Properties

Label 42.2.f.a
Level $42$
Weight $2$
Character orbit 42.f
Analytic conductor $0.335$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [42,2,Mod(5,42)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(42, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("42.5"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 42 = 2 \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 42.f (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.335371688489\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{12} q^{2} + ( - \zeta_{12}^{3} - \zeta_{12}) q^{3} + \zeta_{12}^{2} q^{4} + (2 \zeta_{12}^{3} - \zeta_{12}) q^{5} + ( - 2 \zeta_{12}^{2} + 1) q^{6} + ( - \zeta_{12}^{2} - 2) q^{7} + \zeta_{12}^{3} q^{8}+ \cdots + 9 \zeta_{12}^{3} q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 10 q^{7} - 6 q^{9} - 6 q^{10} + 12 q^{15} - 2 q^{16} + 12 q^{19} + 12 q^{22} + 6 q^{24} + 4 q^{25} - 2 q^{28} - 6 q^{31} - 18 q^{33} - 12 q^{36} + 4 q^{37} - 6 q^{40} - 6 q^{42} - 32 q^{43}+ \cdots + 6 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/42\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(31\)
\(\chi(n)\) \(-1\) \(1 - \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 0.500000i 0.866025 + 1.50000i 0.500000 + 0.866025i 0.866025 1.50000i 1.73205i −2.50000 0.866025i 1.00000i −1.50000 + 2.59808i −1.50000 + 0.866025i
5.2 0.866025 + 0.500000i −0.866025 1.50000i 0.500000 + 0.866025i −0.866025 + 1.50000i 1.73205i −2.50000 0.866025i 1.00000i −1.50000 + 2.59808i −1.50000 + 0.866025i
17.1 −0.866025 + 0.500000i 0.866025 1.50000i 0.500000 0.866025i 0.866025 + 1.50000i 1.73205i −2.50000 + 0.866025i 1.00000i −1.50000 2.59808i −1.50000 0.866025i
17.2 0.866025 0.500000i −0.866025 + 1.50000i 0.500000 0.866025i −0.866025 1.50000i 1.73205i −2.50000 + 0.866025i 1.00000i −1.50000 2.59808i −1.50000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.d odd 6 1 inner
21.g even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 42.2.f.a 4
3.b odd 2 1 inner 42.2.f.a 4
4.b odd 2 1 336.2.bc.e 4
5.b even 2 1 1050.2.s.b 4
5.c odd 4 1 1050.2.u.a 4
5.c odd 4 1 1050.2.u.d 4
7.b odd 2 1 294.2.f.a 4
7.c even 3 1 294.2.d.a 4
7.c even 3 1 294.2.f.a 4
7.d odd 6 1 inner 42.2.f.a 4
7.d odd 6 1 294.2.d.a 4
9.c even 3 1 1134.2.l.c 4
9.c even 3 1 1134.2.t.d 4
9.d odd 6 1 1134.2.l.c 4
9.d odd 6 1 1134.2.t.d 4
12.b even 2 1 336.2.bc.e 4
15.d odd 2 1 1050.2.s.b 4
15.e even 4 1 1050.2.u.a 4
15.e even 4 1 1050.2.u.d 4
21.c even 2 1 294.2.f.a 4
21.g even 6 1 inner 42.2.f.a 4
21.g even 6 1 294.2.d.a 4
21.h odd 6 1 294.2.d.a 4
21.h odd 6 1 294.2.f.a 4
28.f even 6 1 336.2.bc.e 4
28.f even 6 1 2352.2.k.e 4
28.g odd 6 1 2352.2.k.e 4
35.i odd 6 1 1050.2.s.b 4
35.k even 12 1 1050.2.u.a 4
35.k even 12 1 1050.2.u.d 4
63.i even 6 1 1134.2.t.d 4
63.k odd 6 1 1134.2.l.c 4
63.s even 6 1 1134.2.l.c 4
63.t odd 6 1 1134.2.t.d 4
84.j odd 6 1 336.2.bc.e 4
84.j odd 6 1 2352.2.k.e 4
84.n even 6 1 2352.2.k.e 4
105.p even 6 1 1050.2.s.b 4
105.w odd 12 1 1050.2.u.a 4
105.w odd 12 1 1050.2.u.d 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
42.2.f.a 4 1.a even 1 1 trivial
42.2.f.a 4 3.b odd 2 1 inner
42.2.f.a 4 7.d odd 6 1 inner
42.2.f.a 4 21.g even 6 1 inner
294.2.d.a 4 7.c even 3 1
294.2.d.a 4 7.d odd 6 1
294.2.d.a 4 21.g even 6 1
294.2.d.a 4 21.h odd 6 1
294.2.f.a 4 7.b odd 2 1
294.2.f.a 4 7.c even 3 1
294.2.f.a 4 21.c even 2 1
294.2.f.a 4 21.h odd 6 1
336.2.bc.e 4 4.b odd 2 1
336.2.bc.e 4 12.b even 2 1
336.2.bc.e 4 28.f even 6 1
336.2.bc.e 4 84.j odd 6 1
1050.2.s.b 4 5.b even 2 1
1050.2.s.b 4 15.d odd 2 1
1050.2.s.b 4 35.i odd 6 1
1050.2.s.b 4 105.p even 6 1
1050.2.u.a 4 5.c odd 4 1
1050.2.u.a 4 15.e even 4 1
1050.2.u.a 4 35.k even 12 1
1050.2.u.a 4 105.w odd 12 1
1050.2.u.d 4 5.c odd 4 1
1050.2.u.d 4 15.e even 4 1
1050.2.u.d 4 35.k even 12 1
1050.2.u.d 4 105.w odd 12 1
1134.2.l.c 4 9.c even 3 1
1134.2.l.c 4 9.d odd 6 1
1134.2.l.c 4 63.k odd 6 1
1134.2.l.c 4 63.s even 6 1
1134.2.t.d 4 9.c even 3 1
1134.2.t.d 4 9.d odd 6 1
1134.2.t.d 4 63.i even 6 1
1134.2.t.d 4 63.t odd 6 1
2352.2.k.e 4 28.f even 6 1
2352.2.k.e 4 28.g odd 6 1
2352.2.k.e 4 84.j odd 6 1
2352.2.k.e 4 84.n even 6 1

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(42, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$5$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$7$ \( (T^{2} + 5 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} + 12)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} + 12T^{2} + 144 \) Copy content Toggle raw display
$19$ \( (T^{2} - 6 T + 12)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$29$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 3 T + 3)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} - 2 T + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} - 48)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 48T^{2} + 2304 \) Copy content Toggle raw display
$53$ \( T^{4} - 81T^{2} + 6561 \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$61$ \( T^{4} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} + 144)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} - 12 T + 48)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} - 75)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + 108 T^{2} + 11664 \) Copy content Toggle raw display
$97$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
show more
show less