Properties

Label 351.2.e.b.118.4
Level $351$
Weight $2$
Character 351.118
Analytic conductor $2.803$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [351,2,Mod(118,351)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(351, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("351.118"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 351 = 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 351.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.80274911095\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{3})\)
Coefficient field: 10.0.487558322307.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 13x^{8} + 43x^{6} + 48x^{4} + 21x^{2} + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 117)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 118.4
Root \(-0.775434i\) of defining polynomial
Character \(\chi\) \(=\) 351.118
Dual form 351.2.e.b.235.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.754070 + 1.30609i) q^{2} +(-0.137244 + 0.237713i) q^{4} +(-1.32157 + 2.28903i) q^{5} +(-0.171546 - 0.297126i) q^{7} +2.60231 q^{8} -3.98624 q^{10} +(2.94380 + 5.09881i) q^{11} +(-0.500000 + 0.866025i) q^{13} +(0.258715 - 0.448108i) q^{14} +(2.23682 + 3.87428i) q^{16} -7.72803 q^{17} +1.60678 q^{19} +(-0.362756 - 0.628312i) q^{20} +(-4.43966 + 7.68972i) q^{22} +(2.61683 - 4.53248i) q^{23} +(-0.993121 - 1.72014i) q^{25} -1.50814 q^{26} +0.0941744 q^{28} +(-0.204749 - 0.354635i) q^{29} +(1.31419 - 2.27624i) q^{31} +(-0.771118 + 1.33562i) q^{32} +(-5.82748 - 10.0935i) q^{34} +0.906842 q^{35} +5.94321 q^{37} +(1.21163 + 2.09860i) q^{38} +(-3.43915 + 5.95679i) q^{40} +(3.30656 - 5.72712i) q^{41} +(-0.655427 - 1.13523i) q^{43} -1.61607 q^{44} +7.89308 q^{46} +(-1.80043 - 3.11843i) q^{47} +(3.44114 - 5.96024i) q^{49} +(1.49777 - 2.59421i) q^{50} +(-0.137244 - 0.237713i) q^{52} +3.87831 q^{53} -15.5618 q^{55} +(-0.446416 - 0.773215i) q^{56} +(0.308790 - 0.534839i) q^{58} +(0.226265 - 0.391903i) q^{59} +(-1.87014 - 3.23918i) q^{61} +3.96396 q^{62} +6.62136 q^{64} +(-1.32157 - 2.28903i) q^{65} +(1.40485 - 2.43328i) q^{67} +(1.06063 - 1.83706i) q^{68} +(0.683823 + 1.18442i) q^{70} -16.5889 q^{71} -5.15974 q^{73} +(4.48160 + 7.76235i) q^{74} +(-0.220521 + 0.381954i) q^{76} +(1.00999 - 1.74936i) q^{77} +(4.64906 + 8.05240i) q^{79} -11.8245 q^{80} +9.97350 q^{82} +(-0.569519 - 0.986435i) q^{83} +(10.2132 - 17.6897i) q^{85} +(0.988476 - 1.71209i) q^{86} +(7.66069 + 13.2687i) q^{88} +9.01137 q^{89} +0.343091 q^{91} +(0.718287 + 1.24411i) q^{92} +(2.71530 - 4.70304i) q^{94} +(-2.12349 + 3.67798i) q^{95} +(-2.16133 - 3.74354i) q^{97} +10.3795 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 2 q^{2} - 4 q^{4} + q^{5} + 2 q^{7} - 24 q^{8} - 4 q^{10} + 11 q^{11} - 5 q^{13} - 5 q^{14} - 10 q^{16} - 14 q^{17} + 6 q^{19} - q^{20} + 7 q^{22} + 18 q^{23} + 8 q^{25} - 4 q^{26} - 38 q^{28}+ \cdots + 78 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/351\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(326\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.754070 + 1.30609i 0.533208 + 0.923544i 0.999248 + 0.0387798i \(0.0123471\pi\)
−0.466040 + 0.884764i \(0.654320\pi\)
\(3\) 0 0
\(4\) −0.137244 + 0.237713i −0.0686219 + 0.118857i
\(5\) −1.32157 + 2.28903i −0.591026 + 1.02369i 0.403068 + 0.915170i \(0.367944\pi\)
−0.994095 + 0.108518i \(0.965390\pi\)
\(6\) 0 0
\(7\) −0.171546 0.297126i −0.0648382 0.112303i 0.831784 0.555099i \(-0.187320\pi\)
−0.896622 + 0.442796i \(0.853986\pi\)
\(8\) 2.60231 0.920057
\(9\) 0 0
\(10\) −3.98624 −1.26056
\(11\) 2.94380 + 5.09881i 0.887589 + 1.53735i 0.842717 + 0.538356i \(0.180954\pi\)
0.0448714 + 0.998993i \(0.485712\pi\)
\(12\) 0 0
\(13\) −0.500000 + 0.866025i −0.138675 + 0.240192i
\(14\) 0.258715 0.448108i 0.0691445 0.119762i
\(15\) 0 0
\(16\) 2.23682 + 3.87428i 0.559204 + 0.968570i
\(17\) −7.72803 −1.87432 −0.937162 0.348895i \(-0.886557\pi\)
−0.937162 + 0.348895i \(0.886557\pi\)
\(18\) 0 0
\(19\) 1.60678 0.368621 0.184311 0.982868i \(-0.440995\pi\)
0.184311 + 0.982868i \(0.440995\pi\)
\(20\) −0.362756 0.628312i −0.0811147 0.140495i
\(21\) 0 0
\(22\) −4.43966 + 7.68972i −0.946539 + 1.63945i
\(23\) 2.61683 4.53248i 0.545646 0.945087i −0.452920 0.891551i \(-0.649618\pi\)
0.998566 0.0535354i \(-0.0170490\pi\)
\(24\) 0 0
\(25\) −0.993121 1.72014i −0.198624 0.344027i
\(26\) −1.50814 −0.295771
\(27\) 0 0
\(28\) 0.0941744 0.0177973
\(29\) −0.204749 0.354635i −0.0380209 0.0658541i 0.846389 0.532566i \(-0.178772\pi\)
−0.884410 + 0.466711i \(0.845439\pi\)
\(30\) 0 0
\(31\) 1.31419 2.27624i 0.236035 0.408825i −0.723538 0.690285i \(-0.757485\pi\)
0.959573 + 0.281460i \(0.0908187\pi\)
\(32\) −0.771118 + 1.33562i −0.136316 + 0.236106i
\(33\) 0 0
\(34\) −5.82748 10.0935i −0.999405 1.73102i
\(35\) 0.906842 0.153284
\(36\) 0 0
\(37\) 5.94321 0.977057 0.488529 0.872548i \(-0.337534\pi\)
0.488529 + 0.872548i \(0.337534\pi\)
\(38\) 1.21163 + 2.09860i 0.196552 + 0.340438i
\(39\) 0 0
\(40\) −3.43915 + 5.95679i −0.543778 + 0.941851i
\(41\) 3.30656 5.72712i 0.516397 0.894426i −0.483422 0.875388i \(-0.660606\pi\)
0.999819 0.0190384i \(-0.00606049\pi\)
\(42\) 0 0
\(43\) −0.655427 1.13523i −0.0999517 0.173121i 0.811713 0.584057i \(-0.198535\pi\)
−0.911664 + 0.410935i \(0.865202\pi\)
\(44\) −1.61607 −0.243632
\(45\) 0 0
\(46\) 7.89308 1.16377
\(47\) −1.80043 3.11843i −0.262620 0.454870i 0.704318 0.709885i \(-0.251253\pi\)
−0.966937 + 0.255015i \(0.917920\pi\)
\(48\) 0 0
\(49\) 3.44114 5.96024i 0.491592 0.851462i
\(50\) 1.49777 2.59421i 0.211816 0.366876i
\(51\) 0 0
\(52\) −0.137244 0.237713i −0.0190323 0.0329649i
\(53\) 3.87831 0.532727 0.266363 0.963873i \(-0.414178\pi\)
0.266363 + 0.963873i \(0.414178\pi\)
\(54\) 0 0
\(55\) −15.5618 −2.09835
\(56\) −0.446416 0.773215i −0.0596549 0.103325i
\(57\) 0 0
\(58\) 0.308790 0.534839i 0.0405461 0.0702278i
\(59\) 0.226265 0.391903i 0.0294572 0.0510214i −0.850921 0.525294i \(-0.823955\pi\)
0.880378 + 0.474272i \(0.157289\pi\)
\(60\) 0 0
\(61\) −1.87014 3.23918i −0.239447 0.414735i 0.721108 0.692822i \(-0.243633\pi\)
−0.960556 + 0.278087i \(0.910300\pi\)
\(62\) 3.96396 0.503423
\(63\) 0 0
\(64\) 6.62136 0.827669
\(65\) −1.32157 2.28903i −0.163921 0.283920i
\(66\) 0 0
\(67\) 1.40485 2.43328i 0.171630 0.297272i −0.767360 0.641217i \(-0.778430\pi\)
0.938990 + 0.343945i \(0.111763\pi\)
\(68\) 1.06063 1.83706i 0.128620 0.222776i
\(69\) 0 0
\(70\) 0.683823 + 1.18442i 0.0817325 + 0.141565i
\(71\) −16.5889 −1.96874 −0.984369 0.176119i \(-0.943646\pi\)
−0.984369 + 0.176119i \(0.943646\pi\)
\(72\) 0 0
\(73\) −5.15974 −0.603902 −0.301951 0.953323i \(-0.597638\pi\)
−0.301951 + 0.953323i \(0.597638\pi\)
\(74\) 4.48160 + 7.76235i 0.520975 + 0.902355i
\(75\) 0 0
\(76\) −0.220521 + 0.381954i −0.0252955 + 0.0438131i
\(77\) 1.00999 1.74936i 0.115099 0.199358i
\(78\) 0 0
\(79\) 4.64906 + 8.05240i 0.523060 + 0.905966i 0.999640 + 0.0268349i \(0.00854284\pi\)
−0.476580 + 0.879131i \(0.658124\pi\)
\(80\) −11.8245 −1.32202
\(81\) 0 0
\(82\) 9.97350 1.10139
\(83\) −0.569519 0.986435i −0.0625128 0.108275i 0.833075 0.553160i \(-0.186578\pi\)
−0.895588 + 0.444884i \(0.853245\pi\)
\(84\) 0 0
\(85\) 10.2132 17.6897i 1.10777 1.91872i
\(86\) 0.988476 1.71209i 0.106590 0.184619i
\(87\) 0 0
\(88\) 7.66069 + 13.2687i 0.816633 + 1.41445i
\(89\) 9.01137 0.955203 0.477602 0.878576i \(-0.341506\pi\)
0.477602 + 0.878576i \(0.341506\pi\)
\(90\) 0 0
\(91\) 0.343091 0.0359658
\(92\) 0.718287 + 1.24411i 0.0748866 + 0.129707i
\(93\) 0 0
\(94\) 2.71530 4.70304i 0.280062 0.485081i
\(95\) −2.12349 + 3.67798i −0.217865 + 0.377353i
\(96\) 0 0
\(97\) −2.16133 3.74354i −0.219450 0.380099i 0.735190 0.677861i \(-0.237093\pi\)
−0.954640 + 0.297762i \(0.903760\pi\)
\(98\) 10.3795 1.04848
\(99\) 0 0
\(100\) 0.545199 0.0545199
\(101\) 3.31579 + 5.74312i 0.329934 + 0.571462i 0.982498 0.186271i \(-0.0596402\pi\)
−0.652565 + 0.757733i \(0.726307\pi\)
\(102\) 0 0
\(103\) 7.11512 12.3238i 0.701074 1.21430i −0.267016 0.963692i \(-0.586038\pi\)
0.968090 0.250604i \(-0.0806291\pi\)
\(104\) −1.30116 + 2.25367i −0.127589 + 0.220991i
\(105\) 0 0
\(106\) 2.92452 + 5.06541i 0.284054 + 0.491996i
\(107\) 0.957659 0.0925804 0.0462902 0.998928i \(-0.485260\pi\)
0.0462902 + 0.998928i \(0.485260\pi\)
\(108\) 0 0
\(109\) 5.77436 0.553083 0.276541 0.961002i \(-0.410812\pi\)
0.276541 + 0.961002i \(0.410812\pi\)
\(110\) −11.7347 20.3251i −1.11886 1.93792i
\(111\) 0 0
\(112\) 0.767433 1.32923i 0.0725156 0.125601i
\(113\) 5.93856 10.2859i 0.558653 0.967615i −0.438956 0.898508i \(-0.644652\pi\)
0.997609 0.0691070i \(-0.0220150\pi\)
\(114\) 0 0
\(115\) 6.91666 + 11.9800i 0.644982 + 1.11714i
\(116\) 0.112402 0.0104363
\(117\) 0 0
\(118\) 0.682479 0.0628273
\(119\) 1.32571 + 2.29620i 0.121528 + 0.210492i
\(120\) 0 0
\(121\) −11.8319 + 20.4935i −1.07563 + 1.86304i
\(122\) 2.82044 4.88514i 0.255351 0.442280i
\(123\) 0 0
\(124\) 0.360728 + 0.624800i 0.0323944 + 0.0561087i
\(125\) −7.96582 −0.712484
\(126\) 0 0
\(127\) −11.9783 −1.06290 −0.531451 0.847089i \(-0.678353\pi\)
−0.531451 + 0.847089i \(0.678353\pi\)
\(128\) 6.53520 + 11.3193i 0.577636 + 1.00049i
\(129\) 0 0
\(130\) 1.99312 3.45219i 0.174808 0.302777i
\(131\) −6.01906 + 10.4253i −0.525888 + 0.910864i 0.473657 + 0.880709i \(0.342934\pi\)
−0.999545 + 0.0301553i \(0.990400\pi\)
\(132\) 0 0
\(133\) −0.275637 0.477417i −0.0239008 0.0413973i
\(134\) 4.23743 0.366058
\(135\) 0 0
\(136\) −20.1108 −1.72449
\(137\) −0.0153660 0.0266147i −0.00131280 0.00227384i 0.865368 0.501136i \(-0.167085\pi\)
−0.866681 + 0.498863i \(0.833751\pi\)
\(138\) 0 0
\(139\) −5.64943 + 9.78509i −0.479178 + 0.829961i −0.999715 0.0238785i \(-0.992399\pi\)
0.520537 + 0.853839i \(0.325732\pi\)
\(140\) −0.124459 + 0.215569i −0.0105187 + 0.0182189i
\(141\) 0 0
\(142\) −12.5092 21.6665i −1.04975 1.81822i
\(143\) −5.88760 −0.492346
\(144\) 0 0
\(145\) 1.08236 0.0898853
\(146\) −3.89081 6.73907i −0.322005 0.557730i
\(147\) 0 0
\(148\) −0.815669 + 1.41278i −0.0670476 + 0.116130i
\(149\) −0.759394 + 1.31531i −0.0622120 + 0.107754i −0.895454 0.445154i \(-0.853149\pi\)
0.833242 + 0.552909i \(0.186482\pi\)
\(150\) 0 0
\(151\) 4.57599 + 7.92585i 0.372389 + 0.644996i 0.989933 0.141540i \(-0.0452054\pi\)
−0.617544 + 0.786537i \(0.711872\pi\)
\(152\) 4.18136 0.339153
\(153\) 0 0
\(154\) 3.04642 0.245488
\(155\) 3.47359 + 6.01644i 0.279006 + 0.483252i
\(156\) 0 0
\(157\) −1.01015 + 1.74964i −0.0806191 + 0.139636i −0.903516 0.428554i \(-0.859023\pi\)
0.822897 + 0.568191i \(0.192356\pi\)
\(158\) −7.01143 + 12.1442i −0.557799 + 0.966137i
\(159\) 0 0
\(160\) −2.03818 3.53023i −0.161132 0.279089i
\(161\) −1.79562 −0.141515
\(162\) 0 0
\(163\) −13.4360 −1.05239 −0.526194 0.850365i \(-0.676381\pi\)
−0.526194 + 0.850365i \(0.676381\pi\)
\(164\) 0.907609 + 1.57202i 0.0708723 + 0.122755i
\(165\) 0 0
\(166\) 0.858914 1.48768i 0.0666647 0.115467i
\(167\) 5.91837 10.2509i 0.457977 0.793239i −0.540877 0.841102i \(-0.681908\pi\)
0.998854 + 0.0478624i \(0.0152409\pi\)
\(168\) 0 0
\(169\) −0.500000 0.866025i −0.0384615 0.0666173i
\(170\) 30.8058 2.36270
\(171\) 0 0
\(172\) 0.359813 0.0274355
\(173\) −9.25849 16.0362i −0.703910 1.21921i −0.967083 0.254460i \(-0.918102\pi\)
0.263173 0.964749i \(-0.415231\pi\)
\(174\) 0 0
\(175\) −0.340731 + 0.590164i −0.0257569 + 0.0446122i
\(176\) −13.1695 + 22.8102i −0.992686 + 1.71938i
\(177\) 0 0
\(178\) 6.79521 + 11.7696i 0.509322 + 0.882172i
\(179\) −18.6972 −1.39749 −0.698745 0.715370i \(-0.746258\pi\)
−0.698745 + 0.715370i \(0.746258\pi\)
\(180\) 0 0
\(181\) 5.93713 0.441304 0.220652 0.975353i \(-0.429182\pi\)
0.220652 + 0.975353i \(0.429182\pi\)
\(182\) 0.258715 + 0.448108i 0.0191772 + 0.0332160i
\(183\) 0 0
\(184\) 6.80981 11.7949i 0.502026 0.869534i
\(185\) −7.85440 + 13.6042i −0.577467 + 1.00020i
\(186\) 0 0
\(187\) −22.7498 39.4038i −1.66363 2.88149i
\(188\) 0.988391 0.0720858
\(189\) 0 0
\(190\) −6.40503 −0.464670
\(191\) −2.58212 4.47236i −0.186835 0.323609i 0.757358 0.653000i \(-0.226490\pi\)
−0.944193 + 0.329391i \(0.893156\pi\)
\(192\) 0 0
\(193\) −11.4596 + 19.8487i −0.824883 + 1.42874i 0.0771259 + 0.997021i \(0.475426\pi\)
−0.902009 + 0.431718i \(0.857908\pi\)
\(194\) 3.25959 5.64578i 0.234025 0.405344i
\(195\) 0 0
\(196\) 0.944552 + 1.63601i 0.0674680 + 0.116858i
\(197\) 14.5085 1.03369 0.516843 0.856080i \(-0.327107\pi\)
0.516843 + 0.856080i \(0.327107\pi\)
\(198\) 0 0
\(199\) −9.40273 −0.666542 −0.333271 0.942831i \(-0.608152\pi\)
−0.333271 + 0.942831i \(0.608152\pi\)
\(200\) −2.58441 4.47633i −0.182746 0.316525i
\(201\) 0 0
\(202\) −5.00068 + 8.66144i −0.351847 + 0.609417i
\(203\) −0.0702475 + 0.121672i −0.00493041 + 0.00853972i
\(204\) 0 0
\(205\) 8.73972 + 15.1376i 0.610409 + 1.05726i
\(206\) 21.4612 1.49527
\(207\) 0 0
\(208\) −4.47363 −0.310191
\(209\) 4.73005 + 8.19268i 0.327184 + 0.566700i
\(210\) 0 0
\(211\) −7.78297 + 13.4805i −0.535801 + 0.928035i 0.463323 + 0.886190i \(0.346657\pi\)
−0.999124 + 0.0418457i \(0.986676\pi\)
\(212\) −0.532274 + 0.921926i −0.0365567 + 0.0633181i
\(213\) 0 0
\(214\) 0.722142 + 1.25079i 0.0493646 + 0.0855021i
\(215\) 3.46478 0.236296
\(216\) 0 0
\(217\) −0.901773 −0.0612163
\(218\) 4.35427 + 7.54182i 0.294908 + 0.510796i
\(219\) 0 0
\(220\) 2.13576 3.69925i 0.143993 0.249403i
\(221\) 3.86402 6.69267i 0.259922 0.450198i
\(222\) 0 0
\(223\) 1.92148 + 3.32810i 0.128672 + 0.222866i 0.923162 0.384411i \(-0.125595\pi\)
−0.794490 + 0.607277i \(0.792262\pi\)
\(224\) 0.529128 0.0353538
\(225\) 0 0
\(226\) 17.9124 1.19151
\(227\) 12.0292 + 20.8352i 0.798406 + 1.38288i 0.920654 + 0.390379i \(0.127656\pi\)
−0.122249 + 0.992500i \(0.539011\pi\)
\(228\) 0 0
\(229\) 10.0730 17.4469i 0.665641 1.15292i −0.313471 0.949598i \(-0.601492\pi\)
0.979111 0.203325i \(-0.0651749\pi\)
\(230\) −10.4313 + 18.0675i −0.687820 + 1.19134i
\(231\) 0 0
\(232\) −0.532820 0.922872i −0.0349814 0.0605895i
\(233\) −5.86085 −0.383957 −0.191978 0.981399i \(-0.561490\pi\)
−0.191978 + 0.981399i \(0.561490\pi\)
\(234\) 0 0
\(235\) 9.51761 0.620860
\(236\) 0.0621070 + 0.107572i 0.00404282 + 0.00700237i
\(237\) 0 0
\(238\) −1.99936 + 3.46299i −0.129599 + 0.224472i
\(239\) 4.58472 7.94097i 0.296561 0.513659i −0.678786 0.734336i \(-0.737494\pi\)
0.975347 + 0.220678i \(0.0708268\pi\)
\(240\) 0 0
\(241\) 12.1866 + 21.1079i 0.785010 + 1.35968i 0.928993 + 0.370097i \(0.120676\pi\)
−0.143983 + 0.989580i \(0.545991\pi\)
\(242\) −35.6884 −2.29413
\(243\) 0 0
\(244\) 1.02666 0.0657254
\(245\) 9.09546 + 15.7538i 0.581088 + 1.00647i
\(246\) 0 0
\(247\) −0.803392 + 1.39152i −0.0511186 + 0.0885400i
\(248\) 3.41993 5.92349i 0.217166 0.376142i
\(249\) 0 0
\(250\) −6.00678 10.4041i −0.379902 0.658010i
\(251\) 11.2925 0.712775 0.356387 0.934338i \(-0.384008\pi\)
0.356387 + 0.934338i \(0.384008\pi\)
\(252\) 0 0
\(253\) 30.8136 1.93724
\(254\) −9.03247 15.6447i −0.566748 0.981636i
\(255\) 0 0
\(256\) −3.23465 + 5.60258i −0.202166 + 0.350161i
\(257\) −12.3174 + 21.3343i −0.768337 + 1.33080i 0.170127 + 0.985422i \(0.445582\pi\)
−0.938464 + 0.345377i \(0.887751\pi\)
\(258\) 0 0
\(259\) −1.01953 1.76588i −0.0633506 0.109727i
\(260\) 0.725512 0.0449944
\(261\) 0 0
\(262\) −18.1552 −1.12163
\(263\) −11.1876 19.3775i −0.689856 1.19487i −0.971884 0.235459i \(-0.924341\pi\)
0.282028 0.959406i \(-0.408993\pi\)
\(264\) 0 0
\(265\) −5.12548 + 8.87758i −0.314855 + 0.545346i
\(266\) 0.415699 0.720012i 0.0254882 0.0441468i
\(267\) 0 0
\(268\) 0.385615 + 0.667904i 0.0235552 + 0.0407988i
\(269\) 24.7265 1.50760 0.753799 0.657105i \(-0.228219\pi\)
0.753799 + 0.657105i \(0.228219\pi\)
\(270\) 0 0
\(271\) 10.1047 0.613817 0.306909 0.951739i \(-0.400705\pi\)
0.306909 + 0.951739i \(0.400705\pi\)
\(272\) −17.2862 29.9406i −1.04813 1.81541i
\(273\) 0 0
\(274\) 0.0231741 0.0401386i 0.00140000 0.00242486i
\(275\) 5.84710 10.1275i 0.352593 0.610709i
\(276\) 0 0
\(277\) −5.29702 9.17471i −0.318267 0.551255i 0.661859 0.749628i \(-0.269768\pi\)
−0.980127 + 0.198373i \(0.936434\pi\)
\(278\) −17.0403 −1.02201
\(279\) 0 0
\(280\) 2.35989 0.141030
\(281\) −10.6053 18.3690i −0.632662 1.09580i −0.987005 0.160687i \(-0.948629\pi\)
0.354344 0.935115i \(-0.384704\pi\)
\(282\) 0 0
\(283\) −0.105435 + 0.182618i −0.00626745 + 0.0108555i −0.869142 0.494562i \(-0.835328\pi\)
0.862875 + 0.505418i \(0.168662\pi\)
\(284\) 2.27672 3.94340i 0.135099 0.233998i
\(285\) 0 0
\(286\) −4.43966 7.68972i −0.262523 0.454703i
\(287\) −2.26890 −0.133929
\(288\) 0 0
\(289\) 42.7225 2.51309
\(290\) 0.816177 + 1.41366i 0.0479276 + 0.0830130i
\(291\) 0 0
\(292\) 0.708143 1.22654i 0.0414409 0.0717778i
\(293\) 13.2463 22.9433i 0.773858 1.34036i −0.161576 0.986860i \(-0.551658\pi\)
0.935434 0.353502i \(-0.115009\pi\)
\(294\) 0 0
\(295\) 0.598053 + 1.03586i 0.0348200 + 0.0603100i
\(296\) 15.4661 0.898949
\(297\) 0 0
\(298\) −2.29054 −0.132688
\(299\) 2.61683 + 4.53248i 0.151335 + 0.262120i
\(300\) 0 0
\(301\) −0.224871 + 0.389489i −0.0129614 + 0.0224498i
\(302\) −6.90124 + 11.9533i −0.397122 + 0.687835i
\(303\) 0 0
\(304\) 3.59408 + 6.22513i 0.206135 + 0.357036i
\(305\) 9.88614 0.566079
\(306\) 0 0
\(307\) −6.00218 −0.342563 −0.171281 0.985222i \(-0.554791\pi\)
−0.171281 + 0.985222i \(0.554791\pi\)
\(308\) 0.277231 + 0.480177i 0.0157967 + 0.0273606i
\(309\) 0 0
\(310\) −5.23867 + 9.07364i −0.297536 + 0.515348i
\(311\) −14.5076 + 25.1279i −0.822652 + 1.42487i 0.0810487 + 0.996710i \(0.474173\pi\)
−0.903701 + 0.428165i \(0.859160\pi\)
\(312\) 0 0
\(313\) 3.40992 + 5.90615i 0.192740 + 0.333835i 0.946157 0.323707i \(-0.104929\pi\)
−0.753417 + 0.657543i \(0.771596\pi\)
\(314\) −3.04691 −0.171947
\(315\) 0 0
\(316\) −2.55222 −0.143573
\(317\) 8.63590 + 14.9578i 0.485040 + 0.840115i 0.999852 0.0171885i \(-0.00547153\pi\)
−0.514812 + 0.857303i \(0.672138\pi\)
\(318\) 0 0
\(319\) 1.20548 2.08795i 0.0674938 0.116903i
\(320\) −8.75062 + 15.1565i −0.489174 + 0.847275i
\(321\) 0 0
\(322\) −1.35402 2.34524i −0.0754569 0.130695i
\(323\) −12.4173 −0.690916
\(324\) 0 0
\(325\) 1.98624 0.110177
\(326\) −10.1317 17.5486i −0.561142 0.971926i
\(327\) 0 0
\(328\) 8.60470 14.9038i 0.475115 0.822923i
\(329\) −0.617712 + 1.06991i −0.0340556 + 0.0589859i
\(330\) 0 0
\(331\) −15.1048 26.1623i −0.830237 1.43801i −0.897850 0.440301i \(-0.854872\pi\)
0.0676133 0.997712i \(-0.478462\pi\)
\(332\) 0.312652 0.0171590
\(333\) 0 0
\(334\) 17.8515 0.976788
\(335\) 3.71324 + 6.43151i 0.202876 + 0.351391i
\(336\) 0 0
\(337\) −4.70433 + 8.14814i −0.256261 + 0.443857i −0.965237 0.261375i \(-0.915824\pi\)
0.708976 + 0.705232i \(0.249157\pi\)
\(338\) 0.754070 1.30609i 0.0410160 0.0710418i
\(339\) 0 0
\(340\) 2.80339 + 4.85562i 0.152035 + 0.263333i
\(341\) 15.4748 0.838008
\(342\) 0 0
\(343\) −4.76289 −0.257172
\(344\) −1.70563 2.95423i −0.0919613 0.159282i
\(345\) 0 0
\(346\) 13.9631 24.1848i 0.750661 1.30018i
\(347\) 5.84166 10.1181i 0.313597 0.543165i −0.665541 0.746361i \(-0.731799\pi\)
0.979138 + 0.203195i \(0.0651327\pi\)
\(348\) 0 0
\(349\) 2.37484 + 4.11334i 0.127122 + 0.220182i 0.922560 0.385853i \(-0.126093\pi\)
−0.795438 + 0.606035i \(0.792759\pi\)
\(350\) −1.02774 −0.0549351
\(351\) 0 0
\(352\) −9.08006 −0.483969
\(353\) 0.136823 + 0.236985i 0.00728238 + 0.0126134i 0.869644 0.493680i \(-0.164349\pi\)
−0.862361 + 0.506293i \(0.831015\pi\)
\(354\) 0 0
\(355\) 21.9234 37.9725i 1.16358 2.01537i
\(356\) −1.23676 + 2.14212i −0.0655479 + 0.113532i
\(357\) 0 0
\(358\) −14.0990 24.4201i −0.745154 1.29064i
\(359\) 11.3893 0.601105 0.300553 0.953765i \(-0.402829\pi\)
0.300553 + 0.953765i \(0.402829\pi\)
\(360\) 0 0
\(361\) −16.4182 −0.864118
\(362\) 4.47702 + 7.75442i 0.235307 + 0.407563i
\(363\) 0 0
\(364\) −0.0470872 + 0.0815574i −0.00246804 + 0.00427477i
\(365\) 6.81898 11.8108i 0.356922 0.618207i
\(366\) 0 0
\(367\) 3.80454 + 6.58966i 0.198595 + 0.343977i 0.948073 0.318052i \(-0.103029\pi\)
−0.749478 + 0.662029i \(0.769695\pi\)
\(368\) 23.4134 1.22051
\(369\) 0 0
\(370\) −23.6911 −1.23164
\(371\) −0.665307 1.15235i −0.0345410 0.0598268i
\(372\) 0 0
\(373\) 14.0594 24.3517i 0.727970 1.26088i −0.229769 0.973245i \(-0.573797\pi\)
0.957740 0.287637i \(-0.0928695\pi\)
\(374\) 34.3099 59.4264i 1.77412 3.07287i
\(375\) 0 0
\(376\) −4.68528 8.11515i −0.241625 0.418507i
\(377\) 0.409497 0.0210902
\(378\) 0 0
\(379\) −16.8213 −0.864052 −0.432026 0.901861i \(-0.642201\pi\)
−0.432026 + 0.901861i \(0.642201\pi\)
\(380\) −0.582871 1.00956i −0.0299006 0.0517894i
\(381\) 0 0
\(382\) 3.89420 6.74495i 0.199244 0.345101i
\(383\) 2.42358 4.19776i 0.123839 0.214495i −0.797440 0.603399i \(-0.793813\pi\)
0.921278 + 0.388903i \(0.127146\pi\)
\(384\) 0 0
\(385\) 2.66956 + 4.62382i 0.136053 + 0.235651i
\(386\) −34.5655 −1.75934
\(387\) 0 0
\(388\) 1.18652 0.0602364
\(389\) −18.1834 31.4946i −0.921937 1.59684i −0.796415 0.604751i \(-0.793273\pi\)
−0.125522 0.992091i \(-0.540061\pi\)
\(390\) 0 0
\(391\) −20.2229 + 35.0271i −1.02272 + 1.77140i
\(392\) 8.95494 15.5104i 0.452293 0.783394i
\(393\) 0 0
\(394\) 10.9404 + 18.9493i 0.551169 + 0.954654i
\(395\) −24.5763 −1.23657
\(396\) 0 0
\(397\) −29.0866 −1.45981 −0.729907 0.683547i \(-0.760437\pi\)
−0.729907 + 0.683547i \(0.760437\pi\)
\(398\) −7.09032 12.2808i −0.355406 0.615581i
\(399\) 0 0
\(400\) 4.44286 7.69525i 0.222143 0.384763i
\(401\) 2.19451 3.80101i 0.109589 0.189813i −0.806015 0.591895i \(-0.798380\pi\)
0.915604 + 0.402082i \(0.131713\pi\)
\(402\) 0 0
\(403\) 1.31419 + 2.27624i 0.0654643 + 0.113388i
\(404\) −1.82029 −0.0905628
\(405\) 0 0
\(406\) −0.211886 −0.0105157
\(407\) 17.4956 + 30.3033i 0.867225 + 1.50208i
\(408\) 0 0
\(409\) −0.278736 + 0.482785i −0.0137826 + 0.0238722i −0.872834 0.488016i \(-0.837721\pi\)
0.859052 + 0.511889i \(0.171054\pi\)
\(410\) −13.1807 + 22.8297i −0.650950 + 1.12748i
\(411\) 0 0
\(412\) 1.95301 + 3.38272i 0.0962181 + 0.166655i
\(413\) −0.155259 −0.00763981
\(414\) 0 0
\(415\) 3.01065 0.147787
\(416\) −0.771118 1.33562i −0.0378072 0.0654839i
\(417\) 0 0
\(418\) −7.13358 + 12.3557i −0.348915 + 0.604338i
\(419\) −3.99151 + 6.91350i −0.194998 + 0.337747i −0.946900 0.321528i \(-0.895803\pi\)
0.751902 + 0.659275i \(0.229137\pi\)
\(420\) 0 0
\(421\) 6.51423 + 11.2830i 0.317484 + 0.549899i 0.979962 0.199182i \(-0.0638286\pi\)
−0.662478 + 0.749081i \(0.730495\pi\)
\(422\) −23.4756 −1.14277
\(423\) 0 0
\(424\) 10.0926 0.490139
\(425\) 7.67487 + 13.2933i 0.372286 + 0.644818i
\(426\) 0 0
\(427\) −0.641630 + 1.11134i −0.0310507 + 0.0537813i
\(428\) −0.131433 + 0.227648i −0.00635305 + 0.0110038i
\(429\) 0 0
\(430\) 2.61269 + 4.52531i 0.125995 + 0.218230i
\(431\) −13.8846 −0.668796 −0.334398 0.942432i \(-0.608533\pi\)
−0.334398 + 0.942432i \(0.608533\pi\)
\(432\) 0 0
\(433\) −8.20792 −0.394447 −0.197224 0.980359i \(-0.563193\pi\)
−0.197224 + 0.980359i \(0.563193\pi\)
\(434\) −0.680000 1.17779i −0.0326411 0.0565360i
\(435\) 0 0
\(436\) −0.792495 + 1.37264i −0.0379536 + 0.0657376i
\(437\) 4.20467 7.28271i 0.201137 0.348379i
\(438\) 0 0
\(439\) 5.34748 + 9.26210i 0.255221 + 0.442056i 0.964956 0.262413i \(-0.0845184\pi\)
−0.709734 + 0.704469i \(0.751185\pi\)
\(440\) −40.4967 −1.93061
\(441\) 0 0
\(442\) 11.6550 0.554370
\(443\) 9.54960 + 16.5404i 0.453715 + 0.785857i 0.998613 0.0526447i \(-0.0167651\pi\)
−0.544898 + 0.838502i \(0.683432\pi\)
\(444\) 0 0
\(445\) −11.9092 + 20.6273i −0.564550 + 0.977830i
\(446\) −2.89786 + 5.01924i −0.137218 + 0.237668i
\(447\) 0 0
\(448\) −1.13587 1.96738i −0.0536646 0.0929498i
\(449\) 28.5873 1.34912 0.674558 0.738221i \(-0.264334\pi\)
0.674558 + 0.738221i \(0.264334\pi\)
\(450\) 0 0
\(451\) 38.9353 1.83339
\(452\) 1.63006 + 2.82335i 0.0766717 + 0.132799i
\(453\) 0 0
\(454\) −18.1417 + 31.4224i −0.851433 + 1.47472i
\(455\) −0.453421 + 0.785348i −0.0212567 + 0.0368177i
\(456\) 0 0
\(457\) −3.54691 6.14343i −0.165918 0.287378i 0.771063 0.636759i \(-0.219725\pi\)
−0.936981 + 0.349381i \(0.886392\pi\)
\(458\) 30.3829 1.41970
\(459\) 0 0
\(460\) −3.79708 −0.177040
\(461\) −10.4066 18.0248i −0.484685 0.839500i 0.515160 0.857094i \(-0.327733\pi\)
−0.999845 + 0.0175945i \(0.994399\pi\)
\(462\) 0 0
\(463\) 9.78714 16.9518i 0.454847 0.787818i −0.543832 0.839194i \(-0.683027\pi\)
0.998679 + 0.0513757i \(0.0163606\pi\)
\(464\) 0.915970 1.58651i 0.0425228 0.0736517i
\(465\) 0 0
\(466\) −4.41949 7.65478i −0.204729 0.354601i
\(467\) −32.2324 −1.49154 −0.745768 0.666206i \(-0.767917\pi\)
−0.745768 + 0.666206i \(0.767917\pi\)
\(468\) 0 0
\(469\) −0.963986 −0.0445127
\(470\) 7.17694 + 12.4308i 0.331048 + 0.573391i
\(471\) 0 0
\(472\) 0.588813 1.01985i 0.0271023 0.0469426i
\(473\) 3.85889 6.68379i 0.177432 0.307321i
\(474\) 0 0
\(475\) −1.59573 2.76389i −0.0732171 0.126816i
\(476\) −0.727783 −0.0333579
\(477\) 0 0
\(478\) 13.8288 0.632515
\(479\) −0.525387 0.909996i −0.0240055 0.0415788i 0.853773 0.520645i \(-0.174309\pi\)
−0.877779 + 0.479067i \(0.840975\pi\)
\(480\) 0 0
\(481\) −2.97160 + 5.14697i −0.135493 + 0.234682i
\(482\) −18.3792 + 31.8336i −0.837148 + 1.44998i
\(483\) 0 0
\(484\) −3.24771 5.62520i −0.147623 0.255691i
\(485\) 11.4255 0.518803
\(486\) 0 0
\(487\) 18.2019 0.824808 0.412404 0.911001i \(-0.364689\pi\)
0.412404 + 0.911001i \(0.364689\pi\)
\(488\) −4.86670 8.42938i −0.220305 0.381580i
\(489\) 0 0
\(490\) −13.7172 + 23.7589i −0.619681 + 1.07332i
\(491\) 0.687377 1.19057i 0.0310209 0.0537297i −0.850098 0.526624i \(-0.823457\pi\)
0.881119 + 0.472895i \(0.156791\pi\)
\(492\) 0 0
\(493\) 1.58230 + 2.74063i 0.0712634 + 0.123432i
\(494\) −2.42326 −0.109027
\(495\) 0 0
\(496\) 11.7584 0.527967
\(497\) 2.84575 + 4.92899i 0.127649 + 0.221095i
\(498\) 0 0
\(499\) −11.8467 + 20.5191i −0.530330 + 0.918559i 0.469044 + 0.883175i \(0.344599\pi\)
−0.999374 + 0.0353839i \(0.988735\pi\)
\(500\) 1.09326 1.89358i 0.0488920 0.0846835i
\(501\) 0 0
\(502\) 8.51532 + 14.7490i 0.380057 + 0.658279i
\(503\) 8.31698 0.370836 0.185418 0.982660i \(-0.440636\pi\)
0.185418 + 0.982660i \(0.440636\pi\)
\(504\) 0 0
\(505\) −17.5283 −0.779998
\(506\) 23.2357 + 40.2453i 1.03295 + 1.78912i
\(507\) 0 0
\(508\) 1.64395 2.84740i 0.0729384 0.126333i
\(509\) 4.83988 8.38292i 0.214524 0.371567i −0.738601 0.674143i \(-0.764513\pi\)
0.953125 + 0.302576i \(0.0978466\pi\)
\(510\) 0 0
\(511\) 0.885131 + 1.53309i 0.0391559 + 0.0678200i
\(512\) 16.3842 0.724086
\(513\) 0 0
\(514\) −37.1527 −1.63873
\(515\) 18.8063 + 32.5735i 0.828706 + 1.43536i
\(516\) 0 0
\(517\) 10.6002 18.3601i 0.466196 0.807476i
\(518\) 1.53760 2.66320i 0.0675582 0.117014i
\(519\) 0 0
\(520\) −3.43915 5.95679i −0.150817 0.261223i
\(521\) 13.7581 0.602753 0.301377 0.953505i \(-0.402554\pi\)
0.301377 + 0.953505i \(0.402554\pi\)
\(522\) 0 0
\(523\) −11.2006 −0.489769 −0.244885 0.969552i \(-0.578750\pi\)
−0.244885 + 0.969552i \(0.578750\pi\)
\(524\) −1.65216 2.86162i −0.0721749 0.125011i
\(525\) 0 0
\(526\) 16.8724 29.2239i 0.735674 1.27422i
\(527\) −10.1561 + 17.5909i −0.442406 + 0.766270i
\(528\) 0 0
\(529\) −2.19556 3.80282i −0.0954592 0.165340i
\(530\) −15.4599 −0.671534
\(531\) 0 0
\(532\) 0.151318 0.00656046
\(533\) 3.30656 + 5.72712i 0.143223 + 0.248069i
\(534\) 0 0
\(535\) −1.26562 + 2.19212i −0.0547175 + 0.0947734i
\(536\) 3.65587 6.33215i 0.157909 0.273507i
\(537\) 0 0
\(538\) 18.6455 + 32.2949i 0.803864 + 1.39233i
\(539\) 40.5201 1.74533
\(540\) 0 0
\(541\) −24.0677 −1.03475 −0.517375 0.855759i \(-0.673091\pi\)
−0.517375 + 0.855759i \(0.673091\pi\)
\(542\) 7.61966 + 13.1976i 0.327292 + 0.566887i
\(543\) 0 0
\(544\) 5.95923 10.3217i 0.255500 0.442538i
\(545\) −7.63124 + 13.2177i −0.326887 + 0.566184i
\(546\) 0 0
\(547\) −10.8189 18.7389i −0.462582 0.801216i 0.536507 0.843896i \(-0.319744\pi\)
−0.999089 + 0.0426803i \(0.986410\pi\)
\(548\) 0.00843555 0.000360349
\(549\) 0 0
\(550\) 17.6365 0.752022
\(551\) −0.328987 0.569822i −0.0140153 0.0242752i
\(552\) 0 0
\(553\) 1.59505 2.76271i 0.0678285 0.117482i
\(554\) 7.98865 13.8368i 0.339405 0.587867i
\(555\) 0 0
\(556\) −1.55070 2.68589i −0.0657643 0.113907i
\(557\) −23.1251 −0.979840 −0.489920 0.871767i \(-0.662974\pi\)
−0.489920 + 0.871767i \(0.662974\pi\)
\(558\) 0 0
\(559\) 1.31085 0.0554432
\(560\) 2.02844 + 3.51336i 0.0857172 + 0.148467i
\(561\) 0 0
\(562\) 15.9944 27.7030i 0.674681 1.16858i
\(563\) −12.6167 + 21.8528i −0.531732 + 0.920987i 0.467582 + 0.883950i \(0.345125\pi\)
−0.999314 + 0.0370372i \(0.988208\pi\)
\(564\) 0 0
\(565\) 15.6965 + 27.1872i 0.660357 + 1.14377i
\(566\) −0.318021 −0.0133674
\(567\) 0 0
\(568\) −43.1695 −1.81135
\(569\) 16.7024 + 28.9294i 0.700200 + 1.21278i 0.968396 + 0.249418i \(0.0802394\pi\)
−0.268195 + 0.963365i \(0.586427\pi\)
\(570\) 0 0
\(571\) −19.2445 + 33.3324i −0.805355 + 1.39492i 0.110695 + 0.993854i \(0.464692\pi\)
−0.916051 + 0.401062i \(0.868641\pi\)
\(572\) 0.808037 1.39956i 0.0337857 0.0585186i
\(573\) 0 0
\(574\) −1.71091 2.96339i −0.0714121 0.123689i
\(575\) −10.3953 −0.433514
\(576\) 0 0
\(577\) −40.5935 −1.68993 −0.844965 0.534821i \(-0.820379\pi\)
−0.844965 + 0.534821i \(0.820379\pi\)
\(578\) 32.2158 + 55.7994i 1.34000 + 2.32095i
\(579\) 0 0
\(580\) −0.148548 + 0.257292i −0.00616810 + 0.0106835i
\(581\) −0.195397 + 0.338438i −0.00810644 + 0.0140408i
\(582\) 0 0
\(583\) 11.4170 + 19.7748i 0.472842 + 0.818987i
\(584\) −13.4273 −0.555624
\(585\) 0 0
\(586\) 39.9546 1.65051
\(587\) −4.86211 8.42142i −0.200681 0.347589i 0.748067 0.663623i \(-0.230982\pi\)
−0.948748 + 0.316034i \(0.897649\pi\)
\(588\) 0 0
\(589\) 2.11161 3.65742i 0.0870076 0.150702i
\(590\) −0.901947 + 1.56222i −0.0371326 + 0.0643155i
\(591\) 0 0
\(592\) 13.2939 + 23.0256i 0.546374 + 0.946348i
\(593\) −12.0667 −0.495518 −0.247759 0.968822i \(-0.579694\pi\)
−0.247759 + 0.968822i \(0.579694\pi\)
\(594\) 0 0
\(595\) −7.00811 −0.287304
\(596\) −0.208444 0.361036i −0.00853821 0.0147886i
\(597\) 0 0
\(598\) −3.94654 + 6.83561i −0.161386 + 0.279529i
\(599\) −2.33962 + 4.05234i −0.0955943 + 0.165574i −0.909856 0.414923i \(-0.863808\pi\)
0.814262 + 0.580497i \(0.197142\pi\)
\(600\) 0 0
\(601\) −9.74305 16.8755i −0.397427 0.688365i 0.595980 0.802999i \(-0.296764\pi\)
−0.993408 + 0.114634i \(0.963430\pi\)
\(602\) −0.678275 −0.0276444
\(603\) 0 0
\(604\) −2.51211 −0.102216
\(605\) −31.2735 54.1673i −1.27145 2.20221i
\(606\) 0 0
\(607\) 5.80961 10.0625i 0.235805 0.408426i −0.723701 0.690113i \(-0.757561\pi\)
0.959506 + 0.281687i \(0.0908941\pi\)
\(608\) −1.23902 + 2.14605i −0.0502489 + 0.0870336i
\(609\) 0 0
\(610\) 7.45484 + 12.9122i 0.301838 + 0.522798i
\(611\) 3.60086 0.145675
\(612\) 0 0
\(613\) 24.0957 0.973218 0.486609 0.873620i \(-0.338234\pi\)
0.486609 + 0.873620i \(0.338234\pi\)
\(614\) −4.52607 7.83938i −0.182657 0.316372i
\(615\) 0 0
\(616\) 2.62832 4.55238i 0.105898 0.183421i
\(617\) 3.35045 5.80316i 0.134884 0.233626i −0.790669 0.612244i \(-0.790267\pi\)
0.925553 + 0.378618i \(0.123600\pi\)
\(618\) 0 0
\(619\) −5.29020 9.16290i −0.212631 0.368288i 0.739906 0.672710i \(-0.234870\pi\)
−0.952537 + 0.304422i \(0.901537\pi\)
\(620\) −1.90692 −0.0765837
\(621\) 0 0
\(622\) −43.7591 −1.75458
\(623\) −1.54586 2.67751i −0.0619337 0.107272i
\(624\) 0 0
\(625\) 15.4930 26.8347i 0.619721 1.07339i
\(626\) −5.14263 + 8.90730i −0.205541 + 0.356007i
\(627\) 0 0
\(628\) −0.277275 0.480254i −0.0110645 0.0191642i
\(629\) −45.9293 −1.83132
\(630\) 0 0
\(631\) 31.1707 1.24089 0.620443 0.784252i \(-0.286953\pi\)
0.620443 + 0.784252i \(0.286953\pi\)
\(632\) 12.0983 + 20.9549i 0.481245 + 0.833541i
\(633\) 0 0
\(634\) −13.0242 + 22.5585i −0.517255 + 0.895912i
\(635\) 15.8302 27.4187i 0.628203 1.08808i
\(636\) 0 0
\(637\) 3.44114 + 5.96024i 0.136343 + 0.236153i
\(638\) 3.63606 0.143953
\(639\) 0 0
\(640\) −34.5470 −1.36559
\(641\) −7.95094 13.7714i −0.314043 0.543939i 0.665191 0.746674i \(-0.268350\pi\)
−0.979234 + 0.202735i \(0.935017\pi\)
\(642\) 0 0
\(643\) 11.9550 20.7067i 0.471460 0.816593i −0.528007 0.849240i \(-0.677061\pi\)
0.999467 + 0.0326474i \(0.0103938\pi\)
\(644\) 0.246438 0.426843i 0.00971102 0.0168200i
\(645\) 0 0
\(646\) −9.36350 16.2181i −0.368402 0.638091i
\(647\) −41.8996 −1.64725 −0.823623 0.567138i \(-0.808050\pi\)
−0.823623 + 0.567138i \(0.808050\pi\)
\(648\) 0 0
\(649\) 2.66432 0.104584
\(650\) 1.49777 + 2.59421i 0.0587472 + 0.101753i
\(651\) 0 0
\(652\) 1.84401 3.19391i 0.0722169 0.125083i
\(653\) −1.59273 + 2.75868i −0.0623282 + 0.107956i −0.895506 0.445050i \(-0.853186\pi\)
0.833177 + 0.553006i \(0.186519\pi\)
\(654\) 0 0
\(655\) −15.9093 27.5557i −0.621627 1.07669i
\(656\) 29.5846 1.15509
\(657\) 0 0
\(658\) −1.86319 −0.0726348
\(659\) −7.21287 12.4931i −0.280973 0.486660i 0.690651 0.723188i \(-0.257324\pi\)
−0.971625 + 0.236528i \(0.923991\pi\)
\(660\) 0 0
\(661\) −6.13531 + 10.6267i −0.238636 + 0.413330i −0.960323 0.278890i \(-0.910034\pi\)
0.721687 + 0.692219i \(0.243367\pi\)
\(662\) 22.7802 39.4565i 0.885378 1.53352i
\(663\) 0 0
\(664\) −1.48207 2.56702i −0.0575154 0.0996195i
\(665\) 1.45710 0.0565039
\(666\) 0 0
\(667\) −2.14317 −0.0829837
\(668\) 1.62452 + 2.81375i 0.0628545 + 0.108867i
\(669\) 0 0
\(670\) −5.60008 + 9.69962i −0.216350 + 0.374729i
\(671\) 11.0107 19.0710i 0.425062 0.736228i
\(672\) 0 0
\(673\) −21.5015 37.2417i −0.828821 1.43556i −0.898964 0.438023i \(-0.855679\pi\)
0.0701426 0.997537i \(-0.477655\pi\)
\(674\) −14.1896 −0.546562
\(675\) 0 0
\(676\) 0.274488 0.0105572
\(677\) −19.5460 33.8547i −0.751213 1.30114i −0.947235 0.320540i \(-0.896136\pi\)
0.196021 0.980600i \(-0.437198\pi\)
\(678\) 0 0
\(679\) −0.741535 + 1.28438i −0.0284575 + 0.0492898i
\(680\) 26.5779 46.0343i 1.01922 1.76533i
\(681\) 0 0
\(682\) 11.6691 + 20.2115i 0.446833 + 0.773937i
\(683\) −12.2513 −0.468783 −0.234391 0.972142i \(-0.575310\pi\)
−0.234391 + 0.972142i \(0.575310\pi\)
\(684\) 0 0
\(685\) 0.0812292 0.00310361
\(686\) −3.59156 6.22076i −0.137126 0.237510i
\(687\) 0 0
\(688\) 2.93214 5.07861i 0.111787 0.193620i
\(689\) −1.93915 + 3.35871i −0.0738759 + 0.127957i
\(690\) 0 0
\(691\) −11.5612 20.0247i −0.439810 0.761774i 0.557864 0.829932i \(-0.311621\pi\)
−0.997675 + 0.0681586i \(0.978288\pi\)
\(692\) 5.08269 0.193215
\(693\) 0 0
\(694\) 17.6201 0.668849
\(695\) −14.9323 25.8635i −0.566414 0.981057i
\(696\) 0 0
\(697\) −25.5532 + 44.2594i −0.967895 + 1.67644i
\(698\) −3.58159 + 6.20349i −0.135565 + 0.234806i
\(699\) 0 0
\(700\) −0.0935266 0.161993i −0.00353497 0.00612275i
\(701\) 16.6318 0.628173 0.314086 0.949394i \(-0.398302\pi\)
0.314086 + 0.949394i \(0.398302\pi\)
\(702\) 0 0
\(703\) 9.54945 0.360164
\(704\) 19.4919 + 33.7610i 0.734630 + 1.27242i
\(705\) 0 0
\(706\) −0.206349 + 0.357407i −0.00776605 + 0.0134512i
\(707\) 1.13762 1.97042i 0.0427846 0.0741052i
\(708\) 0 0
\(709\) 13.2968 + 23.0307i 0.499371 + 0.864936i 1.00000 0.000725798i \(-0.000231029\pi\)
−0.500628 + 0.865662i \(0.666898\pi\)
\(710\) 66.1273 2.48171
\(711\) 0 0
\(712\) 23.4504 0.878842
\(713\) −6.87800 11.9130i −0.257583 0.446147i
\(714\) 0 0
\(715\) 7.78090 13.4769i 0.290989 0.504008i
\(716\) 2.56607 4.44456i 0.0958985 0.166101i
\(717\) 0 0
\(718\) 8.58835 + 14.8755i 0.320514 + 0.555147i
\(719\) −27.2922 −1.01783 −0.508914 0.860817i \(-0.669953\pi\)
−0.508914 + 0.860817i \(0.669953\pi\)
\(720\) 0 0
\(721\) −4.88228 −0.181826
\(722\) −12.3805 21.4437i −0.460755 0.798051i
\(723\) 0 0
\(724\) −0.814835 + 1.41134i −0.0302831 + 0.0524519i
\(725\) −0.406680 + 0.704391i −0.0151037 + 0.0261604i
\(726\) 0 0
\(727\) −3.33939 5.78399i −0.123851 0.214516i 0.797432 0.603409i \(-0.206191\pi\)
−0.921283 + 0.388892i \(0.872858\pi\)
\(728\) 0.892832 0.0330906
\(729\) 0 0
\(730\) 20.5680 0.761255
\(731\) 5.06516 + 8.77312i 0.187342 + 0.324485i
\(732\) 0 0
\(733\) 9.14541 15.8403i 0.337793 0.585075i −0.646224 0.763148i \(-0.723653\pi\)
0.984017 + 0.178073i \(0.0569862\pi\)
\(734\) −5.73778 + 9.93813i −0.211785 + 0.366823i
\(735\) 0 0
\(736\) 4.03576 + 6.99015i 0.148760 + 0.257660i
\(737\) 16.5424 0.609348
\(738\) 0 0
\(739\) 1.08400 0.0398757 0.0199378 0.999801i \(-0.493653\pi\)
0.0199378 + 0.999801i \(0.493653\pi\)
\(740\) −2.15594 3.73419i −0.0792538 0.137272i
\(741\) 0 0
\(742\) 1.00338 1.73790i 0.0368351 0.0638003i
\(743\) 6.43088 11.1386i 0.235926 0.408636i −0.723615 0.690204i \(-0.757521\pi\)
0.959541 + 0.281567i \(0.0908543\pi\)
\(744\) 0 0
\(745\) −2.00719 3.47656i −0.0735378 0.127371i
\(746\) 42.4072 1.55264
\(747\) 0 0
\(748\) 12.4891 0.456646
\(749\) −0.164282 0.284545i −0.00600275 0.0103971i
\(750\) 0 0
\(751\) 4.57485 7.92388i 0.166939 0.289146i −0.770403 0.637557i \(-0.779945\pi\)
0.937342 + 0.348410i \(0.113278\pi\)
\(752\) 8.05446 13.9507i 0.293716 0.508731i
\(753\) 0 0
\(754\) 0.308790 + 0.534839i 0.0112455 + 0.0194777i
\(755\) −24.1901 −0.880367
\(756\) 0 0
\(757\) 31.3956 1.14109 0.570546 0.821266i \(-0.306732\pi\)
0.570546 + 0.821266i \(0.306732\pi\)
\(758\) −12.6844 21.9701i −0.460720 0.797990i
\(759\) 0 0
\(760\) −5.52598 + 9.57127i −0.200448 + 0.347187i
\(761\) −21.3439 + 36.9687i −0.773714 + 1.34011i 0.161800 + 0.986824i \(0.448270\pi\)
−0.935514 + 0.353289i \(0.885063\pi\)
\(762\) 0 0
\(763\) −0.990566 1.71571i −0.0358609 0.0621129i
\(764\) 1.41752 0.0512841
\(765\) 0 0
\(766\) 7.31019 0.264128
\(767\) 0.226265 + 0.391903i 0.00816996 + 0.0141508i
\(768\) 0 0
\(769\) 4.50243 7.79845i 0.162362 0.281219i −0.773353 0.633975i \(-0.781422\pi\)
0.935715 + 0.352756i \(0.114755\pi\)
\(770\) −4.02607 + 6.97336i −0.145090 + 0.251303i
\(771\) 0 0
\(772\) −3.14553 5.44822i −0.113210 0.196086i
\(773\) −18.7179 −0.673235 −0.336617 0.941641i \(-0.609283\pi\)
−0.336617 + 0.941641i \(0.609283\pi\)
\(774\) 0 0
\(775\) −5.22059 −0.187529
\(776\) −5.62447 9.74187i −0.201907 0.349713i
\(777\) 0 0
\(778\) 27.4232 47.4983i 0.983169 1.70290i
\(779\) 5.31292 9.20225i 0.190355 0.329705i
\(780\) 0 0
\(781\) −48.8343 84.5835i −1.74743 3.02664i
\(782\) −60.9980 −2.18128
\(783\) 0 0
\(784\) 30.7888 1.09960
\(785\) −2.66999 4.62456i −0.0952960 0.165058i
\(786\) 0 0
\(787\) −15.2163 + 26.3553i −0.542401 + 0.939466i 0.456365 + 0.889793i \(0.349151\pi\)
−0.998766 + 0.0496732i \(0.984182\pi\)
\(788\) −1.99120 + 3.44886i −0.0709335 + 0.122860i
\(789\) 0 0
\(790\) −18.5323 32.0988i −0.659348 1.14202i
\(791\) −4.07494 −0.144888
\(792\) 0 0
\(793\) 3.74029 0.132822
\(794\) −21.9333 37.9896i −0.778384 1.34820i
\(795\) 0 0
\(796\) 1.29047 2.23515i 0.0457394 0.0792230i
\(797\) −13.8933 + 24.0639i −0.492126 + 0.852387i −0.999959 0.00906828i \(-0.997113\pi\)
0.507833 + 0.861456i \(0.330447\pi\)
\(798\) 0 0
\(799\) 13.9138 + 24.0994i 0.492234 + 0.852574i
\(800\) 3.06325 0.108302
\(801\) 0 0
\(802\) 6.61926 0.233734
\(803\) −15.1892 26.3085i −0.536016 0.928408i
\(804\) 0 0
\(805\) 2.37305 4.11024i 0.0836390 0.144867i
\(806\) −1.98198 + 3.43289i −0.0698122 + 0.120918i
\(807\) 0 0
\(808\) 8.62874 + 14.9454i 0.303558 + 0.525778i
\(809\) 25.1521 0.884299 0.442150 0.896941i \(-0.354216\pi\)
0.442150 + 0.896941i \(0.354216\pi\)
\(810\) 0 0
\(811\) 46.6061 1.63656 0.818281 0.574819i \(-0.194928\pi\)
0.818281 + 0.574819i \(0.194928\pi\)
\(812\) −0.0192821 0.0333975i −0.000676668 0.00117202i
\(813\) 0 0
\(814\) −26.3858 + 45.7016i −0.924823 + 1.60184i
\(815\) 17.7567 30.7554i 0.621989 1.07732i
\(816\) 0 0
\(817\) −1.05313 1.82407i −0.0368443 0.0638163i
\(818\) −0.840747 −0.0293960
\(819\) 0 0
\(820\) −4.79789 −0.167550
\(821\) 5.19777 + 9.00280i 0.181403 + 0.314200i 0.942359 0.334605i \(-0.108603\pi\)
−0.760955 + 0.648804i \(0.775269\pi\)
\(822\) 0 0
\(823\) −3.66966 + 6.35603i −0.127916 + 0.221557i −0.922869 0.385114i \(-0.874162\pi\)
0.794953 + 0.606671i \(0.207496\pi\)
\(824\) 18.5158 32.0703i 0.645028 1.11722i
\(825\) 0 0
\(826\) −0.117076 0.202782i −0.00407361 0.00705570i
\(827\) 11.6262 0.404281 0.202141 0.979357i \(-0.435210\pi\)
0.202141 + 0.979357i \(0.435210\pi\)
\(828\) 0 0
\(829\) 5.35678 0.186049 0.0930243 0.995664i \(-0.470347\pi\)
0.0930243 + 0.995664i \(0.470347\pi\)
\(830\) 2.27024 + 3.93217i 0.0788012 + 0.136488i
\(831\) 0 0
\(832\) −3.31068 + 5.73426i −0.114777 + 0.198800i
\(833\) −26.5933 + 46.0609i −0.921403 + 1.59592i
\(834\) 0 0
\(835\) 15.6431 + 27.0947i 0.541353 + 0.937651i
\(836\) −2.59668 −0.0898081
\(837\) 0 0
\(838\) −12.0395 −0.415899
\(839\) 24.0328 + 41.6261i 0.829705 + 1.43709i 0.898270 + 0.439444i \(0.144825\pi\)
−0.0685648 + 0.997647i \(0.521842\pi\)
\(840\) 0 0
\(841\) 14.4162 24.9695i 0.497109 0.861018i
\(842\) −9.82437 + 17.0163i −0.338570 + 0.586421i
\(843\) 0 0
\(844\) −2.13633 3.70023i −0.0735355 0.127367i
\(845\) 2.64315 0.0909271
\(846\) 0 0
\(847\) 8.11885 0.278967
\(848\) 8.67506 + 15.0256i 0.297903 + 0.515983i
\(849\) 0 0
\(850\) −11.5748 + 20.0481i −0.397012 + 0.687645i
\(851\) 15.5523 26.9375i 0.533127 0.923404i
\(852\) 0 0
\(853\) 12.3049 + 21.3126i 0.421310 + 0.729731i 0.996068 0.0885930i \(-0.0282371\pi\)
−0.574758 + 0.818324i \(0.694904\pi\)
\(854\) −1.93534 −0.0662259
\(855\) 0 0
\(856\) 2.49213 0.0851793
\(857\) 16.6402 + 28.8216i 0.568417 + 0.984528i 0.996723 + 0.0808938i \(0.0257775\pi\)
−0.428305 + 0.903634i \(0.640889\pi\)
\(858\) 0 0
\(859\) −6.91335 + 11.9743i −0.235881 + 0.408557i −0.959528 0.281613i \(-0.909131\pi\)
0.723648 + 0.690170i \(0.242464\pi\)
\(860\) −0.475520 + 0.823625i −0.0162151 + 0.0280854i
\(861\) 0 0
\(862\) −10.4699 18.1345i −0.356607 0.617662i
\(863\) 23.1145 0.786827 0.393413 0.919362i \(-0.371294\pi\)
0.393413 + 0.919362i \(0.371294\pi\)
\(864\) 0 0
\(865\) 48.9432 1.66412
\(866\) −6.18935 10.7203i −0.210323 0.364289i
\(867\) 0 0
\(868\) 0.123763 0.214363i 0.00420078 0.00727597i
\(869\) −27.3718 + 47.4093i −0.928524 + 1.60825i
\(870\) 0 0
\(871\) 1.40485 + 2.43328i 0.0476016 + 0.0824484i
\(872\) 15.0267 0.508868
\(873\) 0 0
\(874\) 12.6825 0.428991
\(875\) 1.36650 + 2.36685i 0.0461962 + 0.0800142i
\(876\) 0 0
\(877\) −23.4704 + 40.6520i −0.792540 + 1.37272i 0.131849 + 0.991270i \(0.457909\pi\)
−0.924389 + 0.381450i \(0.875425\pi\)
\(878\) −8.06475 + 13.9686i −0.272172 + 0.471416i
\(879\) 0 0
\(880\) −34.8089 60.2908i −1.17341 2.03240i
\(881\) 10.1247 0.341109 0.170555 0.985348i \(-0.445444\pi\)
0.170555 + 0.985348i \(0.445444\pi\)
\(882\) 0 0
\(883\) −34.3946 −1.15747 −0.578736 0.815515i \(-0.696454\pi\)
−0.578736 + 0.815515i \(0.696454\pi\)
\(884\) 1.06063 + 1.83706i 0.0356727 + 0.0617869i
\(885\) 0 0
\(886\) −14.4021 + 24.9452i −0.483849 + 0.838051i
\(887\) −14.4606 + 25.0465i −0.485539 + 0.840978i −0.999862 0.0166184i \(-0.994710\pi\)
0.514323 + 0.857597i \(0.328043\pi\)
\(888\) 0 0
\(889\) 2.05483 + 3.55906i 0.0689166 + 0.119367i
\(890\) −35.9215 −1.20409
\(891\) 0 0
\(892\) −1.05485 −0.0353188
\(893\) −2.89290 5.01065i −0.0968072 0.167675i
\(894\) 0 0
\(895\) 24.7097 42.7984i 0.825954 1.43059i
\(896\) 2.24217 3.88356i 0.0749057 0.129741i
\(897\) 0 0
\(898\) 21.5568 + 37.3375i 0.719360 + 1.24597i
\(899\) −1.07631 −0.0358970
\(900\) 0 0
\(901\) −29.9717 −0.998502
\(902\) 29.3600 + 50.8530i 0.977580 + 1.69322i
\(903\) 0 0
\(904\) 15.4540 26.7671i 0.513993 0.890262i
\(905\) −7.84637 + 13.5903i −0.260822 + 0.451757i
\(906\) 0 0
\(907\) 20.0348 + 34.7013i 0.665244 + 1.15224i 0.979219 + 0.202806i \(0.0650059\pi\)
−0.313975 + 0.949431i \(0.601661\pi\)
\(908\) −6.60373 −0.219153
\(909\) 0 0
\(910\) −1.36765 −0.0453370
\(911\) −28.3462 49.0970i −0.939151 1.62666i −0.767060 0.641576i \(-0.778281\pi\)
−0.172091 0.985081i \(-0.555052\pi\)
\(912\) 0 0
\(913\) 3.35310 5.80774i 0.110971 0.192208i
\(914\) 5.34924 9.26516i 0.176937 0.306464i
\(915\) 0 0
\(916\) 2.76491 + 4.78896i 0.0913551 + 0.158232i
\(917\) 4.13018 0.136390
\(918\) 0 0
\(919\) −26.3183 −0.868162 −0.434081 0.900874i \(-0.642927\pi\)
−0.434081 + 0.900874i \(0.642927\pi\)
\(920\) 17.9993 + 31.1758i 0.593421 + 1.02783i
\(921\) 0 0
\(922\) 15.6947 27.1840i 0.516876 0.895256i
\(923\) 8.29444 14.3664i 0.273015 0.472876i
\(924\) 0 0
\(925\) −5.90232 10.2231i −0.194067 0.336134i
\(926\) 29.5208 0.970113
\(927\) 0 0
\(928\) 0.631541 0.0207314
\(929\) −3.12768 5.41730i −0.102616 0.177736i 0.810146 0.586228i \(-0.199388\pi\)
−0.912762 + 0.408493i \(0.866055\pi\)
\(930\) 0 0
\(931\) 5.52917 9.57681i 0.181211 0.313867i
\(932\) 0.804365 1.39320i 0.0263479 0.0456358i
\(933\) 0 0
\(934\) −24.3055 42.0983i −0.795299 1.37750i
\(935\) 120.262 3.93299
\(936\) 0 0
\(937\) −29.4349 −0.961598 −0.480799 0.876831i \(-0.659653\pi\)
−0.480799 + 0.876831i \(0.659653\pi\)
\(938\) −0.726913 1.25905i −0.0237345 0.0411094i
\(939\) 0 0
\(940\) −1.30623 + 2.26246i −0.0426046 + 0.0737934i
\(941\) −3.38544 + 5.86375i −0.110362 + 0.191153i −0.915916 0.401369i \(-0.868534\pi\)
0.805554 + 0.592522i \(0.201868\pi\)
\(942\) 0 0
\(943\) −17.3054 29.9738i −0.563540 0.976080i
\(944\) 2.02445 0.0658904
\(945\) 0 0
\(946\) 11.6395 0.378433
\(947\) −21.8045 37.7666i −0.708552 1.22725i −0.965394 0.260795i \(-0.916015\pi\)
0.256842 0.966454i \(-0.417318\pi\)
\(948\) 0 0
\(949\) 2.57987 4.46847i 0.0837461 0.145053i
\(950\) 2.40659 4.16833i 0.0780799 0.135238i
\(951\) 0 0
\(952\) 3.44992 + 5.97543i 0.111813 + 0.193665i
\(953\) −11.8773 −0.384744 −0.192372 0.981322i \(-0.561618\pi\)
−0.192372 + 0.981322i \(0.561618\pi\)
\(954\) 0 0
\(955\) 13.6498 0.441699
\(956\) 1.25845 + 2.17970i 0.0407012 + 0.0704965i
\(957\) 0 0
\(958\) 0.792357 1.37240i 0.0255999 0.0443403i
\(959\) −0.00527194 + 0.00913126i −0.000170240 + 0.000294864i
\(960\) 0 0
\(961\) 12.0458 + 20.8640i 0.388575 + 0.673032i
\(962\) −8.96319 −0.288985
\(963\) 0 0
\(964\) −6.69016 −0.215476
\(965\) −30.2895 52.4630i −0.975055 1.68884i
\(966\) 0 0
\(967\) −10.2599 + 17.7706i −0.329935 + 0.571464i −0.982499 0.186270i \(-0.940360\pi\)
0.652564 + 0.757734i \(0.273694\pi\)
\(968\) −30.7903 + 53.3304i −0.989639 + 1.71411i
\(969\) 0 0
\(970\) 8.61559 + 14.9226i 0.276630 + 0.479137i
\(971\) 17.5599 0.563526 0.281763 0.959484i \(-0.409081\pi\)
0.281763 + 0.959484i \(0.409081\pi\)
\(972\) 0 0
\(973\) 3.87654 0.124276
\(974\) 13.7255 + 23.7733i 0.439794 + 0.761746i
\(975\) 0 0
\(976\) 8.36633 14.4909i 0.267800 0.463843i
\(977\) −7.19723 + 12.4660i −0.230260 + 0.398822i −0.957884 0.287154i \(-0.907291\pi\)
0.727625 + 0.685975i \(0.240624\pi\)
\(978\) 0 0
\(979\) 26.5277 + 45.9473i 0.847828 + 1.46848i
\(980\) −4.99318 −0.159501
\(981\) 0 0
\(982\) 2.07332 0.0661623
\(983\) 10.8945 + 18.8699i 0.347482 + 0.601857i 0.985801 0.167915i \(-0.0537034\pi\)
−0.638319 + 0.769772i \(0.720370\pi\)
\(984\) 0 0
\(985\) −19.1740 + 33.2104i −0.610935 + 1.05817i
\(986\) −2.38634 + 4.13326i −0.0759964 + 0.131630i
\(987\) 0 0
\(988\) −0.220521 0.381954i −0.00701572 0.0121516i
\(989\) −6.86055 −0.218153
\(990\) 0 0
\(991\) −57.2494 −1.81859 −0.909294 0.416154i \(-0.863378\pi\)
−0.909294 + 0.416154i \(0.863378\pi\)
\(992\) 2.02679 + 3.51050i 0.0643505 + 0.111458i
\(993\) 0 0
\(994\) −4.29179 + 7.43360i −0.136127 + 0.235780i
\(995\) 12.4264 21.5232i 0.393944 0.682331i
\(996\) 0 0
\(997\) 11.7445 + 20.3420i 0.371951 + 0.644239i 0.989866 0.142007i \(-0.0453555\pi\)
−0.617914 + 0.786245i \(0.712022\pi\)
\(998\) −35.7329 −1.13111
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 351.2.e.b.118.4 10
3.2 odd 2 117.2.e.b.40.2 10
9.2 odd 6 117.2.e.b.79.2 yes 10
9.4 even 3 1053.2.a.j.1.2 5
9.5 odd 6 1053.2.a.k.1.4 5
9.7 even 3 inner 351.2.e.b.235.4 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.2.e.b.40.2 10 3.2 odd 2
117.2.e.b.79.2 yes 10 9.2 odd 6
351.2.e.b.118.4 10 1.1 even 1 trivial
351.2.e.b.235.4 10 9.7 even 3 inner
1053.2.a.j.1.2 5 9.4 even 3
1053.2.a.k.1.4 5 9.5 odd 6