Properties

Label 104.10.f.a.25.20
Level $104$
Weight $10$
Character 104.25
Analytic conductor $53.564$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [104,10,Mod(25,104)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(104, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 10, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("104.25"); S:= CuspForms(chi, 10); N := Newforms(S);
 
Level: \( N \) \(=\) \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 104.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(53.5637269610\)
Analytic rank: \(0\)
Dimension: \(32\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 25.20
Character \(\chi\) \(=\) 104.25
Dual form 104.10.f.a.25.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+35.4013 q^{3} +405.839i q^{5} +7970.77i q^{7} -18429.7 q^{9} -20385.0i q^{11} +(-102968. + 1410.13i) q^{13} +14367.2i q^{15} -92739.6 q^{17} -547568. i q^{19} +282175. i q^{21} +1.27351e6 q^{23} +1.78842e6 q^{25} -1.34924e6 q^{27} -2.11242e6 q^{29} -3.12563e6i q^{31} -721656. i q^{33} -3.23485e6 q^{35} +6.50775e6i q^{37} +(-3.64522e6 + 49920.6i) q^{39} -3.29275e7i q^{41} +1.71254e7 q^{43} -7.47951e6i q^{45} +2.00526e7i q^{47} -2.31795e7 q^{49} -3.28310e6 q^{51} +5.66621e7 q^{53} +8.27303e6 q^{55} -1.93846e7i q^{57} -6.94997e7i q^{59} -1.29165e8 q^{61} -1.46899e8i q^{63} +(-572287. - 4.17886e7i) q^{65} -7.67824e7i q^{67} +4.50838e7 q^{69} -1.90253e8i q^{71} -2.21355e8i q^{73} +6.33124e7 q^{75} +1.62484e8 q^{77} -2.74140e8 q^{79} +3.14988e8 q^{81} -2.37271e8i q^{83} -3.76373e7i q^{85} -7.47826e7 q^{87} -8.62842e8i q^{89} +(-1.12399e7 - 8.20738e8i) q^{91} -1.10651e8i q^{93} +2.22224e8 q^{95} -1.15595e9i q^{97} +3.75691e8i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 162 q^{3} + 223074 q^{9} + 66270 q^{13} - 487902 q^{17} + 3171556 q^{23} - 13526722 q^{25} - 3694974 q^{27} + 8833508 q^{29} - 8281126 q^{35} - 12056860 q^{39} + 89959038 q^{43} - 172344874 q^{49}+ \cdots + 1741143356 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/104\mathbb{Z}\right)^\times\).

\(n\) \(41\) \(53\) \(79\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 35.4013 0.252333 0.126166 0.992009i \(-0.459733\pi\)
0.126166 + 0.992009i \(0.459733\pi\)
\(4\) 0 0
\(5\) 405.839i 0.290395i 0.989403 + 0.145197i \(0.0463817\pi\)
−0.989403 + 0.145197i \(0.953618\pi\)
\(6\) 0 0
\(7\) 7970.77i 1.25475i 0.778715 + 0.627377i \(0.215872\pi\)
−0.778715 + 0.627377i \(0.784128\pi\)
\(8\) 0 0
\(9\) −18429.7 −0.936328
\(10\) 0 0
\(11\) 20385.0i 0.419801i −0.977723 0.209901i \(-0.932686\pi\)
0.977723 0.209901i \(-0.0673141\pi\)
\(12\) 0 0
\(13\) −102968. + 1410.13i −0.999906 + 0.0136935i
\(14\) 0 0
\(15\) 14367.2i 0.0732761i
\(16\) 0 0
\(17\) −92739.6 −0.269305 −0.134653 0.990893i \(-0.542992\pi\)
−0.134653 + 0.990893i \(0.542992\pi\)
\(18\) 0 0
\(19\) 547568.i 0.963932i −0.876190 0.481966i \(-0.839923\pi\)
0.876190 0.481966i \(-0.160077\pi\)
\(20\) 0 0
\(21\) 282175.i 0.316616i
\(22\) 0 0
\(23\) 1.27351e6 0.948912 0.474456 0.880279i \(-0.342645\pi\)
0.474456 + 0.880279i \(0.342645\pi\)
\(24\) 0 0
\(25\) 1.78842e6 0.915671
\(26\) 0 0
\(27\) −1.34924e6 −0.488599
\(28\) 0 0
\(29\) −2.11242e6 −0.554613 −0.277307 0.960781i \(-0.589442\pi\)
−0.277307 + 0.960781i \(0.589442\pi\)
\(30\) 0 0
\(31\) 3.12563e6i 0.607869i −0.952693 0.303934i \(-0.901700\pi\)
0.952693 0.303934i \(-0.0983004\pi\)
\(32\) 0 0
\(33\) 721656.i 0.105930i
\(34\) 0 0
\(35\) −3.23485e6 −0.364374
\(36\) 0 0
\(37\) 6.50775e6i 0.570851i 0.958401 + 0.285426i \(0.0921350\pi\)
−0.958401 + 0.285426i \(0.907865\pi\)
\(38\) 0 0
\(39\) −3.64522e6 + 49920.6i −0.252309 + 0.00345532i
\(40\) 0 0
\(41\) 3.29275e7i 1.81983i −0.414793 0.909916i \(-0.636146\pi\)
0.414793 0.909916i \(-0.363854\pi\)
\(42\) 0 0
\(43\) 1.71254e7 0.763895 0.381947 0.924184i \(-0.375254\pi\)
0.381947 + 0.924184i \(0.375254\pi\)
\(44\) 0 0
\(45\) 7.47951e6i 0.271905i
\(46\) 0 0
\(47\) 2.00526e7i 0.599418i 0.954031 + 0.299709i \(0.0968896\pi\)
−0.954031 + 0.299709i \(0.903110\pi\)
\(48\) 0 0
\(49\) −2.31795e7 −0.574410
\(50\) 0 0
\(51\) −3.28310e6 −0.0679546
\(52\) 0 0
\(53\) 5.66621e7 0.986395 0.493198 0.869917i \(-0.335828\pi\)
0.493198 + 0.869917i \(0.335828\pi\)
\(54\) 0 0
\(55\) 8.27303e6 0.121908
\(56\) 0 0
\(57\) 1.93846e7i 0.243232i
\(58\) 0 0
\(59\) 6.94997e7i 0.746705i −0.927690 0.373352i \(-0.878208\pi\)
0.927690 0.373352i \(-0.121792\pi\)
\(60\) 0 0
\(61\) −1.29165e8 −1.19443 −0.597214 0.802082i \(-0.703726\pi\)
−0.597214 + 0.802082i \(0.703726\pi\)
\(62\) 0 0
\(63\) 1.46899e8i 1.17486i
\(64\) 0 0
\(65\) −572287. 4.17886e7i −0.00397653 0.290367i
\(66\) 0 0
\(67\) 7.67824e7i 0.465506i −0.972536 0.232753i \(-0.925227\pi\)
0.972536 0.232753i \(-0.0747733\pi\)
\(68\) 0 0
\(69\) 4.50838e7 0.239441
\(70\) 0 0
\(71\) 1.90253e8i 0.888523i −0.895897 0.444262i \(-0.853466\pi\)
0.895897 0.444262i \(-0.146534\pi\)
\(72\) 0 0
\(73\) 2.21355e8i 0.912299i −0.889903 0.456149i \(-0.849228\pi\)
0.889903 0.456149i \(-0.150772\pi\)
\(74\) 0 0
\(75\) 6.33124e7 0.231054
\(76\) 0 0
\(77\) 1.62484e8 0.526748
\(78\) 0 0
\(79\) −2.74140e8 −0.791863 −0.395932 0.918280i \(-0.629578\pi\)
−0.395932 + 0.918280i \(0.629578\pi\)
\(80\) 0 0
\(81\) 3.14988e8 0.813039
\(82\) 0 0
\(83\) 2.37271e8i 0.548773i −0.961620 0.274386i \(-0.911525\pi\)
0.961620 0.274386i \(-0.0884747\pi\)
\(84\) 0 0
\(85\) 3.76373e7i 0.0782049i
\(86\) 0 0
\(87\) −7.47826e7 −0.139947
\(88\) 0 0
\(89\) 8.62842e8i 1.45773i −0.684659 0.728864i \(-0.740049\pi\)
0.684659 0.728864i \(-0.259951\pi\)
\(90\) 0 0
\(91\) −1.12399e7 8.20738e8i −0.0171820 1.25464i
\(92\) 0 0
\(93\) 1.10651e8i 0.153385i
\(94\) 0 0
\(95\) 2.22224e8 0.279921
\(96\) 0 0
\(97\) 1.15595e9i 1.32576i −0.748726 0.662879i \(-0.769334\pi\)
0.748726 0.662879i \(-0.230666\pi\)
\(98\) 0 0
\(99\) 3.75691e8i 0.393072i
\(100\) 0 0
\(101\) 9.80569e7 0.0937631 0.0468816 0.998900i \(-0.485072\pi\)
0.0468816 + 0.998900i \(0.485072\pi\)
\(102\) 0 0
\(103\) −2.15960e9 −1.89063 −0.945314 0.326160i \(-0.894245\pi\)
−0.945314 + 0.326160i \(0.894245\pi\)
\(104\) 0 0
\(105\) −1.14518e8 −0.0919435
\(106\) 0 0
\(107\) 6.18567e8 0.456205 0.228102 0.973637i \(-0.426748\pi\)
0.228102 + 0.973637i \(0.426748\pi\)
\(108\) 0 0
\(109\) 4.86390e8i 0.330039i 0.986290 + 0.165020i \(0.0527687\pi\)
−0.986290 + 0.165020i \(0.947231\pi\)
\(110\) 0 0
\(111\) 2.30383e8i 0.144044i
\(112\) 0 0
\(113\) 2.23211e7 0.0128784 0.00643921 0.999979i \(-0.497950\pi\)
0.00643921 + 0.999979i \(0.497950\pi\)
\(114\) 0 0
\(115\) 5.16839e8i 0.275559i
\(116\) 0 0
\(117\) 1.89768e9 2.59884e7i 0.936240 0.0128216i
\(118\) 0 0
\(119\) 7.39206e8i 0.337912i
\(120\) 0 0
\(121\) 1.94240e9 0.823767
\(122\) 0 0
\(123\) 1.16568e9i 0.459203i
\(124\) 0 0
\(125\) 1.51846e9i 0.556301i
\(126\) 0 0
\(127\) 6.98905e8 0.238397 0.119199 0.992870i \(-0.461967\pi\)
0.119199 + 0.992870i \(0.461967\pi\)
\(128\) 0 0
\(129\) 6.06262e8 0.192756
\(130\) 0 0
\(131\) −4.27516e9 −1.26833 −0.634164 0.773199i \(-0.718655\pi\)
−0.634164 + 0.773199i \(0.718655\pi\)
\(132\) 0 0
\(133\) 4.36453e9 1.20950
\(134\) 0 0
\(135\) 5.47574e8i 0.141886i
\(136\) 0 0
\(137\) 5.21732e9i 1.26533i 0.774425 + 0.632666i \(0.218040\pi\)
−0.774425 + 0.632666i \(0.781960\pi\)
\(138\) 0 0
\(139\) −8.06337e9 −1.83210 −0.916051 0.401061i \(-0.868642\pi\)
−0.916051 + 0.401061i \(0.868642\pi\)
\(140\) 0 0
\(141\) 7.09887e8i 0.151253i
\(142\) 0 0
\(143\) 2.87456e7 + 2.09901e9i 0.00574856 + 0.419762i
\(144\) 0 0
\(145\) 8.57304e8i 0.161057i
\(146\) 0 0
\(147\) −8.20585e8 −0.144942
\(148\) 0 0
\(149\) 2.14203e8i 0.0356031i −0.999842 0.0178015i \(-0.994333\pi\)
0.999842 0.0178015i \(-0.00566670\pi\)
\(150\) 0 0
\(151\) 8.81757e9i 1.38023i 0.723698 + 0.690117i \(0.242441\pi\)
−0.723698 + 0.690117i \(0.757559\pi\)
\(152\) 0 0
\(153\) 1.70917e9 0.252158
\(154\) 0 0
\(155\) 1.26850e9 0.176522
\(156\) 0 0
\(157\) −6.64966e9 −0.873476 −0.436738 0.899589i \(-0.643866\pi\)
−0.436738 + 0.899589i \(0.643866\pi\)
\(158\) 0 0
\(159\) 2.00591e9 0.248900
\(160\) 0 0
\(161\) 1.01508e10i 1.19065i
\(162\) 0 0
\(163\) 4.44643e9i 0.493364i 0.969097 + 0.246682i \(0.0793403\pi\)
−0.969097 + 0.246682i \(0.920660\pi\)
\(164\) 0 0
\(165\) 2.92876e8 0.0307614
\(166\) 0 0
\(167\) 6.59999e9i 0.656627i −0.944569 0.328314i \(-0.893520\pi\)
0.944569 0.328314i \(-0.106480\pi\)
\(168\) 0 0
\(169\) 1.06005e10 2.90399e8i 0.999625 0.0273845i
\(170\) 0 0
\(171\) 1.00915e10i 0.902557i
\(172\) 0 0
\(173\) 2.06249e10 1.75059 0.875297 0.483586i \(-0.160666\pi\)
0.875297 + 0.483586i \(0.160666\pi\)
\(174\) 0 0
\(175\) 1.42551e10i 1.14894i
\(176\) 0 0
\(177\) 2.46038e9i 0.188418i
\(178\) 0 0
\(179\) −1.67324e10 −1.21820 −0.609100 0.793093i \(-0.708469\pi\)
−0.609100 + 0.793093i \(0.708469\pi\)
\(180\) 0 0
\(181\) 6.90129e9 0.477944 0.238972 0.971027i \(-0.423190\pi\)
0.238972 + 0.971027i \(0.423190\pi\)
\(182\) 0 0
\(183\) −4.57260e9 −0.301393
\(184\) 0 0
\(185\) −2.64110e9 −0.165772
\(186\) 0 0
\(187\) 1.89050e9i 0.113055i
\(188\) 0 0
\(189\) 1.07545e10i 0.613072i
\(190\) 0 0
\(191\) −2.28751e10 −1.24369 −0.621846 0.783139i \(-0.713617\pi\)
−0.621846 + 0.783139i \(0.713617\pi\)
\(192\) 0 0
\(193\) 2.04898e10i 1.06299i 0.847060 + 0.531497i \(0.178370\pi\)
−0.847060 + 0.531497i \(0.821630\pi\)
\(194\) 0 0
\(195\) −2.02597e7 1.47937e9i −0.00100341 0.0732692i
\(196\) 0 0
\(197\) 1.91207e10i 0.904495i 0.891893 + 0.452247i \(0.149378\pi\)
−0.891893 + 0.452247i \(0.850622\pi\)
\(198\) 0 0
\(199\) −3.62244e9 −0.163743 −0.0818713 0.996643i \(-0.526090\pi\)
−0.0818713 + 0.996643i \(0.526090\pi\)
\(200\) 0 0
\(201\) 2.71820e9i 0.117462i
\(202\) 0 0
\(203\) 1.68376e10i 0.695904i
\(204\) 0 0
\(205\) 1.33633e10 0.528469
\(206\) 0 0
\(207\) −2.34704e10 −0.888493
\(208\) 0 0
\(209\) −1.11622e10 −0.404660
\(210\) 0 0
\(211\) 2.48853e10 0.864313 0.432157 0.901799i \(-0.357753\pi\)
0.432157 + 0.901799i \(0.357753\pi\)
\(212\) 0 0
\(213\) 6.73520e9i 0.224203i
\(214\) 0 0
\(215\) 6.95017e9i 0.221831i
\(216\) 0 0
\(217\) 2.49137e10 0.762726
\(218\) 0 0
\(219\) 7.83626e9i 0.230203i
\(220\) 0 0
\(221\) 9.54926e9 1.30775e8i 0.269280 0.00368774i
\(222\) 0 0
\(223\) 6.23843e10i 1.68929i −0.535330 0.844643i \(-0.679813\pi\)
0.535330 0.844643i \(-0.320187\pi\)
\(224\) 0 0
\(225\) −3.29601e10 −0.857369
\(226\) 0 0
\(227\) 1.05915e9i 0.0264753i 0.999912 + 0.0132377i \(0.00421380\pi\)
−0.999912 + 0.0132377i \(0.995786\pi\)
\(228\) 0 0
\(229\) 5.32362e10i 1.27923i −0.768697 0.639613i \(-0.779095\pi\)
0.768697 0.639613i \(-0.220905\pi\)
\(230\) 0 0
\(231\) 5.75215e9 0.132916
\(232\) 0 0
\(233\) 5.28232e10 1.17415 0.587074 0.809533i \(-0.300280\pi\)
0.587074 + 0.809533i \(0.300280\pi\)
\(234\) 0 0
\(235\) −8.13812e9 −0.174068
\(236\) 0 0
\(237\) −9.70490e9 −0.199813
\(238\) 0 0
\(239\) 4.70943e10i 0.933636i −0.884353 0.466818i \(-0.845400\pi\)
0.884353 0.466818i \(-0.154600\pi\)
\(240\) 0 0
\(241\) 7.33799e10i 1.40120i −0.713554 0.700601i \(-0.752916\pi\)
0.713554 0.700601i \(-0.247084\pi\)
\(242\) 0 0
\(243\) 3.77081e10 0.693755
\(244\) 0 0
\(245\) 9.40715e9i 0.166806i
\(246\) 0 0
\(247\) 7.72144e8 + 5.63822e10i 0.0131996 + 0.963842i
\(248\) 0 0
\(249\) 8.39968e9i 0.138473i
\(250\) 0 0
\(251\) −3.73074e10 −0.593285 −0.296643 0.954989i \(-0.595867\pi\)
−0.296643 + 0.954989i \(0.595867\pi\)
\(252\) 0 0
\(253\) 2.59605e10i 0.398355i
\(254\) 0 0
\(255\) 1.33241e9i 0.0197336i
\(256\) 0 0
\(257\) −6.83900e10 −0.977898 −0.488949 0.872312i \(-0.662620\pi\)
−0.488949 + 0.872312i \(0.662620\pi\)
\(258\) 0 0
\(259\) −5.18717e10 −0.716279
\(260\) 0 0
\(261\) 3.89315e10 0.519300
\(262\) 0 0
\(263\) 1.04625e10 0.134845 0.0674224 0.997725i \(-0.478522\pi\)
0.0674224 + 0.997725i \(0.478522\pi\)
\(264\) 0 0
\(265\) 2.29957e10i 0.286444i
\(266\) 0 0
\(267\) 3.05457e10i 0.367832i
\(268\) 0 0
\(269\) −2.10392e10 −0.244988 −0.122494 0.992469i \(-0.539089\pi\)
−0.122494 + 0.992469i \(0.539089\pi\)
\(270\) 0 0
\(271\) 1.05185e11i 1.18466i −0.805697 0.592328i \(-0.798209\pi\)
0.805697 0.592328i \(-0.201791\pi\)
\(272\) 0 0
\(273\) −3.97905e8 2.90552e10i −0.00433559 0.316586i
\(274\) 0 0
\(275\) 3.64570e10i 0.384400i
\(276\) 0 0
\(277\) −6.52009e10 −0.665418 −0.332709 0.943030i \(-0.607963\pi\)
−0.332709 + 0.943030i \(0.607963\pi\)
\(278\) 0 0
\(279\) 5.76046e10i 0.569165i
\(280\) 0 0
\(281\) 9.04034e10i 0.864980i −0.901639 0.432490i \(-0.857635\pi\)
0.901639 0.432490i \(-0.142365\pi\)
\(282\) 0 0
\(283\) 8.56797e10 0.794034 0.397017 0.917811i \(-0.370045\pi\)
0.397017 + 0.917811i \(0.370045\pi\)
\(284\) 0 0
\(285\) 7.86703e9 0.0706332
\(286\) 0 0
\(287\) 2.62457e11 2.28344
\(288\) 0 0
\(289\) −1.09987e11 −0.927475
\(290\) 0 0
\(291\) 4.09220e10i 0.334532i
\(292\) 0 0
\(293\) 1.37879e11i 1.09293i 0.837481 + 0.546467i \(0.184028\pi\)
−0.837481 + 0.546467i \(0.815972\pi\)
\(294\) 0 0
\(295\) 2.82057e10 0.216839
\(296\) 0 0
\(297\) 2.75043e10i 0.205114i
\(298\) 0 0
\(299\) −1.31131e11 + 1.79582e9i −0.948823 + 0.0129940i
\(300\) 0 0
\(301\) 1.36503e11i 0.958501i
\(302\) 0 0
\(303\) 3.47134e9 0.0236595
\(304\) 0 0
\(305\) 5.24201e10i 0.346856i
\(306\) 0 0
\(307\) 1.84069e11i 1.18265i 0.806432 + 0.591327i \(0.201396\pi\)
−0.806432 + 0.591327i \(0.798604\pi\)
\(308\) 0 0
\(309\) −7.64527e10 −0.477067
\(310\) 0 0
\(311\) 1.74875e11 1.06000 0.530000 0.847998i \(-0.322192\pi\)
0.530000 + 0.847998i \(0.322192\pi\)
\(312\) 0 0
\(313\) −6.31641e10 −0.371981 −0.185990 0.982552i \(-0.559549\pi\)
−0.185990 + 0.982552i \(0.559549\pi\)
\(314\) 0 0
\(315\) 5.96174e10 0.341174
\(316\) 0 0
\(317\) 1.59121e11i 0.885038i 0.896759 + 0.442519i \(0.145915\pi\)
−0.896759 + 0.442519i \(0.854085\pi\)
\(318\) 0 0
\(319\) 4.30618e10i 0.232827i
\(320\) 0 0
\(321\) 2.18981e10 0.115115
\(322\) 0 0
\(323\) 5.07812e10i 0.259592i
\(324\) 0 0
\(325\) −1.84151e11 + 2.52191e9i −0.915585 + 0.0125388i
\(326\) 0 0
\(327\) 1.72188e10i 0.0832797i
\(328\) 0 0
\(329\) −1.59834e11 −0.752123
\(330\) 0 0
\(331\) 6.92757e10i 0.317216i 0.987342 + 0.158608i \(0.0507006\pi\)
−0.987342 + 0.158608i \(0.949299\pi\)
\(332\) 0 0
\(333\) 1.19936e11i 0.534504i
\(334\) 0 0
\(335\) 3.11613e10 0.135180
\(336\) 0 0
\(337\) −1.97496e10 −0.0834111 −0.0417055 0.999130i \(-0.513279\pi\)
−0.0417055 + 0.999130i \(0.513279\pi\)
\(338\) 0 0
\(339\) 7.90195e8 0.00324964
\(340\) 0 0
\(341\) −6.37160e10 −0.255184
\(342\) 0 0
\(343\) 1.36891e11i 0.534011i
\(344\) 0 0
\(345\) 1.82968e10i 0.0695325i
\(346\) 0 0
\(347\) 1.39636e11 0.517031 0.258515 0.966007i \(-0.416767\pi\)
0.258515 + 0.966007i \(0.416767\pi\)
\(348\) 0 0
\(349\) 9.66133e10i 0.348596i −0.984693 0.174298i \(-0.944234\pi\)
0.984693 0.174298i \(-0.0557656\pi\)
\(350\) 0 0
\(351\) 1.38929e11 1.90261e9i 0.488553 0.00669064i
\(352\) 0 0
\(353\) 2.60504e11i 0.892953i 0.894795 + 0.446476i \(0.147321\pi\)
−0.894795 + 0.446476i \(0.852679\pi\)
\(354\) 0 0
\(355\) 7.72121e10 0.258022
\(356\) 0 0
\(357\) 2.61688e10i 0.0852663i
\(358\) 0 0
\(359\) 4.22394e11i 1.34212i 0.741401 + 0.671062i \(0.234162\pi\)
−0.741401 + 0.671062i \(0.765838\pi\)
\(360\) 0 0
\(361\) 2.28573e10 0.0708342
\(362\) 0 0
\(363\) 6.87634e10 0.207863
\(364\) 0 0
\(365\) 8.98346e10 0.264927
\(366\) 0 0
\(367\) −7.04874e10 −0.202821 −0.101411 0.994845i \(-0.532336\pi\)
−0.101411 + 0.994845i \(0.532336\pi\)
\(368\) 0 0
\(369\) 6.06845e11i 1.70396i
\(370\) 0 0
\(371\) 4.51640e11i 1.23768i
\(372\) 0 0
\(373\) 3.08853e10 0.0826155 0.0413078 0.999146i \(-0.486848\pi\)
0.0413078 + 0.999146i \(0.486848\pi\)
\(374\) 0 0
\(375\) 5.37556e10i 0.140373i
\(376\) 0 0
\(377\) 2.17513e11 2.97880e9i 0.554561 0.00759461i
\(378\) 0 0
\(379\) 6.24509e11i 1.55476i −0.629033 0.777378i \(-0.716549\pi\)
0.629033 0.777378i \(-0.283451\pi\)
\(380\) 0 0
\(381\) 2.47422e10 0.0601555
\(382\) 0 0
\(383\) 3.70555e11i 0.879951i −0.898010 0.439976i \(-0.854987\pi\)
0.898010 0.439976i \(-0.145013\pi\)
\(384\) 0 0
\(385\) 6.59424e10i 0.152965i
\(386\) 0 0
\(387\) −3.15617e11 −0.715256
\(388\) 0 0
\(389\) −6.07471e11 −1.34509 −0.672547 0.740055i \(-0.734800\pi\)
−0.672547 + 0.740055i \(0.734800\pi\)
\(390\) 0 0
\(391\) −1.18105e11 −0.255547
\(392\) 0 0
\(393\) −1.51346e11 −0.320040
\(394\) 0 0
\(395\) 1.11257e11i 0.229953i
\(396\) 0 0
\(397\) 5.21028e10i 0.105270i −0.998614 0.0526349i \(-0.983238\pi\)
0.998614 0.0526349i \(-0.0167620\pi\)
\(398\) 0 0
\(399\) 1.54510e11 0.305196
\(400\) 0 0
\(401\) 3.09075e11i 0.596918i −0.954422 0.298459i \(-0.903527\pi\)
0.954422 0.298459i \(-0.0964726\pi\)
\(402\) 0 0
\(403\) 4.40756e9 + 3.21841e11i 0.00832387 + 0.607812i
\(404\) 0 0
\(405\) 1.27834e11i 0.236102i
\(406\) 0 0
\(407\) 1.32661e11 0.239644
\(408\) 0 0
\(409\) 1.93544e11i 0.341999i 0.985271 + 0.170999i \(0.0546996\pi\)
−0.985271 + 0.170999i \(0.945300\pi\)
\(410\) 0 0
\(411\) 1.84700e11i 0.319285i
\(412\) 0 0
\(413\) 5.53966e11 0.936931
\(414\) 0 0
\(415\) 9.62936e10 0.159361
\(416\) 0 0
\(417\) −2.85454e11 −0.462299
\(418\) 0 0
\(419\) 3.18535e10 0.0504886 0.0252443 0.999681i \(-0.491964\pi\)
0.0252443 + 0.999681i \(0.491964\pi\)
\(420\) 0 0
\(421\) 9.17798e11i 1.42389i −0.702233 0.711947i \(-0.747813\pi\)
0.702233 0.711947i \(-0.252187\pi\)
\(422\) 0 0
\(423\) 3.69564e11i 0.561252i
\(424\) 0 0
\(425\) −1.65857e11 −0.246595
\(426\) 0 0
\(427\) 1.02954e12i 1.49872i
\(428\) 0 0
\(429\) 1.01763e9 + 7.43078e10i 0.00145055 + 0.105920i
\(430\) 0 0
\(431\) 5.31203e11i 0.741503i 0.928732 + 0.370752i \(0.120900\pi\)
−0.928732 + 0.370752i \(0.879100\pi\)
\(432\) 0 0
\(433\) 9.71070e11 1.32756 0.663781 0.747927i \(-0.268951\pi\)
0.663781 + 0.747927i \(0.268951\pi\)
\(434\) 0 0
\(435\) 3.03497e10i 0.0406399i
\(436\) 0 0
\(437\) 6.97331e11i 0.914687i
\(438\) 0 0
\(439\) 6.50058e11 0.835337 0.417669 0.908599i \(-0.362847\pi\)
0.417669 + 0.908599i \(0.362847\pi\)
\(440\) 0 0
\(441\) 4.27193e11 0.537836
\(442\) 0 0
\(443\) −1.61505e12 −1.99236 −0.996180 0.0873188i \(-0.972170\pi\)
−0.996180 + 0.0873188i \(0.972170\pi\)
\(444\) 0 0
\(445\) 3.50175e11 0.423316
\(446\) 0 0
\(447\) 7.58306e9i 0.00898382i
\(448\) 0 0
\(449\) 6.85301e11i 0.795744i −0.917441 0.397872i \(-0.869749\pi\)
0.917441 0.397872i \(-0.130251\pi\)
\(450\) 0 0
\(451\) −6.71227e11 −0.763968
\(452\) 0 0
\(453\) 3.12153e11i 0.348278i
\(454\) 0 0
\(455\) 3.33087e11 4.56157e9i 0.364340 0.00498957i
\(456\) 0 0
\(457\) 5.61235e11i 0.601897i −0.953640 0.300948i \(-0.902697\pi\)
0.953640 0.300948i \(-0.0973032\pi\)
\(458\) 0 0
\(459\) 1.25128e11 0.131582
\(460\) 0 0
\(461\) 1.84465e11i 0.190221i −0.995467 0.0951107i \(-0.969679\pi\)
0.995467 0.0951107i \(-0.0303205\pi\)
\(462\) 0 0
\(463\) 1.23213e12i 1.24607i −0.782192 0.623037i \(-0.785899\pi\)
0.782192 0.623037i \(-0.214101\pi\)
\(464\) 0 0
\(465\) 4.49066e10 0.0445422
\(466\) 0 0
\(467\) −8.86777e11 −0.862757 −0.431378 0.902171i \(-0.641973\pi\)
−0.431378 + 0.902171i \(0.641973\pi\)
\(468\) 0 0
\(469\) 6.12014e11 0.584096
\(470\) 0 0
\(471\) −2.35406e11 −0.220406
\(472\) 0 0
\(473\) 3.49102e11i 0.320684i
\(474\) 0 0
\(475\) 9.79281e11i 0.882645i
\(476\) 0 0
\(477\) −1.04427e12 −0.923590
\(478\) 0 0
\(479\) 1.89581e11i 0.164545i −0.996610 0.0822724i \(-0.973782\pi\)
0.996610 0.0822724i \(-0.0262178\pi\)
\(480\) 0 0
\(481\) −9.17680e9 6.70093e11i −0.00781697 0.570798i
\(482\) 0 0
\(483\) 3.59352e11i 0.300440i
\(484\) 0 0
\(485\) 4.69128e11 0.384993
\(486\) 0 0
\(487\) 3.45018e11i 0.277947i −0.990296 0.138973i \(-0.955620\pi\)
0.990296 0.138973i \(-0.0443802\pi\)
\(488\) 0 0
\(489\) 1.57409e11i 0.124492i
\(490\) 0 0
\(491\) −1.63167e12 −1.26697 −0.633484 0.773756i \(-0.718376\pi\)
−0.633484 + 0.773756i \(0.718376\pi\)
\(492\) 0 0
\(493\) 1.95905e11 0.149360
\(494\) 0 0
\(495\) −1.52470e11 −0.114146
\(496\) 0 0
\(497\) 1.51646e12 1.11488
\(498\) 0 0
\(499\) 5.03796e11i 0.363750i 0.983322 + 0.181875i \(0.0582166\pi\)
−0.983322 + 0.181875i \(0.941783\pi\)
\(500\) 0 0
\(501\) 2.33648e11i 0.165689i
\(502\) 0 0
\(503\) 7.71114e10 0.0537109 0.0268555 0.999639i \(-0.491451\pi\)
0.0268555 + 0.999639i \(0.491451\pi\)
\(504\) 0 0
\(505\) 3.97953e10i 0.0272283i
\(506\) 0 0
\(507\) 3.75272e11 1.02805e10i 0.252238 0.00691000i
\(508\) 0 0
\(509\) 6.08188e11i 0.401613i 0.979631 + 0.200807i \(0.0643563\pi\)
−0.979631 + 0.200807i \(0.935644\pi\)
\(510\) 0 0
\(511\) 1.76437e12 1.14471
\(512\) 0 0
\(513\) 7.38800e11i 0.470976i
\(514\) 0 0
\(515\) 8.76451e11i 0.549029i
\(516\) 0 0
\(517\) 4.08772e11 0.251637
\(518\) 0 0
\(519\) 7.30150e11 0.441732
\(520\) 0 0
\(521\) 8.00279e11 0.475851 0.237926 0.971283i \(-0.423533\pi\)
0.237926 + 0.971283i \(0.423533\pi\)
\(522\) 0 0
\(523\) −2.02217e12 −1.18184 −0.590921 0.806729i \(-0.701236\pi\)
−0.590921 + 0.806729i \(0.701236\pi\)
\(524\) 0 0
\(525\) 5.04648e11i 0.289916i
\(526\) 0 0
\(527\) 2.89870e11i 0.163702i
\(528\) 0 0
\(529\) −1.79333e11 −0.0995658
\(530\) 0 0
\(531\) 1.28086e12i 0.699161i
\(532\) 0 0
\(533\) 4.64322e10 + 3.39049e12i 0.0249199 + 1.81966i
\(534\) 0 0
\(535\) 2.51039e11i 0.132479i
\(536\) 0 0
\(537\) −5.92348e11 −0.307392
\(538\) 0 0
\(539\) 4.72515e11i 0.241138i
\(540\) 0 0
\(541\) 9.90774e11i 0.497264i 0.968598 + 0.248632i \(0.0799810\pi\)
−0.968598 + 0.248632i \(0.920019\pi\)
\(542\) 0 0
\(543\) 2.44314e11 0.120601
\(544\) 0 0
\(545\) −1.97396e11 −0.0958416
\(546\) 0 0
\(547\) −9.54629e11 −0.455923 −0.227962 0.973670i \(-0.573206\pi\)
−0.227962 + 0.973670i \(0.573206\pi\)
\(548\) 0 0
\(549\) 2.38048e12 1.11838
\(550\) 0 0
\(551\) 1.15670e12i 0.534610i
\(552\) 0 0
\(553\) 2.18510e12i 0.993595i
\(554\) 0 0
\(555\) −9.34983e10 −0.0418297
\(556\) 0 0
\(557\) 5.53796e11i 0.243782i −0.992543 0.121891i \(-0.961104\pi\)
0.992543 0.121891i \(-0.0388958\pi\)
\(558\) 0 0
\(559\) −1.76338e12 + 2.41492e10i −0.763823 + 0.0104604i
\(560\) 0 0
\(561\) 6.69261e10i 0.0285274i
\(562\) 0 0
\(563\) −3.41221e12 −1.43136 −0.715679 0.698429i \(-0.753883\pi\)
−0.715679 + 0.698429i \(0.753883\pi\)
\(564\) 0 0
\(565\) 9.05877e9i 0.00373982i
\(566\) 0 0
\(567\) 2.51070e12i 1.02016i
\(568\) 0 0
\(569\) 1.63786e12 0.655044 0.327522 0.944843i \(-0.393786\pi\)
0.327522 + 0.944843i \(0.393786\pi\)
\(570\) 0 0
\(571\) −2.91449e12 −1.14736 −0.573681 0.819079i \(-0.694485\pi\)
−0.573681 + 0.819079i \(0.694485\pi\)
\(572\) 0 0
\(573\) −8.09808e11 −0.313824
\(574\) 0 0
\(575\) 2.27756e12 0.868891
\(576\) 0 0
\(577\) 1.02435e12i 0.384732i −0.981323 0.192366i \(-0.938384\pi\)
0.981323 0.192366i \(-0.0616161\pi\)
\(578\) 0 0
\(579\) 7.25366e11i 0.268228i
\(580\) 0 0
\(581\) 1.89123e12 0.688575
\(582\) 0 0
\(583\) 1.15506e12i 0.414090i
\(584\) 0 0
\(585\) 1.05471e10 + 7.70154e11i 0.00372334 + 0.271879i
\(586\) 0 0
\(587\) 5.13805e12i 1.78619i 0.449871 + 0.893093i \(0.351470\pi\)
−0.449871 + 0.893093i \(0.648530\pi\)
\(588\) 0 0
\(589\) −1.71149e12 −0.585944
\(590\) 0 0
\(591\) 6.76898e11i 0.228234i
\(592\) 0 0
\(593\) 4.83296e12i 1.60497i 0.596673 + 0.802485i \(0.296489\pi\)
−0.596673 + 0.802485i \(0.703511\pi\)
\(594\) 0 0
\(595\) 2.99999e11 0.0981280
\(596\) 0 0
\(597\) −1.28239e11 −0.0413176
\(598\) 0 0
\(599\) 3.86439e12 1.22648 0.613240 0.789897i \(-0.289866\pi\)
0.613240 + 0.789897i \(0.289866\pi\)
\(600\) 0 0
\(601\) −4.72912e12 −1.47858 −0.739290 0.673387i \(-0.764839\pi\)
−0.739290 + 0.673387i \(0.764839\pi\)
\(602\) 0 0
\(603\) 1.41508e12i 0.435866i
\(604\) 0 0
\(605\) 7.88301e11i 0.239217i
\(606\) 0 0
\(607\) 2.84261e12 0.849900 0.424950 0.905217i \(-0.360292\pi\)
0.424950 + 0.905217i \(0.360292\pi\)
\(608\) 0 0
\(609\) 5.96074e11i 0.175599i
\(610\) 0 0
\(611\) −2.82768e10 2.06478e12i −0.00820815 0.599362i
\(612\) 0 0
\(613\) 1.34200e12i 0.383868i −0.981408 0.191934i \(-0.938524\pi\)
0.981408 0.191934i \(-0.0614759\pi\)
\(614\) 0 0
\(615\) 4.73076e11 0.133350
\(616\) 0 0
\(617\) 2.17503e12i 0.604202i 0.953276 + 0.302101i \(0.0976881\pi\)
−0.953276 + 0.302101i \(0.902312\pi\)
\(618\) 0 0
\(619\) 4.41531e11i 0.120880i 0.998172 + 0.0604398i \(0.0192503\pi\)
−0.998172 + 0.0604398i \(0.980750\pi\)
\(620\) 0 0
\(621\) −1.71827e12 −0.463637
\(622\) 0 0
\(623\) 6.87752e12 1.82909
\(624\) 0 0
\(625\) 2.87676e12 0.754124
\(626\) 0 0
\(627\) −3.95155e11 −0.102109
\(628\) 0 0
\(629\) 6.03526e11i 0.153733i
\(630\) 0 0
\(631\) 4.13256e12i 1.03774i −0.854854 0.518869i \(-0.826353\pi\)
0.854854 0.518869i \(-0.173647\pi\)
\(632\) 0 0
\(633\) 8.80970e11 0.218094
\(634\) 0 0
\(635\) 2.83643e11i 0.0692294i
\(636\) 0 0
\(637\) 2.38676e12 3.26862e10i 0.574356 0.00786570i
\(638\) 0 0
\(639\) 3.50631e12i 0.831950i
\(640\) 0 0
\(641\) −3.41769e12 −0.799597 −0.399799 0.916603i \(-0.630920\pi\)
−0.399799 + 0.916603i \(0.630920\pi\)
\(642\) 0 0
\(643\) 7.30533e12i 1.68535i −0.538422 0.842675i \(-0.680979\pi\)
0.538422 0.842675i \(-0.319021\pi\)
\(644\) 0 0
\(645\) 2.46045e11i 0.0559752i
\(646\) 0 0
\(647\) −3.39956e12 −0.762700 −0.381350 0.924431i \(-0.624541\pi\)
−0.381350 + 0.924431i \(0.624541\pi\)
\(648\) 0 0
\(649\) −1.41675e12 −0.313468
\(650\) 0 0
\(651\) 8.81976e11 0.192461
\(652\) 0 0
\(653\) −7.51768e12 −1.61799 −0.808993 0.587819i \(-0.799987\pi\)
−0.808993 + 0.587819i \(0.799987\pi\)
\(654\) 0 0
\(655\) 1.73503e12i 0.368316i
\(656\) 0 0
\(657\) 4.07952e12i 0.854211i
\(658\) 0 0
\(659\) −7.81712e11 −0.161459 −0.0807295 0.996736i \(-0.525725\pi\)
−0.0807295 + 0.996736i \(0.525725\pi\)
\(660\) 0 0
\(661\) 5.22505e12i 1.06459i −0.846558 0.532297i \(-0.821329\pi\)
0.846558 0.532297i \(-0.178671\pi\)
\(662\) 0 0
\(663\) 3.38056e11 4.62962e9i 0.0679482 0.000930538i
\(664\) 0 0
\(665\) 1.77130e12i 0.351232i
\(666\) 0 0
\(667\) −2.69019e12 −0.526279
\(668\) 0 0
\(669\) 2.20848e12i 0.426262i
\(670\) 0 0
\(671\) 2.63303e12i 0.501423i
\(672\) 0 0
\(673\) −1.88696e12 −0.354565 −0.177283 0.984160i \(-0.556731\pi\)
−0.177283 + 0.984160i \(0.556731\pi\)
\(674\) 0 0
\(675\) −2.41301e12 −0.447396
\(676\) 0 0
\(677\) 7.28706e11 0.133323 0.0666613 0.997776i \(-0.478765\pi\)
0.0666613 + 0.997776i \(0.478765\pi\)
\(678\) 0 0
\(679\) 9.21377e12 1.66350
\(680\) 0 0
\(681\) 3.74953e10i 0.00668059i
\(682\) 0 0
\(683\) 4.74210e12i 0.833831i −0.908945 0.416915i \(-0.863111\pi\)
0.908945 0.416915i \(-0.136889\pi\)
\(684\) 0 0
\(685\) −2.11739e12 −0.367446
\(686\) 0 0
\(687\) 1.88463e12i 0.322790i
\(688\) 0 0
\(689\) −5.83441e12 + 7.99011e10i −0.986303 + 0.0135072i
\(690\) 0 0
\(691\) 3.71783e12i 0.620352i 0.950679 + 0.310176i \(0.100388\pi\)
−0.950679 + 0.310176i \(0.899612\pi\)
\(692\) 0 0
\(693\) −2.99454e12 −0.493209
\(694\) 0 0
\(695\) 3.27243e12i 0.532033i
\(696\) 0 0
\(697\) 3.05368e12i 0.490091i
\(698\) 0 0
\(699\) 1.87001e12 0.296276
\(700\) 0 0
\(701\) 8.94976e12 1.39985 0.699923 0.714218i \(-0.253218\pi\)
0.699923 + 0.714218i \(0.253218\pi\)
\(702\) 0 0
\(703\) 3.56343e12 0.550262
\(704\) 0 0
\(705\) −2.88100e11 −0.0439230
\(706\) 0 0
\(707\) 7.81589e11i 0.117650i
\(708\) 0 0
\(709\) 1.16230e13i 1.72747i −0.503947 0.863734i \(-0.668119\pi\)
0.503947 0.863734i \(-0.331881\pi\)
\(710\) 0 0
\(711\) 5.05233e12 0.741444
\(712\) 0 0
\(713\) 3.98051e12i 0.576814i
\(714\) 0 0
\(715\) −8.51862e11 + 1.16661e10i −0.121897 + 0.00166935i
\(716\) 0 0
\(717\) 1.66720e12i 0.235587i
\(718\) 0 0
\(719\) 6.62136e12 0.923990 0.461995 0.886882i \(-0.347134\pi\)
0.461995 + 0.886882i \(0.347134\pi\)
\(720\) 0 0
\(721\) 1.72137e13i 2.37228i
\(722\) 0 0
\(723\) 2.59774e12i 0.353569i
\(724\) 0 0
\(725\) −3.77790e12 −0.507843
\(726\) 0 0
\(727\) 5.23622e12 0.695206 0.347603 0.937642i \(-0.386996\pi\)
0.347603 + 0.937642i \(0.386996\pi\)
\(728\) 0 0
\(729\) −4.86499e12 −0.637982
\(730\) 0 0
\(731\) −1.58821e12 −0.205721
\(732\) 0 0
\(733\) 1.77038e12i 0.226515i −0.993566 0.113258i \(-0.963871\pi\)
0.993566 0.113258i \(-0.0361285\pi\)
\(734\) 0 0
\(735\) 3.33025e11i 0.0420905i
\(736\) 0 0
\(737\) −1.56521e12 −0.195420
\(738\) 0 0
\(739\) 7.16924e12i 0.884246i −0.896954 0.442123i \(-0.854225\pi\)
0.896954 0.442123i \(-0.145775\pi\)
\(740\) 0 0
\(741\) 2.73349e10 + 1.99600e12i 0.00333070 + 0.243209i
\(742\) 0 0
\(743\) 1.26107e12i 0.151806i −0.997115 0.0759031i \(-0.975816\pi\)
0.997115 0.0759031i \(-0.0241840\pi\)
\(744\) 0 0
\(745\) 8.69319e10 0.0103389
\(746\) 0 0
\(747\) 4.37284e12i 0.513831i
\(748\) 0 0
\(749\) 4.93046e12i 0.572425i
\(750\) 0 0
\(751\) 8.62586e12 0.989515 0.494758 0.869031i \(-0.335257\pi\)
0.494758 + 0.869031i \(0.335257\pi\)
\(752\) 0 0
\(753\) −1.32073e12 −0.149705
\(754\) 0 0
\(755\) −3.57851e12 −0.400812
\(756\) 0 0
\(757\) −5.83015e12 −0.645280 −0.322640 0.946522i \(-0.604570\pi\)
−0.322640 + 0.946522i \(0.604570\pi\)
\(758\) 0 0
\(759\) 9.19034e11i 0.100518i
\(760\) 0 0
\(761\) 1.36137e13i 1.47144i −0.677283 0.735722i \(-0.736843\pi\)
0.677283 0.735722i \(-0.263157\pi\)
\(762\) 0 0
\(763\) −3.87690e12 −0.414118
\(764\) 0 0
\(765\) 6.93647e11i 0.0732254i
\(766\) 0 0
\(767\) 9.80039e10 + 7.15628e12i 0.0102250 + 0.746635i
\(768\) 0 0
\(769\) 8.20944e12i 0.846535i 0.906005 + 0.423267i \(0.139117\pi\)
−0.906005 + 0.423267i \(0.860883\pi\)
\(770\) 0 0
\(771\) −2.42109e12 −0.246756
\(772\) 0 0
\(773\) 1.62191e13i 1.63388i 0.576724 + 0.816939i \(0.304331\pi\)
−0.576724 + 0.816939i \(0.695669\pi\)
\(774\) 0 0
\(775\) 5.58994e12i 0.556608i
\(776\) 0 0
\(777\) −1.83633e12 −0.180740
\(778\) 0 0
\(779\) −1.80300e13 −1.75419
\(780\) 0 0
\(781\) −3.87831e12 −0.373003
\(782\) 0 0
\(783\) 2.85017e12 0.270983
\(784\) 0 0
\(785\) 2.69869e12i 0.253653i
\(786\) 0 0
\(787\) 1.60716e13i 1.49338i −0.665169 0.746692i \(-0.731641\pi\)
0.665169 0.746692i \(-0.268359\pi\)
\(788\) 0 0
\(789\) 3.70386e11 0.0340257
\(790\) 0 0
\(791\) 1.77916e11i 0.0161593i
\(792\) 0 0
\(793\) 1.32999e13 1.82140e11i 1.19432 0.0163559i
\(794\) 0 0
\(795\) 8.14076e11i 0.0722791i
\(796\) 0 0
\(797\) 7.80731e12 0.685392 0.342696 0.939446i \(-0.388660\pi\)
0.342696 + 0.939446i \(0.388660\pi\)
\(798\) 0 0
\(799\) 1.85967e12i 0.161427i
\(800\) 0 0
\(801\) 1.59020e13i 1.36491i
\(802\) 0 0
\(803\) −4.51233e12 −0.382984
\(804\) 0 0
\(805\) −4.11960e12 −0.345759
\(806\) 0 0
\(807\) −7.44816e11 −0.0618185
\(808\) 0 0
\(809\) 1.15678e13 0.949473 0.474736 0.880128i \(-0.342543\pi\)
0.474736 + 0.880128i \(0.342543\pi\)
\(810\) 0 0
\(811\) 7.68937e12i 0.624161i −0.950056 0.312081i \(-0.898974\pi\)
0.950056 0.312081i \(-0.101026\pi\)
\(812\) 0 0
\(813\) 3.72369e12i 0.298927i
\(814\) 0 0
\(815\) −1.80453e12 −0.143270
\(816\) 0 0
\(817\) 9.37734e12i 0.736343i
\(818\) 0 0
\(819\) 2.07148e11 + 1.51260e13i 0.0160880 + 1.17475i
\(820\) 0 0
\(821\) 2.57253e13i 1.97614i 0.154016 + 0.988068i \(0.450779\pi\)
−0.154016 + 0.988068i \(0.549221\pi\)
\(822\) 0 0
\(823\) 1.37181e13 1.04230 0.521151 0.853464i \(-0.325503\pi\)
0.521151 + 0.853464i \(0.325503\pi\)
\(824\) 0 0
\(825\) 1.29062e12i 0.0969967i
\(826\) 0 0
\(827\) 2.52857e13i 1.87975i 0.341517 + 0.939875i \(0.389059\pi\)
−0.341517 + 0.939875i \(0.610941\pi\)
\(828\) 0 0
\(829\) 7.67414e12 0.564331 0.282166 0.959366i \(-0.408947\pi\)
0.282166 + 0.959366i \(0.408947\pi\)
\(830\) 0 0
\(831\) −2.30820e12 −0.167907
\(832\) 0 0
\(833\) 2.14966e12 0.154692
\(834\) 0 0
\(835\) 2.67853e12 0.190681
\(836\) 0 0
\(837\) 4.21723e12i 0.297004i
\(838\) 0 0
\(839\) 7.36016e12i 0.512812i −0.966569 0.256406i \(-0.917462\pi\)
0.966569 0.256406i \(-0.0825384\pi\)
\(840\) 0 0
\(841\) −1.00448e13 −0.692404
\(842\) 0 0
\(843\) 3.20040e12i 0.218263i
\(844\) 0 0
\(845\) 1.17855e11 + 4.30210e12i 0.00795231 + 0.290286i
\(846\) 0 0
\(847\) 1.54824e13i 1.03363i
\(848\) 0 0
\(849\) 3.03317e12 0.200361
\(850\) 0 0
\(851\) 8.28766e12i 0.541688i
\(852\) 0 0
\(853\) 2.20754e13i 1.42770i −0.700296 0.713852i \(-0.746949\pi\)
0.700296 0.713852i \(-0.253051\pi\)
\(854\) 0 0
\(855\) −4.09554e12 −0.262098
\(856\) 0 0
\(857\) −4.08294e12 −0.258559 −0.129279 0.991608i \(-0.541266\pi\)
−0.129279 + 0.991608i \(0.541266\pi\)
\(858\) 0 0
\(859\) −2.39156e13 −1.49869 −0.749345 0.662180i \(-0.769631\pi\)
−0.749345 + 0.662180i \(0.769631\pi\)
\(860\) 0 0
\(861\) 9.29133e12 0.576187
\(862\) 0 0
\(863\) 1.74827e13i 1.07290i 0.843932 + 0.536451i \(0.180235\pi\)
−0.843932 + 0.536451i \(0.819765\pi\)
\(864\) 0 0
\(865\) 8.37041e12i 0.508363i
\(866\) 0 0
\(867\) −3.89369e12 −0.234032
\(868\) 0 0
\(869\) 5.58835e12i 0.332425i
\(870\) 0 0
\(871\) 1.08273e11 + 7.90617e12i 0.00637442 + 0.465462i
\(872\) 0 0
\(873\) 2.13038e13i 1.24135i
\(874\) 0 0
\(875\) −1.21033e13 −0.698021
\(876\) 0 0
\(877\) 2.67493e11i 0.0152691i 0.999971 + 0.00763456i \(0.00243018\pi\)
−0.999971 + 0.00763456i \(0.997570\pi\)
\(878\) 0 0
\(879\) 4.88110e12i 0.275783i
\(880\) 0 0
\(881\) 2.11841e13 1.18473 0.592363 0.805671i \(-0.298195\pi\)
0.592363 + 0.805671i \(0.298195\pi\)
\(882\) 0 0
\(883\) 5.78367e11 0.0320170 0.0160085 0.999872i \(-0.494904\pi\)
0.0160085 + 0.999872i \(0.494904\pi\)
\(884\) 0 0
\(885\) 9.98518e11 0.0547156
\(886\) 0 0
\(887\) −3.01462e12 −0.163522 −0.0817611 0.996652i \(-0.526054\pi\)
−0.0817611 + 0.996652i \(0.526054\pi\)
\(888\) 0 0
\(889\) 5.57081e12i 0.299130i
\(890\) 0 0
\(891\) 6.42103e12i 0.341315i
\(892\) 0 0
\(893\) 1.09801e13 0.577798
\(894\) 0 0
\(895\) 6.79065e12i 0.353759i
\(896\) 0 0
\(897\) −4.64221e12 + 6.35742e10i −0.239419 + 0.00327880i
\(898\) 0 0
\(899\) 6.60266e12i 0.337132i
\(900\) 0 0
\(901\) −5.25482e12 −0.265642
\(902\) 0 0
\(903\) 4.83238e12i 0.241861i
\(904\) 0 0
\(905\) 2.80081e12i 0.138792i
\(906\) 0 0
\(907\) 3.38548e12 0.166107 0.0830534 0.996545i \(-0.473533\pi\)
0.0830534 + 0.996545i \(0.473533\pi\)
\(908\) 0 0
\(909\) −1.80716e12 −0.0877931
\(910\) 0 0
\(911\) −3.25079e12 −0.156371 −0.0781856 0.996939i \(-0.524913\pi\)
−0.0781856 + 0.996939i \(0.524913\pi\)
\(912\) 0 0
\(913\) −4.83677e12 −0.230376
\(914\) 0 0
\(915\) 1.85574e12i 0.0875230i
\(916\) 0 0
\(917\) 3.40763e13i 1.59144i
\(918\) 0 0
\(919\) −3.87645e13 −1.79273 −0.896365 0.443317i \(-0.853802\pi\)
−0.896365 + 0.443317i \(0.853802\pi\)
\(920\) 0 0
\(921\) 6.51628e12i 0.298422i
\(922\) 0 0
\(923\) 2.68282e11 + 1.95901e13i 0.0121670 + 0.888440i
\(924\) 0 0
\(925\) 1.16386e13i 0.522712i
\(926\) 0 0
\(927\) 3.98009e13 1.77025
\(928\) 0 0
\(929\) 3.88346e13i 1.71060i −0.518134 0.855299i \(-0.673373\pi\)
0.518134 0.855299i \(-0.326627\pi\)
\(930\) 0 0
\(931\) 1.26924e13i 0.553692i
\(932\) 0 0
\(933\) 6.19079e12 0.267472
\(934\) 0 0
\(935\) −7.67238e11 −0.0328305
\(936\) 0 0
\(937\) 1.67560e13 0.710137 0.355068 0.934840i \(-0.384458\pi\)
0.355068 + 0.934840i \(0.384458\pi\)
\(938\) 0 0
\(939\) −2.23609e12 −0.0938629
\(940\) 0 0
\(941\) 3.65356e13i 1.51902i 0.650497 + 0.759509i \(0.274561\pi\)
−0.650497 + 0.759509i \(0.725439\pi\)
\(942\) 0 0
\(943\) 4.19334e13i 1.72686i
\(944\) 0 0
\(945\) 4.36459e12 0.178033
\(946\) 0 0
\(947\) 3.32320e13i 1.34271i −0.741137 0.671354i \(-0.765713\pi\)
0.741137 0.671354i \(-0.234287\pi\)
\(948\) 0 0
\(949\) 3.12141e11 + 2.27926e13i 0.0124926 + 0.912213i
\(950\) 0 0
\(951\) 5.63310e12i 0.223324i
\(952\) 0 0
\(953\) 1.98917e13 0.781186 0.390593 0.920564i \(-0.372270\pi\)
0.390593 + 0.920564i \(0.372270\pi\)
\(954\) 0 0
\(955\) 9.28361e12i 0.361162i
\(956\) 0 0
\(957\) 1.52444e12i 0.0587500i
\(958\) 0 0
\(959\) −4.15860e13 −1.58768
\(960\) 0 0
\(961\) 1.66701e13 0.630496
\(962\) 0 0
\(963\) −1.14000e13 −0.427158
\(964\) 0 0
\(965\) −8.31557e12 −0.308688
\(966\) 0 0
\(967\) 3.34720e13i 1.23101i −0.788132 0.615507i \(-0.788951\pi\)
0.788132 0.615507i \(-0.211049\pi\)
\(968\) 0 0
\(969\) 1.79772e12i 0.0655036i
\(970\) 0 0
\(971\) 4.61975e13 1.66775 0.833876 0.551951i \(-0.186117\pi\)
0.833876 + 0.551951i \(0.186117\pi\)
\(972\) 0 0
\(973\) 6.42712e13i 2.29884i
\(974\) 0 0
\(975\) −6.51918e12 + 8.92789e10i −0.231032 + 0.00316394i
\(976\) 0 0
\(977\) 2.33586e13i 0.820203i 0.912040 + 0.410102i \(0.134507\pi\)
−0.912040 + 0.410102i \(0.865493\pi\)
\(978\) 0 0
\(979\) −1.75891e13 −0.611956
\(980\) 0 0
\(981\) 8.96405e12i 0.309025i
\(982\) 0 0
\(983\) 3.55761e13i 1.21526i 0.794222 + 0.607628i \(0.207879\pi\)
−0.794222 + 0.607628i \(0.792121\pi\)
\(984\) 0 0
\(985\) −7.75993e12 −0.262661
\(986\) 0 0
\(987\) −5.65834e12 −0.189785
\(988\) 0 0
\(989\) 2.18094e13 0.724869
\(990\) 0 0
\(991\) −2.68063e13 −0.882889 −0.441444 0.897289i \(-0.645534\pi\)
−0.441444 + 0.897289i \(0.645534\pi\)
\(992\) 0 0
\(993\) 2.45245e12i 0.0800440i
\(994\) 0 0
\(995\) 1.47013e12i 0.0475500i
\(996\) 0 0
\(997\) −1.07918e13 −0.345913 −0.172957 0.984929i \(-0.555332\pi\)
−0.172957 + 0.984929i \(0.555332\pi\)
\(998\) 0 0
\(999\) 8.78052e12i 0.278917i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 104.10.f.a.25.20 yes 32
4.3 odd 2 208.10.f.d.129.13 32
13.12 even 2 inner 104.10.f.a.25.19 32
52.51 odd 2 208.10.f.d.129.14 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
104.10.f.a.25.19 32 13.12 even 2 inner
104.10.f.a.25.20 yes 32 1.1 even 1 trivial
208.10.f.d.129.13 32 4.3 odd 2
208.10.f.d.129.14 32 52.51 odd 2