Properties

Label 1050.2.u.a
Level $1050$
Weight $2$
Character orbit 1050.u
Analytic conductor $8.384$
Analytic rank $1$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1050,2,Mod(299,1050)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1050, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1050.299"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1050 = 2 \cdot 3 \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1050.u (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-2,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.38429221223\)
Analytic rank: \(1\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{12}^{2} q^{2} + ( - \zeta_{12}^{2} - 1) q^{3} + (\zeta_{12}^{2} - 1) q^{4} + (2 \zeta_{12}^{2} - 1) q^{6} + (2 \zeta_{12}^{3} + \zeta_{12}) q^{7} + q^{8} + 3 \zeta_{12}^{2} q^{9} + 3 \zeta_{12} q^{11} + \cdots + 9 \zeta_{12}^{3} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{2} - 6 q^{3} - 2 q^{4} + 4 q^{8} + 6 q^{9} + 6 q^{12} - 2 q^{16} - 12 q^{17} + 6 q^{18} - 12 q^{19} - 12 q^{23} - 6 q^{24} - 6 q^{31} - 2 q^{32} - 12 q^{36} + 12 q^{38} - 12 q^{46} - 24 q^{47}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1050\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(451\) \(701\)
\(\chi(n)\) \(-1\) \(\zeta_{12}^{2}\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
299.1
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i
0.866025 + 0.500000i
−0.500000 + 0.866025i −1.50000 + 0.866025i −0.500000 0.866025i 0 1.73205i −0.866025 + 2.50000i 1.00000 1.50000 2.59808i 0
299.2 −0.500000 + 0.866025i −1.50000 + 0.866025i −0.500000 0.866025i 0 1.73205i 0.866025 2.50000i 1.00000 1.50000 2.59808i 0
899.1 −0.500000 0.866025i −1.50000 0.866025i −0.500000 + 0.866025i 0 1.73205i −0.866025 2.50000i 1.00000 1.50000 + 2.59808i 0
899.2 −0.500000 0.866025i −1.50000 0.866025i −0.500000 + 0.866025i 0 1.73205i 0.866025 + 2.50000i 1.00000 1.50000 + 2.59808i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.d odd 6 1 inner
15.d odd 2 1 inner
105.p even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1050.2.u.a 4
3.b odd 2 1 1050.2.u.d 4
5.b even 2 1 1050.2.u.d 4
5.c odd 4 1 42.2.f.a 4
5.c odd 4 1 1050.2.s.b 4
7.d odd 6 1 inner 1050.2.u.a 4
15.d odd 2 1 inner 1050.2.u.a 4
15.e even 4 1 42.2.f.a 4
15.e even 4 1 1050.2.s.b 4
20.e even 4 1 336.2.bc.e 4
21.g even 6 1 1050.2.u.d 4
35.f even 4 1 294.2.f.a 4
35.i odd 6 1 1050.2.u.d 4
35.k even 12 1 42.2.f.a 4
35.k even 12 1 294.2.d.a 4
35.k even 12 1 1050.2.s.b 4
35.l odd 12 1 294.2.d.a 4
35.l odd 12 1 294.2.f.a 4
45.k odd 12 1 1134.2.l.c 4
45.k odd 12 1 1134.2.t.d 4
45.l even 12 1 1134.2.l.c 4
45.l even 12 1 1134.2.t.d 4
60.l odd 4 1 336.2.bc.e 4
105.k odd 4 1 294.2.f.a 4
105.p even 6 1 inner 1050.2.u.a 4
105.w odd 12 1 42.2.f.a 4
105.w odd 12 1 294.2.d.a 4
105.w odd 12 1 1050.2.s.b 4
105.x even 12 1 294.2.d.a 4
105.x even 12 1 294.2.f.a 4
140.w even 12 1 2352.2.k.e 4
140.x odd 12 1 336.2.bc.e 4
140.x odd 12 1 2352.2.k.e 4
315.bs even 12 1 1134.2.t.d 4
315.bu odd 12 1 1134.2.t.d 4
315.bw odd 12 1 1134.2.l.c 4
315.cg even 12 1 1134.2.l.c 4
420.bp odd 12 1 2352.2.k.e 4
420.br even 12 1 336.2.bc.e 4
420.br even 12 1 2352.2.k.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.f.a 4 5.c odd 4 1
42.2.f.a 4 15.e even 4 1
42.2.f.a 4 35.k even 12 1
42.2.f.a 4 105.w odd 12 1
294.2.d.a 4 35.k even 12 1
294.2.d.a 4 35.l odd 12 1
294.2.d.a 4 105.w odd 12 1
294.2.d.a 4 105.x even 12 1
294.2.f.a 4 35.f even 4 1
294.2.f.a 4 35.l odd 12 1
294.2.f.a 4 105.k odd 4 1
294.2.f.a 4 105.x even 12 1
336.2.bc.e 4 20.e even 4 1
336.2.bc.e 4 60.l odd 4 1
336.2.bc.e 4 140.x odd 12 1
336.2.bc.e 4 420.br even 12 1
1050.2.s.b 4 5.c odd 4 1
1050.2.s.b 4 15.e even 4 1
1050.2.s.b 4 35.k even 12 1
1050.2.s.b 4 105.w odd 12 1
1050.2.u.a 4 1.a even 1 1 trivial
1050.2.u.a 4 7.d odd 6 1 inner
1050.2.u.a 4 15.d odd 2 1 inner
1050.2.u.a 4 105.p even 6 1 inner
1050.2.u.d 4 3.b odd 2 1
1050.2.u.d 4 5.b even 2 1
1050.2.u.d 4 21.g even 6 1
1050.2.u.d 4 35.i odd 6 1
1134.2.l.c 4 45.k odd 12 1
1134.2.l.c 4 45.l even 12 1
1134.2.l.c 4 315.bw odd 12 1
1134.2.l.c 4 315.cg even 12 1
1134.2.t.d 4 45.k odd 12 1
1134.2.t.d 4 45.l even 12 1
1134.2.t.d 4 315.bs even 12 1
1134.2.t.d 4 315.bu odd 12 1
2352.2.k.e 4 140.w even 12 1
2352.2.k.e 4 140.x odd 12 1
2352.2.k.e 4 420.bp odd 12 1
2352.2.k.e 4 420.br even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1050, [\chi])\):

\( T_{11}^{4} - 9T_{11}^{2} + 81 \) Copy content Toggle raw display
\( T_{13}^{2} - 12 \) Copy content Toggle raw display
\( T_{17}^{2} + 6T_{17} + 12 \) Copy content Toggle raw display
\( T_{23}^{2} + 6T_{23} + 36 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} + 11T^{2} + 49 \) Copy content Toggle raw display
$11$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} - 12)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 6 T + 12)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6 T + 36)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$41$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 64)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 12 T + 48)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 9 T + 81)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( T^{4} - 4T^{2} + 16 \) Copy content Toggle raw display
$71$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 48T^{2} + 2304 \) Copy content Toggle raw display
$79$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 75)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 108 T^{2} + 11664 \) Copy content Toggle raw display
$97$ \( (T^{2} - 27)^{2} \) Copy content Toggle raw display
show more
show less