Properties

Label 2-104-13.12-c9-0-22
Degree $2$
Conductor $104$
Sign $0.0136 + 0.999i$
Analytic cond. $53.5637$
Root an. cond. $7.31872$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 35.4·3-s + 405. i·5-s + 7.97e3i·7-s − 1.84e4·9-s − 2.03e4i·11-s + (−1.02e5 + 1.41e3i)13-s + 1.43e4i·15-s − 9.27e4·17-s − 5.47e5i·19-s + 2.82e5i·21-s + 1.27e6·23-s + 1.78e6·25-s − 1.34e6·27-s − 2.11e6·29-s − 3.12e6i·31-s + ⋯
L(s)  = 1  + 0.252·3-s + 0.290i·5-s + 1.25i·7-s − 0.936·9-s − 0.419i·11-s + (−0.999 + 0.0136i)13-s + 0.0732i·15-s − 0.269·17-s − 0.963i·19-s + 0.316i·21-s + 0.948·23-s + 0.915·25-s − 0.488·27-s − 0.554·29-s − 0.607i·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0136 + 0.999i)\, \overline{\Lambda}(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 104 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & (0.0136 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(104\)    =    \(2^{3} \cdot 13\)
Sign: $0.0136 + 0.999i$
Analytic conductor: \(53.5637\)
Root analytic conductor: \(7.31872\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: $\chi_{104} (25, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 104,\ (\ :9/2),\ 0.0136 + 0.999i)\)

Particular Values

\(L(5)\) \(\approx\) \(0.9367910752\)
\(L(\frac12)\) \(\approx\) \(0.9367910752\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
13 \( 1 + (1.02e5 - 1.41e3i)T \)
good3 \( 1 - 35.4T + 1.96e4T^{2} \)
5 \( 1 - 405. iT - 1.95e6T^{2} \)
7 \( 1 - 7.97e3iT - 4.03e7T^{2} \)
11 \( 1 + 2.03e4iT - 2.35e9T^{2} \)
17 \( 1 + 9.27e4T + 1.18e11T^{2} \)
19 \( 1 + 5.47e5iT - 3.22e11T^{2} \)
23 \( 1 - 1.27e6T + 1.80e12T^{2} \)
29 \( 1 + 2.11e6T + 1.45e13T^{2} \)
31 \( 1 + 3.12e6iT - 2.64e13T^{2} \)
37 \( 1 - 6.50e6iT - 1.29e14T^{2} \)
41 \( 1 + 3.29e7iT - 3.27e14T^{2} \)
43 \( 1 - 1.71e7T + 5.02e14T^{2} \)
47 \( 1 - 2.00e7iT - 1.11e15T^{2} \)
53 \( 1 - 5.66e7T + 3.29e15T^{2} \)
59 \( 1 + 6.94e7iT - 8.66e15T^{2} \)
61 \( 1 + 1.29e8T + 1.16e16T^{2} \)
67 \( 1 + 7.67e7iT - 2.72e16T^{2} \)
71 \( 1 + 1.90e8iT - 4.58e16T^{2} \)
73 \( 1 + 2.21e8iT - 5.88e16T^{2} \)
79 \( 1 + 2.74e8T + 1.19e17T^{2} \)
83 \( 1 + 2.37e8iT - 1.86e17T^{2} \)
89 \( 1 + 8.62e8iT - 3.50e17T^{2} \)
97 \( 1 + 1.15e9iT - 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.70380513660621127212200719205, −10.82928414741686179230871877183, −9.247943577538218491780556420476, −8.713345955348975661869297456705, −7.31277023347088749629421735088, −5.97395055626514092423737074111, −4.95368769739616117586242633615, −3.05232825359183180074530347603, −2.30934012070915006252819273510, −0.25009286021006087665418645069, 1.12108293663255994012948618168, 2.73331948644735225317770583808, 4.10460745481819157371286571172, 5.29621361063004665002264375279, 6.87210028455903579571710705602, 7.81994010535296606531092208784, 9.019150014430056858902026535133, 10.13322515943390791873913312642, 11.11218959895678089749681204057, 12.32811812870908456637150208736

Graph of the $Z$-function along the critical line