Newspace parameters
Level: | \( N \) | \(=\) | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 10 \) |
Character orbit: | \([\chi]\) | \(=\) | 104.f (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(53.5637269610\) |
Analytic rank: | \(0\) |
Dimension: | \(32\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
25.1 | 0 | −258.209 | 0 | − | 2361.50i | 0 | − | 3336.28i | 0 | 46988.7 | 0 | ||||||||||||||||
25.2 | 0 | −258.209 | 0 | 2361.50i | 0 | 3336.28i | 0 | 46988.7 | 0 | ||||||||||||||||||
25.3 | 0 | −241.055 | 0 | 999.605i | 0 | 3393.35i | 0 | 38424.4 | 0 | ||||||||||||||||||
25.4 | 0 | −241.055 | 0 | − | 999.605i | 0 | − | 3393.35i | 0 | 38424.4 | 0 | ||||||||||||||||
25.5 | 0 | −182.615 | 0 | 909.303i | 0 | 3898.48i | 0 | 13665.4 | 0 | ||||||||||||||||||
25.6 | 0 | −182.615 | 0 | − | 909.303i | 0 | − | 3898.48i | 0 | 13665.4 | 0 | ||||||||||||||||
25.7 | 0 | −178.824 | 0 | − | 872.510i | 0 | 12429.2i | 0 | 12295.0 | 0 | |||||||||||||||||
25.8 | 0 | −178.824 | 0 | 872.510i | 0 | − | 12429.2i | 0 | 12295.0 | 0 | |||||||||||||||||
25.9 | 0 | −144.011 | 0 | − | 1019.43i | 0 | 5657.65i | 0 | 1056.24 | 0 | |||||||||||||||||
25.10 | 0 | −144.011 | 0 | 1019.43i | 0 | − | 5657.65i | 0 | 1056.24 | 0 | |||||||||||||||||
25.11 | 0 | −76.3670 | 0 | − | 1713.06i | 0 | − | 425.676i | 0 | −13851.1 | 0 | ||||||||||||||||
25.12 | 0 | −76.3670 | 0 | 1713.06i | 0 | 425.676i | 0 | −13851.1 | 0 | ||||||||||||||||||
25.13 | 0 | −56.8673 | 0 | − | 1609.31i | 0 | − | 9634.72i | 0 | −16449.1 | 0 | ||||||||||||||||
25.14 | 0 | −56.8673 | 0 | 1609.31i | 0 | 9634.72i | 0 | −16449.1 | 0 | ||||||||||||||||||
25.15 | 0 | −33.7913 | 0 | 2480.68i | 0 | − | 3601.42i | 0 | −18541.1 | 0 | |||||||||||||||||
25.16 | 0 | −33.7913 | 0 | − | 2480.68i | 0 | 3601.42i | 0 | −18541.1 | 0 | |||||||||||||||||
25.17 | 0 | −12.4770 | 0 | 1341.60i | 0 | − | 1173.85i | 0 | −19527.3 | 0 | |||||||||||||||||
25.18 | 0 | −12.4770 | 0 | − | 1341.60i | 0 | 1173.85i | 0 | −19527.3 | 0 | |||||||||||||||||
25.19 | 0 | 35.4013 | 0 | − | 405.839i | 0 | − | 7970.77i | 0 | −18429.7 | 0 | ||||||||||||||||
25.20 | 0 | 35.4013 | 0 | 405.839i | 0 | 7970.77i | 0 | −18429.7 | 0 | ||||||||||||||||||
See all 32 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 104.10.f.a | ✓ | 32 |
4.b | odd | 2 | 1 | 208.10.f.d | 32 | ||
13.b | even | 2 | 1 | inner | 104.10.f.a | ✓ | 32 |
52.b | odd | 2 | 1 | 208.10.f.d | 32 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
104.10.f.a | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
104.10.f.a | ✓ | 32 | 13.b | even | 2 | 1 | inner |
208.10.f.d | 32 | 4.b | odd | 2 | 1 | ||
208.10.f.d | 32 | 52.b | odd | 2 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{10}^{\mathrm{new}}(104, [\chi])\).