.78839 −0.398489
\(383\) 4.84715 0.247678 0.123839 0.992302i \(-0.460479\pi\)
0.123839 + 0.992302i \(0.460479\pi\)
\(384\) 0 0
\(385\) −5.33912 −0.272107
\(386\) 34.5655 1.75934
\(387\) 0 0
\(388\) 1.18652 0.0602364
\(389\) −36.3669 −1.84387 −0.921937 0.387340i \(-0.873394\pi\)
−0.921937 + 0.387340i \(0.873394\pi\)
\(390\) 0 0
\(391\) 40.4458 2.04543
\(392\) 17.9099 0.904586
\(393\) 0 0
\(394\) −21.8808 −1.10234
\(395\) 24.5763 1.23657
\(396\) 0 0
\(397\) −29.0866 −1.45981 −0.729907 0.683547i \(-0.760437\pi\)
−0.729907 + 0.683547i \(0.760437\pi\)
\(398\) −14.1806 −0.710811
\(399\) 0 0
\(400\) −8.88571 −0.444286
\(401\) 4.38902 0.219177 0.109589 0.993977i \(-0.465047\pi\)
0.109589 + 0.993977i \(0.465047\pi\)
\(402\) 0 0
\(403\) −2.62837 −0.130929
\(404\) 1.82029 0.0905628
\(405\) 0 0
\(406\) −0.211886 −0.0105157
\(407\) 34.9912 1.73445
\(408\) 0 0
\(409\) 0.557473 0.0275652 0.0137826 0.999905i \(-0.495613\pi\)
0.0137826 + 0.999905i \(0.495613\pi\)
\(410\) −26.3615 −1.30190
\(411\) 0 0
\(412\) −3.90603 −0.192436
\(413\) 0.155259 0.00763981
\(414\) 0 0
\(415\) 3.01065 0.147787
\(416\) −1.54224 −0.0756143
\(417\) 0 0
\(418\) 14.2672 0.697829
\(419\) −7.98303 −0.389996 −0.194998 0.980804i \(-0.562470\pi\)
−0.194998 + 0.980804i \(0.562470\pi\)
\(420\) 0 0
\(421\) −13.0285 −0.634968 −0.317484 0.948264i \(-0.602838\pi\)
−0.317484 + 0.948264i \(0.602838\pi\)
\(422\) 23.4756 1.14277
\(423\) 0 0
\(424\) 10.0926 0.490139
\(425\) 15.3497 0.744572
\(426\) 0 0
\(427\) 1.28326 0.0621013
\(428\) −0.262866 −0.0127061
\(429\) 0 0
\(430\) −5.22538 −0.251990
\(431\) 13.8846 0.668796 0.334398 0.942432i \(-0.391467\pi\)
0.334398 + 0.942432i \(0.391467\pi\)
\(432\) 0 0
\(433\) −8.20792 −0.394447 −0.197224 0.980359i \(-0.563193\pi\)
−0.197224 + 0.980359i \(0.563193\pi\)
\(434\) −1.36000 −0.0652821
\(435\) 0 0
\(436\) 1.58499 0.0759072
\(437\) 8.40935 0.402274
\(438\) 0 0
\(439\) −10.6950 −0.510442 −0.255221 0.966883i \(-0.582148\pi\)
−0.255221 + 0.966883i \(0.582148\pi\)
\(440\) 40.4967 1.93061
\(441\) 0 0
\(442\) 11.6550 0.554370
\(443\) 19.0992 0.907430 0.453715 0.891147i \(-0.350098\pi\)
0.453715 + 0.891147i \(0.350098\pi\)
\(444\) 0 0
\(445\) 23.8184 1.12910
\(446\) −5.79572 −0.274435
\(447\) 0 0
\(448\) 2.27173 0.107329
\(449\) −28.5873 −1.34912 −0.674558 0.738221i \(-0.735666\pi\)
−0.674558 + 0.738221i \(0.735666\pi\)
\(450\) 0 0
\(451\) 38.9353 1.83339
\(452\) 3.26013 0.153343
\(453\) 0 0
\(454\) 36.2834 1.70287
\(455\) −0.906842 −0.0425134
\(456\) 0 0
\(457\) 7.09382 0.331835 0.165918 0.986140i \(-0.446941\pi\)
0.165918 + 0.986140i \(0.446941\pi\)
\(458\) −30.3829 −1.41970
\(459\) 0 0
\(460\) −3.79708 −0.177040
\(461\) −20.8133 −0.969371 −0.484685 0.874689i \(-0.661066\pi\)
−0.484685 + 0.874689i \(0.661066\pi\)
\(462\) 0 0
\(463\) −19.5743 −0.909694 −0.454847 0.890570i \(-0.650306\pi\)
−0.454847 + 0.890570i \(0.650306\pi\)
\(464\) 1.83194 0.0850457
\(465\) 0 0
\(466\) 8.83898 0.409458
\(467\) 32.2324 1.49154 0.745768 0.666206i \(-0.232083\pi\)
0.745768 + 0.666206i \(0.232083\pi\)
\(468\) 0 0
\(469\) −0.963986 −0.0445127
\(470\) 14.3539 0.662095
\(471\) 0 0
\(472\) −1.17763 −0.0542046
\(473\) 7.71778 0.354864
\(474\) 0 0
\(475\) 3.19146 0.146434
\(476\) 0.727783 0.0333579
\(477\) 0 0
\(478\) 13.8288 0.632515
\(479\) −1.05077 −0.0480111 −0.0240055 0.999712i \(-0.507642\pi\)
−0.0240055 + 0.999712i \(0.507642\pi\)
\(480\) 0 0
\(481\) 5.94321 0.270987
\(482\) −36.7583 −1.67430
\(483\) 0 0
\(484\) 6.49543 0.295247
\(485\) −11.4255 −0.518803
\(486\) 0 0
\(487\) 18.2019 0.824808 0.412404 0.911001i \(-0.364689\pi\)
0.412404 + 0.911001i \(0.364689\pi\)
\(488\) −9.73341 −0.440611
\(489\) 0 0
\(490\) 27.4345 1.23936
\(491\) 1.37475 0.0620418 0.0310209 0.999519i \(-0.490124\pi\)
0.0310209 + 0.999519i \(0.490124\pi\)
\(492\) 0 0
\(493\) −3.16461 −0.142527
\(494\) 2.42326 0.109027
\(495\) 0 0
\(496\) 11.7584 0.527967
\(497\) 5.69150 0.255299
\(498\) 0 0
\(499\) 23.6934 1.06066 0.530330 0.847791i \(-0.322068\pi\)
0.530330 + 0.847791i \(0.322068\pi\)
\(500\) 2.18652 0.0977841
\(501\) 0 0
\(502\) −17.0306 −0.760115
\(503\) −8.31698 −0.370836 −0.185418 0.982660i \(-0.559364\pi\)
−0.185418 + 0.982660i \(0.559364\pi\)
\(504\) 0 0
\(505\) −17.5283 −0.779998
\(506\) 46.4713 2.06590
\(507\) 0 0
\(508\) −3.28789 −0.145877
\(509\) 9.67977 0.429048 0.214524 0.976719i \(-0.431180\pi\)
0.214524 + 0.976719i \(0.431180\pi\)
\(510\) 0 0
\(511\) −1.77026 −0.0783118
\(512\) −16.3842 −0.724086
\(513\) 0 0
\(514\) −37.1527 −1.63873
\(515\) 37.6127 1.65741
\(516\) 0 0
\(517\) −21.2004 −0.932393
\(518\) 3.07520 0.135116
\(519\) 0 0
\(520\) 6.87831 0.301634
\(521\) −13.7581 −0.602753 −0.301377 0.953505i \(-0.597446\pi\)
−0.301377 + 0.953505i \(0.597446\pi\)
\(522\) 0 0
\(523\) −11.2006 −0.489769 −0.244885 0.969552i \(-0.578750\pi\)
−0.244885 + 0.969552i \(0.578750\pi\)
\(524\) −3.30432 −0.144350
\(525\) 0 0
\(526\) −33.7449 −1.47135
\(527\) −20.3122 −0.884812
\(528\) 0 0
\(529\) 4.39112 0.190918
\(530\) 15.4599 0.671534
\(531\) 0 0
\(532\) 0.151318 0.00656046
\(533\) 6.61311 0.286446
\(534\) 0 0
\(535\) 2.53124 0.109435
\(536\) 7.31174 0.315819
\(537\) 0 0
\(538\) −37.2910 −1.60773
\(539\) −40.5201 −1.74533
\(540\) 0 0
\(541\) −24.0677 −1.03475 −0.517375 0.855759i \(-0.673091\pi\)
−0.517375 + 0.855759i \(0.673091\pi\)
\(542\) 15.2393 0.654585
\(543\) 0 0
\(544\) −11.9185 −0.510999
\(545\) −15.2625 −0.653773
\(546\) 0 0
\(547\) 21.6378 0.925164 0.462582 0.886576i \(-0.346923\pi\)
0.462582 + 0.886576i \(0.346923\pi\)
\(548\) −0.00843555 −0.000360349 0
\(549\) 0 0
\(550\) 17.6365 0.752022
\(551\) −0.657973 −0.0280306
\(552\) 0 0
\(553\) −3.19010 −0.135657
\(554\) 15.9773 0.678811
\(555\) 0 0
\(556\) 3.10140 0.131529
\(557\) 23.1251 0.979840 0.489920 0.871767i \(-0.337026\pi\)
0.489920 + 0.871767i \(0.337026\pi\)
\(558\) 0 0
\(559\) 1.31085 0.0554432
\(560\) 4.05688 0.171434
\(561\) 0 0
\(562\) −31.9887 −1.34936
\(563\) −25.2335 −1.06346 −0.531732 0.846913i \(-0.678459\pi\)
−0.531732 + 0.846913i \(0.678459\pi\)
\(564\) 0 0
\(565\) −31.3930 −1.32071
\(566\) 0.318021 0.0133674
\(567\) 0 0
\(568\) −43.1695 −1.81135
\(569\) 33.4048 1.40040 0.700200 0.713946i \(-0.253094\pi\)
0.700200 + 0.713946i \(0.253094\pi\)
\(570\) 0 0
\(571\) 38.4889 1.61071 0.805355 0.592792i \(-0.201974\pi\)
0.805355 + 0.592792i \(0.201974\pi\)
\(572\) 1.61607 0.0675714
\(573\) 0 0
\(574\) 3.42182 0.142824
\(575\) 10.3953 0.433514
\(576\) 0 0
\(577\) −40.5935 −1.68993 −0.844965 0.534821i \(-0.820379\pi\)
−0.844965 + 0.534821i \(0.820379\pi\)
\(578\) 64.4316 2.68000
\(579\) 0 0
\(580\) 0.297095 0.0123362
\(581\) −0.390794 −0.0162129
\(582\) 0 0
\(583\) −22.8339 −0.945684
\(584\) 13.4273 0.555624
\(585\) 0 0
\(586\) 39.9546 1.65051
\(587\) −9.72421 −0.401361 −0.200681 0.979657i \(-0.564315\pi\)
−0.200681 + 0.979657i \(0.564315\pi\)
\(588\) 0 0
\(589\) −4.22323 −0.174015
\(590\) −1.80389 −0.0742652
\(591\) 0 0
\(592\) −26.5877 −1.09275
\(593\) 12.0667 0.495518 0.247759 0.968822i \(-0.420306\pi\)
0.247759 + 0.968822i \(0.420306\pi\)
\(594\) 0 0
\(595\) −7.00811 −0.287304
\(596\) −0.416889 −0.0170764
\(597\) 0 0
\(598\) 7.89308 0.322772
\(599\) −4.67924 −0.191189 −0.0955943 0.995420i \(-0.530475\pi\)
−0.0955943 + 0.995420i \(0.530475\pi\)
\(600\) 0 0
\(601\) 19.4861 0.794855 0.397427 0.917634i \(-0.369903\pi\)
0.397427 + 0.917634i \(0.369903\pi\)
\(602\) 0.678275 0.0276444
\(603\) 0 0
\(604\) −2.51211 −0.102216
\(605\) −62.5470 −2.54290
\(606\) 0 0
\(607\) −11.6192 −0.471610 −0.235805 0.971800i \(-0.575773\pi\)
−0.235805 + 0.971800i \(0.575773\pi\)
\(608\) −2.47804 −0.100498
\(609\) 0 0
\(610\) −14.9097 −0.603676
\(611\) −3.60086 −0.145675
\(612\) 0 0
\(613\) 24.0957 0.973218 0.486609 0.873620i \(-0.338234\pi\)
0.486609 + 0.873620i \(0.338234\pi\)
\(614\) −9.05213 −0.365314
\(615\) 0 0
\(616\) −5.25664 −0.211796
\(617\) 6.70091 0.269768 0.134884 0.990861i \(-0.456934\pi\)
0.134884 + 0.990861i \(0.456934\pi\)
\(618\) 0 0
\(619\) 10.5804 0.425262 0.212631 0.977133i \(-0.431797\pi\)
0.212631 + 0.977133i \(0.431797\pi\)
\(620\) 1.90692 0.0765837
\(621\) 0 0
\(622\) −43.7591 −1.75458
\(623\) −3.09172 −0.123867
\(624\) 0 0
\(625\) −30.9861 −1.23944
\(626\) −10.2853 −0.411082
\(627\) 0 0
\(628\) 0.554550 0.0221290
\(629\) 45.9293 1.83132
\(630\) 0 0
\(631\) 31.1707 1.24089 0.620443 0.784252i \(-0.286953\pi\)
0.620443 + 0.784252i \(0.286953\pi\)
\(632\) 24.1966 0.962490
\(633\) 0 0
\(634\) 26.0483 1.03451
\(635\) 31.6604 1.25641
\(636\) 0 0
\(637\) −6.88229 −0.272686
\(638\) −3.63606 −0.143953
\(639\) 0 0
\(640\) −34.5470 −1.36559
\(641\) −15.9019 −0.628086 −0.314043 0.949409i \(-0.601684\pi\)
−0.314043 + 0.949409i \(0.601684\pi\)
\(642\) 0 0
\(643\) −23.9100 −0.942920 −0.471460 0.881887i \(-0.656273\pi\)
−0.471460 + 0.881887i \(0.656273\pi\)
\(644\) 0.492876 0.0194220
\(645\) 0 0
\(646\) 18.7270 0.736804
\(647\) 41.8996 1.64725 0.823623 0.567138i \(-0.191950\pi\)
0.823623 + 0.567138i \(0.191950\pi\)
\(648\) 0 0
\(649\) 2.66432 0.104584
\(650\) 2.99553 0.117494
\(651\) 0 0
\(652\) −3.68801 −0.144434
\(653\) −3.18545 −0.124656 −0.0623282 0.998056i \(-0.519853\pi\)
−0.0623282 + 0.998056i \(0.519853\pi\)
\(654\) 0 0
\(655\) 31.8186 1.24325
\(656\) −29.5846 −1.15509
\(657\) 0 0
\(658\) −1.86319 −0.0726348
\(659\) −14.4257 −0.561947 −0.280973 0.959716i \(-0.590657\pi\)
−0.280973 + 0.959716i \(0.590657\pi\)
\(660\) 0 0
\(661\) 12.2706 0.477272 0.238636 0.971109i \(-0.423300\pi\)
0.238636 + 0.971109i \(0.423300\pi\)
\(662\) 45.5604 1.77076
\(663\) 0 0
\(664\) 2.96413 0.115031
\(665\) −1.45710 −0.0565039
\(666\) 0 0
\(667\) −2.14317 −0.0829837
\(668\) 3.24904 0.125709
\(669\) 0 0
\(670\) 11.2002 0.432700
\(671\) 22.0213 0.850123
\(672\) 0 0
\(673\) 43.0030 1.65764 0.828821 0.559514i \(-0.189012\pi\)
0.828821 + 0.559514i \(0.189012\pi\)
\(674\) 14.1896 0.546562
\(675\) 0 0
\(676\) 0.274488 0.0105572
\(677\) −39.0920 −1.50243 −0.751213 0.660059i \(-0.770531\pi\)
−0.751213 + 0.660059i \(0.770531\pi\)
\(678\) 0 0
\(679\) 1.48307 0.0569150
\(680\) 53.1558 2.03843
\(681\) 0 0
\(682\) −23.3382 −0.893666
\(683\) 12.2513 0.468783 0.234391 0.972142i \(-0.424690\pi\)
0.234391 + 0.972142i \(0.424690\pi\)
\(684\) 0 0
\(685\) 0.0812292 0.00310361
\(686\) −7.18311 −0.274253
\(687\) 0 0
\(688\) −5.86428 −0.223573
\(689\) −3.87831 −0.147752
\(690\) 0 0
\(691\) 23.1225 0.879620 0.439810 0.898091i \(-0.355046\pi\)
0.439810 + 0.898091i \(0.355046\pi\)
\(692\) −5.08269 −0.193215
\(693\) 0 0
\(694\) 17.6201 0.668849
\(695\) −29.8646 −1.13283
\(696\) 0 0
\(697\) 51.1063 1.93579
\(698\) −7.16318 −0.271130
\(699\) 0 0
\(700\) 0.187053 0.00706994
\(701\) −16.6318 −0.628173 −0.314086 0.949394i \(-0.601698\pi\)
−0.314086 + 0.949394i \(0.601698\pi\)
\(702\) 0 0
\(703\) 9.54945 0.360164
\(704\) 38.9839 1.46926
\(705\) 0 0
\(706\) 0.412698 0.0155321
\(707\) 2.27524 0.0855693
\(708\) 0 0
\(709\) −26.5936 −0.998743 −0.499371 0.866388i \(-0.666436\pi\)
−0.499371 + 0.866388i \(0.666436\pi\)
\(710\) −66.1273 −2.48171
\(711\) 0 0
\(712\) 23.4504 0.878842
\(713\) −13.7560 −0.515166
\(714\) 0 0
\(715\) −15.5618 −0.581978
\(716\) 5.13214 0.191797
\(717\) 0 0
\(718\) −17.1767 −0.641029
\(719\) 27.2922 1.01783 0.508914 0.860817i \(-0.330047\pi\)
0.508914 + 0.860817i \(0.330047\pi\)
\(720\) 0 0
\(721\) −4.88228 −0.181826
\(722\) −24.7610 −0.921510
\(723\) 0 0
\(724\) 1.62967 0.0605662
\(725\) −0.813360 −0.0302074
\(726\) 0 0
\(727\) 6.67878 0.247702 0.123851 0.992301i \(-0.460476\pi\)
0.123851 + 0.992301i \(0.460476\pi\)
\(728\) −0.892832 −0.0330906
\(729\) 0 0
\(730\) 20.5680 0.761255
\(731\) 10.1303 0.374684
\(732\) 0 0
\(733\) −18.2908 −0.675587 −0.337793 0.941220i \(-0.609681\pi\)
−0.337793 + 0.941220i \(0.609681\pi\)
\(734\) −11.4756 −0.423571
\(735\) 0 0
\(736\) −8.07153 −0.297520
\(737\) −16.5424 −0.609348
\(738\) 0 0
\(739\) 1.08400 0.0398757 0.0199378 0.999801i \(-0.493653\pi\)
0.0199378 + 0.999801i \(0.493653\pi\)
\(740\) −4.31187 −0.158508
\(741\) 0 0
\(742\) −2.00675 −0.0736702
\(743\) 12.8618 0.471852 0.235926 0.971771i \(-0.424188\pi\)
0.235926 + 0.971771i \(0.424188\pi\)
\(744\) 0 0
\(745\) 4.01438 0.147076
\(746\) −42.4072 −1.55264
\(747\) 0 0
\(748\) 12.4891 0.456646
\(749\) −0.328565 −0.0120055
\(750\) 0 0
\(751\) −9.14971 −0.333877 −0.166939 0.985967i \(-0.553388\pi\)
−0.166939 + 0.985967i \(0.553388\pi\)
\(752\) 16.1089 0.587432
\(753\) 0 0
\(754\) −0.617579 −0.0224909
\(755\) 24.1901 0.880367
\(756\) 0 0
\(757\) 31.3956 1.14109 0.570546 0.821266i \(-0.306732\pi\)
0.570546 + 0.821266i \(0.306732\pi\)
\(758\) −25.3689 −0.921439
\(759\) 0 0
\(760\) 11.0520 0.400897
\(761\) −42.6877 −1.54743 −0.773714 0.633534i \(-0.781603\pi\)
−0.773714 + 0.633534i \(0.781603\pi\)
\(762\) 0 0
\(763\) 1.98113 0.0717218
\(764\) −1.41752 −0.0512841
\(765\) 0 0
\(766\) 7.31019 0.264128
\(767\) 0.452530 0.0163399
\(768\) 0 0
\(769\) −9.00487 −0.324724 −0.162362 0.986731i \(-0.551911\pi\)
−0.162362 + 0.986731i \(0.551911\pi\)
\(770\) −8.05215 −0.290179
\(771\) 0 0
\(772\) 6.29106 0.226420
\(773\) 18.7179 0.673235 0.336617 0.941641i \(-0.390717\pi\)
0.336617 + 0.941641i \(0.390717\pi\)
\(774\) 0 0
\(775\) −5.22059 −0.187529
\(776\) −11.2489 −0.403813
\(777\) 0 0
\(778\) −54.8464 −1.96634
\(779\) 10.6258 0.380710
\(780\) 0 0
\(781\) 97.6687 3.49486
\(782\) 60.9980 2.18128
\(783\) 0 0
\(784\) 30.7888 1.09960
\(785\) −5.33998 −0.190592
\(786\) 0 0
\(787\) 30.4325 1.08480 0.542401 0.840120i \(-0.317515\pi\)
0.542401 + 0.840120i \(0.317515\pi\)
\(788\) −3.98240 −0.141867
\(789\) 0 0
\(790\) 37.0645 1.31870
\(791\) 4.07494 0.144888
\(792\) 0 0
\(793\) 3.74029 0.132822
\(794\) −43.8666 −1.55677
\(795\) 0 0
\(796\) −2.58093 −0.0914788
\(797\) −27.7866 −0.984252 −0.492126 0.870524i \(-0.663780\pi\)
−0.492126 + 0.870524i \(0.663780\pi\)
\(798\) 0 0
\(799\) −27.8276 −0.984468
\(800\) −3.06325 −0.108302
\(801\) 0 0
\(802\) 6.61926 0.233734
\(803\) −30.3785 −1.07203
\(804\) 0 0
\(805\) −4.74610 −0.167278
\(806\) −3.96396 −0.139624
\(807\) 0 0
\(808\) −17.2575 −0.607116
\(809\) −25.1521 −0.884299 −0.442150 0.896941i \(-0.645784\pi\)
−0.442150 + 0.896941i \(0.645784\pi\)
\(810\) 0 0
\(811\) 46.6061 1.63656 0.818281 0.574819i \(-0.194928\pi\)
0.818281 + 0.574819i \(0.194928\pi\)
\(812\) −0.0385642 −0.00135334
\(813\) 0 0
\(814\) 52.7717 1.84965
\(815\) 35.5133 1.24398
\(816\) 0 0
\(817\) 2.10626 0.0736887
\(818\) 0.840747 0.0293960
\(819\) 0 0
\(820\) −4.79789 −0.167550
\(821\) 10.3955 0.362807 0.181403 0.983409i \(-0.441936\pi\)
0.181403 + 0.983409i \(0.441936\pi\)
\(822\) 0 0
\(823\) 7.33931 0.255832 0.127916 0.991785i \(-0.459171\pi\)
0.127916 + 0.991785i \(0.459171\pi\)
\(824\) 37.0316 1.29006
\(825\) 0 0
\(826\) 0.234153 0.00814722
\(827\) −11.6262 −0.404281 −0.202141 0.979357i \(-0.564790\pi\)
−0.202141 + 0.979357i \(0.564790\pi\)
\(828\) 0 0
\(829\) 5.35678 0.186049 0.0930243 0.995664i \(-0.470347\pi\)
0.0930243 + 0.995664i \(0.470347\pi\)
\(830\) 4.54048 0.157602
\(831\) 0 0
\(832\) 6.62136 0.229554
\(833\) −53.1866 −1.84281
\(834\) 0 0
\(835\) −31.2863 −1.08271
\(836\) 2.59668 0.0898081
\(837\) 0 0
\(838\) −12.0395 −0.415899
\(839\) 48.0656 1.65941 0.829705 0.558202i \(-0.188509\pi\)
0.829705 + 0.558202i \(0.188509\pi\)
\(840\) 0 0
\(841\) −28.8323 −0.994218
\(842\) −19.6487 −0.677141
\(843\) 0 0
\(844\) 4.27266 0.147071
\(845\) −2.64315 −0.0909271
\(846\) 0 0
\(847\) 8.11885 0.278967
\(848\) 17.3501 0.595806
\(849\) 0 0
\(850\) 23.1496 0.794024
\(851\) 31.1047 1.06625
\(852\) 0 0
\(853\) −24.6097 −0.842620 −0.421310 0.906917i \(-0.638430\pi\)
−0.421310 + 0.906917i \(0.638430\pi\)
\(854\) 1.93534 0.0662259
\(855\) 0 0
\(856\) 2.49213 0.0851793
\(857\) 33.2803 1.13683 0.568417 0.822740i \(-0.307556\pi\)
0.568417 + 0.822740i \(0.307556\pi\)
\(858\) 0 0
\(859\) 13.8267 0.471761 0.235881 0.971782i \(-0.424203\pi\)
0.235881 + 0.971782i \(0.424203\pi\)
\(860\) −0.951041 −0.0324302
\(861\) 0 0
\(862\) 20.9399 0.713215
\(863\) −23.1145 −0.786827 −0.393413 0.919362i \(-0.628706\pi\)
−0.393413 + 0.919362i \(0.628706\pi\)
\(864\) 0 0
\(865\) 48.9432 1.66412
\(866\) −12.3787 −0.420645
\(867\) 0 0
\(868\) −0.247526 −0.00840157
\(869\) −54.7435 −1.85705
\(870\) 0 0
\(871\) −2.80970 −0.0952032
\(872\) −15.0267 −0.508868
\(873\) 0 0
\(874\) 12.6825 0.428991
\(875\) 2.73300 0.0923924
\(876\) 0 0
\(877\) 46.9409 1.58508 0.792540 0.609819i \(-0.208758\pi\)
0.792540 + 0.609819i \(0.208758\pi\)
\(878\) −16.1295 −0.544344
\(879\) 0 0
\(880\) 69.6178 2.34682
\(881\) −10.1247 −0.341109 −0.170555 0.985348i \(-0.554556\pi\)
−0.170555 + 0.985348i \(0.554556\pi\)
\(882\) 0 0
\(883\) −34.3946 −1.15747 −0.578736 0.815515i \(-0.696454\pi\)
−0.578736 + 0.815515i \(0.696454\pi\)
\(884\) 2.12125 0.0713454
\(885\) 0 0
\(886\) 28.8043 0.967698
\(887\) −28.9212 −0.971078 −0.485539 0.874215i \(-0.661377\pi\)
−0.485539 + 0.874215i \(0.661377\pi\)
\(888\) 0 0
\(889\) −4.10965 −0.137833
\(890\) 35.9215 1.20409
\(891\) 0 0
\(892\) −1.05485 −0.0353188
\(893\) −5.78580 −0.193614
\(894\) 0 0
\(895\) −49.4194 −1.65191
\(896\) 4.48435 0.149811
\(897\) 0 0
\(898\) −43.1136 −1.43872
\(899\) 1.07631 0.0358970
\(900\) 0 0
\(901\) −29.9717 −0.998502
\(902\) 58.7200 1.95516
\(903\) 0 0
\(904\) −30.9080 −1.02799
\(905\) −15.6927 −0.521644
\(906\) 0 0
\(907\) −40.0696 −1.33049 −0.665244 0.746626i \(-0.731673\pi\)
−0.665244 + 0.746626i \(0.731673\pi\)
\(908\) 6.60373 0.219153
\(909\) 0 0
\(910\) −1.36765 −0.0453370
\(911\) −56.6924 −1.87830 −0.939151 0.343505i \(-0.888386\pi\)
−0.939151 + 0.343505i \(0.888386\pi\)
\(912\) 0 0
\(913\) −6.70620 −0.221943
\(914\) 10.6985 0.353874
\(915\) 0 0
\(916\) −5.52981 −0.182710
\(917\) −4.13018 −0.136390
\(918\) 0 0
\(919\) −26.3183 −0.868162 −0.434081 0.900874i \(-0.642927\pi\)
−0.434081 + 0.900874i \(0.642927\pi\)
\(920\) 35.9987 1.18684
\(921\) 0 0
\(922\) −31.3893 −1.03375
\(923\) 16.5889 0.546030
\(924\) 0 0
\(925\) 11.8046 0.388134
\(926\) −29.5208 −0.970113
\(927\) 0 0
\(928\) 0.631541 0.0207314
\(929\) −6.25536 −0.205232 −0.102616 0.994721i \(-0.532721\pi\)
−0.102616 + 0.994721i \(0.532721\pi\)
\(930\) 0 0
\(931\) −11.0583 −0.362423
\(932\) 1.60873 0.0526957
\(933\) 0 0
\(934\) 48.6109 1.59060
\(935\) −120.262 −3.93299
\(936\) 0 0
\(937\) −29.4349 −0.961598 −0.480799 0.876831i \(-0.659653\pi\)
−0.480799 + 0.876831i \(0.659653\pi\)
\(938\) −1.45383 −0.0474691
\(939\) 0 0
\(940\) 2.61247 0.0852093
\(941\) −6.77088 −0.220724 −0.110362 0.993891i \(-0.535201\pi\)
−0.110362 + 0.993891i \(0.535201\pi\)
\(942\) 0 0
\(943\) 34.6107 1.12708
\(944\) −2.02445 −0.0658904
\(945\) 0 0
\(946\) 11.6395 0.378433
\(947\) −43.6091 −1.41710 −0.708552 0.705658i \(-0.750651\pi\)
−0.708552 + 0.705658i \(0.750651\pi\)
\(948\) 0 0
\(949\) −5.15974 −0.167492
\(950\) 4.81317 0.156160
\(951\) 0 0
\(952\) −6.89984 −0.223625
\(953\) 11.8773 0.384744 0.192372 0.981322i \(-0.438382\pi\)
0.192372 + 0.981322i \(0.438382\pi\)
\(954\) 0 0
\(955\) 13.6498 0.441699
\(956\) 2.51690 0.0814024
\(957\) 0 0
\(958\) −1.58471 −0.0511998
\(959\) −0.0105439 −0.000340479 0
\(960\) 0 0
\(961\) −24.0916 −0.777150
\(962\) 8.96319 0.288985
\(963\) 0 0
\(964\) −6.69016 −0.215476
\(965\) −60.5791 −1.95011
\(966\) 0 0
\(967\) 20.5197 0.659870 0.329935 0.944004i \(-0.392973\pi\)
0.329935 + 0.944004i \(0.392973\pi\)
\(968\) −61.5807 −1.97928
\(969\) 0 0
\(970\) −17.2312 −0.553260
\(971\) −17.5599 −0.563526 −0.281763 0.959484i \(-0.590919\pi\)
−0.281763 + 0.959484i \(0.590919\pi\)
\(972\) 0 0
\(973\) 3.87654 0.124276
\(974\) 27.4510 0.879588
\(975\) 0 0
\(976\) −16.7327 −0.535600
\(977\) −14.3945 −0.460519 −0.230260 0.973129i \(-0.573958\pi\)
−0.230260 + 0.973129i \(0.573958\pi\)
\(978\) 0 0
\(979\) −53.0553 −1.69566
\(980\) 4.99318 0.159501
\(981\) 0 0
\(982\) 2.07332 0.0661623
\(983\) 21.7891 0.694964 0.347482 0.937687i \(-0.387037\pi\)
0.347482 + 0.937687i \(0.387037\pi\)
\(984\) 0 0
\(985\) 38.3480 1.22187
\(986\) −4.77267 −0.151993
\(987\) 0 0
\(988\) 0.441042 0.0140314
\(989\) 6.86055 0.218153
\(990\) 0 0
\(991\) −57.2494 −1.81859 −0.909294 0.416154i \(-0.863378\pi\)
−0.909294 + 0.416154i \(0.863378\pi\)
\(992\) 4.05357 0.128701
\(993\) 0 0
\(994\) 8.58359 0.272255
\(995\) 24.8528 0.787888
\(996\) 0 0
\(997\) −23.4890 −0.743903 −0.371951 0.928252i \(-0.621311\pi\)
−0.371951 + 0.928252i \(0.621311\pi\)
\(998\) 35.7329 1.13111
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1053.2.a.k.1.4 5
3.2 odd 2 1053.2.a.j.1.2 5
9.2 odd 6 351.2.e.b.118.4 10
9.4 even 3 117.2.e.b.79.2 yes 10
9.5 odd 6 351.2.e.b.235.4 10
9.7 even 3 117.2.e.b.40.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.b.40.2 10 9.7 even 3
117.2.e.b.79.2 yes 10 9.4 even 3
351.2.e.b.118.4 10 9.2 odd 6
351.2.e.b.235.4 10 9.5 odd 6
1053.2.a.j.1.2 5 3.2 odd 2
1053.2.a.k.1.4 5 1.1 even 1 trivial