Defining parameters
Level: | \( N \) | = | \( 104 = 2^{3} \cdot 13 \) |
Weight: | \( k \) | = | \( 10 \) |
Nonzero newspaces: | \( 10 \) | ||
Sturm bound: | \(6720\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(104))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 3096 | 1701 | 1395 |
Cusp forms | 2952 | 1657 | 1295 |
Eisenstein series | 144 | 44 | 100 |
Trace form
Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(104))\)
We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
104.10.a | \(\chi_{104}(1, \cdot)\) | 104.10.a.a | 6 | 1 |
104.10.a.b | 6 | |||
104.10.a.c | 7 | |||
104.10.a.d | 8 | |||
104.10.b | \(\chi_{104}(53, \cdot)\) | n/a | 108 | 1 |
104.10.e | \(\chi_{104}(77, \cdot)\) | n/a | 124 | 1 |
104.10.f | \(\chi_{104}(25, \cdot)\) | 104.10.f.a | 32 | 1 |
104.10.i | \(\chi_{104}(9, \cdot)\) | 104.10.i.a | 30 | 2 |
104.10.i.b | 32 | |||
104.10.k | \(\chi_{104}(31, \cdot)\) | None | 0 | 2 |
104.10.m | \(\chi_{104}(83, \cdot)\) | n/a | 248 | 2 |
104.10.o | \(\chi_{104}(17, \cdot)\) | 104.10.o.a | 64 | 2 |
104.10.r | \(\chi_{104}(29, \cdot)\) | n/a | 248 | 2 |
104.10.s | \(\chi_{104}(69, \cdot)\) | n/a | 248 | 2 |
104.10.u | \(\chi_{104}(11, \cdot)\) | n/a | 496 | 4 |
104.10.w | \(\chi_{104}(7, \cdot)\) | None | 0 | 4 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(104))\) into lower level spaces
\( S_{10}^{\mathrm{old}}(\Gamma_1(104)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 2}\)