Properties

Label 104.10
Level 104
Weight 10
Dimension 1657
Nonzero newspaces 10
Sturm bound 6720
Trace bound 2

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 104 = 2^{3} \cdot 13 \)
Weight: \( k \) = \( 10 \)
Nonzero newspaces: \( 10 \)
Sturm bound: \(6720\)
Trace bound: \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{10}(\Gamma_1(104))\).

Total New Old
Modular forms 3096 1701 1395
Cusp forms 2952 1657 1295
Eisenstein series 144 44 100

Trace form

\( 1657 q + 24 q^{2} - 28 q^{3} + 844 q^{4} + 1128 q^{5} - 9380 q^{6} - 21420 q^{7} + 6756 q^{8} + 140996 q^{9} - 52796 q^{10} - 195132 q^{11} - 109532 q^{12} + 188836 q^{13} + 144648 q^{14} - 127980 q^{15}+ \cdots - 1540380092 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{10}^{\mathrm{new}}(\Gamma_1(104))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
104.10.a \(\chi_{104}(1, \cdot)\) 104.10.a.a 6 1
104.10.a.b 6
104.10.a.c 7
104.10.a.d 8
104.10.b \(\chi_{104}(53, \cdot)\) n/a 108 1
104.10.e \(\chi_{104}(77, \cdot)\) n/a 124 1
104.10.f \(\chi_{104}(25, \cdot)\) 104.10.f.a 32 1
104.10.i \(\chi_{104}(9, \cdot)\) 104.10.i.a 30 2
104.10.i.b 32
104.10.k \(\chi_{104}(31, \cdot)\) None 0 2
104.10.m \(\chi_{104}(83, \cdot)\) n/a 248 2
104.10.o \(\chi_{104}(17, \cdot)\) 104.10.o.a 64 2
104.10.r \(\chi_{104}(29, \cdot)\) n/a 248 2
104.10.s \(\chi_{104}(69, \cdot)\) n/a 248 2
104.10.u \(\chi_{104}(11, \cdot)\) n/a 496 4
104.10.w \(\chi_{104}(7, \cdot)\) None 0 4

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{10}^{\mathrm{old}}(\Gamma_1(104))\) into lower level spaces

\( S_{10}^{\mathrm{old}}(\Gamma_1(104)) \cong \) \(S_{10}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 4}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 3}\)\(\oplus\)\(S_{10}^{\mathrm{new}}(\Gamma_1(52))\)\(^{\oplus 2}\)