Properties

Label 1014.3.f.l.577.10
Level $1014$
Weight $3$
Character 1014.577
Analytic conductor $27.629$
Analytic rank $0$
Dimension $24$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,3,Mod(577,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.577"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 3])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 1014.f (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,24,0,0,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(27.6294988061\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 577.10
Character \(\chi\) \(=\) 1014.577
Dual form 1014.3.f.l.775.10

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.00000i) q^{2} +1.73205 q^{3} -2.00000i q^{4} +(-3.76999 + 3.76999i) q^{5} +(1.73205 - 1.73205i) q^{6} +(-3.86894 - 3.86894i) q^{7} +(-2.00000 - 2.00000i) q^{8} +3.00000 q^{9} +7.53998i q^{10} +(3.48592 + 3.48592i) q^{11} -3.46410i q^{12} -7.73788 q^{14} +(-6.52981 + 6.52981i) q^{15} -4.00000 q^{16} +26.1246i q^{17} +(3.00000 - 3.00000i) q^{18} +(21.7198 - 21.7198i) q^{19} +(7.53998 + 7.53998i) q^{20} +(-6.70120 - 6.70120i) q^{21} +6.97184 q^{22} +37.2382i q^{23} +(-3.46410 - 3.46410i) q^{24} -3.42563i q^{25} +5.19615 q^{27} +(-7.73788 + 7.73788i) q^{28} +36.3770 q^{29} +13.0596i q^{30} +(-3.56835 + 3.56835i) q^{31} +(-4.00000 + 4.00000i) q^{32} +(6.03779 + 6.03779i) q^{33} +(26.1246 + 26.1246i) q^{34} +29.1717 q^{35} -6.00000i q^{36} +(-10.3200 - 10.3200i) q^{37} -43.4397i q^{38} +15.0800 q^{40} +(7.79177 - 7.79177i) q^{41} -13.4024 q^{42} +38.2640i q^{43} +(6.97184 - 6.97184i) q^{44} +(-11.3100 + 11.3100i) q^{45} +(37.2382 + 37.2382i) q^{46} +(27.8611 + 27.8611i) q^{47} -6.92820 q^{48} -19.0626i q^{49} +(-3.42563 - 3.42563i) q^{50} +45.2491i q^{51} +49.9991 q^{53} +(5.19615 - 5.19615i) q^{54} -26.2838 q^{55} +15.4758i q^{56} +(37.6199 - 37.6199i) q^{57} +(36.3770 - 36.3770i) q^{58} +(-19.1413 - 19.1413i) q^{59} +(13.0596 + 13.0596i) q^{60} +83.7923 q^{61} +7.13670i q^{62} +(-11.6068 - 11.6068i) q^{63} +8.00000i q^{64} +12.0756 q^{66} +(-83.7289 + 83.7289i) q^{67} +52.2492 q^{68} +64.4984i q^{69} +(29.1717 - 29.1717i) q^{70} +(27.7368 - 27.7368i) q^{71} +(-6.00000 - 6.00000i) q^{72} +(76.1331 + 76.1331i) q^{73} -20.6400 q^{74} -5.93337i q^{75} +(-43.4397 - 43.4397i) q^{76} -26.9736i q^{77} +103.672 q^{79} +(15.0800 - 15.0800i) q^{80} +9.00000 q^{81} -15.5835i q^{82} +(-49.8772 + 49.8772i) q^{83} +(-13.4024 + 13.4024i) q^{84} +(-98.4894 - 98.4894i) q^{85} +(38.2640 + 38.2640i) q^{86} +63.0069 q^{87} -13.9437i q^{88} +(31.2373 + 31.2373i) q^{89} +22.6199i q^{90} +74.4764 q^{92} +(-6.18056 + 6.18056i) q^{93} +55.7222 q^{94} +163.767i q^{95} +(-6.92820 + 6.92820i) q^{96} +(-99.3124 + 99.3124i) q^{97} +(-19.0626 - 19.0626i) q^{98} +(10.4578 + 10.4578i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 24 q^{2} + 8 q^{5} + 24 q^{7} - 48 q^{8} + 72 q^{9} + 64 q^{11} + 48 q^{14} + 24 q^{15} - 96 q^{16} + 72 q^{18} + 160 q^{19} - 16 q^{20} + 128 q^{22} + 48 q^{28} + 8 q^{29} - 176 q^{31} - 96 q^{32}+ \cdots + 192 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.00000i 0.500000 0.500000i
\(3\) 1.73205 0.577350
\(4\) 2.00000i 0.500000i
\(5\) −3.76999 + 3.76999i −0.753998 + 0.753998i −0.975223 0.221225i \(-0.928994\pi\)
0.221225 + 0.975223i \(0.428994\pi\)
\(6\) 1.73205 1.73205i 0.288675 0.288675i
\(7\) −3.86894 3.86894i −0.552706 0.552706i 0.374515 0.927221i \(-0.377809\pi\)
−0.927221 + 0.374515i \(0.877809\pi\)
\(8\) −2.00000 2.00000i −0.250000 0.250000i
\(9\) 3.00000 0.333333
\(10\) 7.53998i 0.753998i
\(11\) 3.48592 + 3.48592i 0.316902 + 0.316902i 0.847576 0.530674i \(-0.178061\pi\)
−0.530674 + 0.847576i \(0.678061\pi\)
\(12\) 3.46410i 0.288675i
\(13\) 0 0
\(14\) −7.73788 −0.552706
\(15\) −6.52981 + 6.52981i −0.435321 + 0.435321i
\(16\) −4.00000 −0.250000
\(17\) 26.1246i 1.53674i 0.640005 + 0.768371i \(0.278932\pi\)
−0.640005 + 0.768371i \(0.721068\pi\)
\(18\) 3.00000 3.00000i 0.166667 0.166667i
\(19\) 21.7198 21.7198i 1.14315 1.14315i 0.155279 0.987871i \(-0.450372\pi\)
0.987871 0.155279i \(-0.0496277\pi\)
\(20\) 7.53998 + 7.53998i 0.376999 + 0.376999i
\(21\) −6.70120 6.70120i −0.319105 0.319105i
\(22\) 6.97184 0.316902
\(23\) 37.2382i 1.61905i 0.587084 + 0.809526i \(0.300276\pi\)
−0.587084 + 0.809526i \(0.699724\pi\)
\(24\) −3.46410 3.46410i −0.144338 0.144338i
\(25\) 3.42563i 0.137025i
\(26\) 0 0
\(27\) 5.19615 0.192450
\(28\) −7.73788 + 7.73788i −0.276353 + 0.276353i
\(29\) 36.3770 1.25438 0.627190 0.778866i \(-0.284205\pi\)
0.627190 + 0.778866i \(0.284205\pi\)
\(30\) 13.0596i 0.435321i
\(31\) −3.56835 + 3.56835i −0.115108 + 0.115108i −0.762315 0.647207i \(-0.775937\pi\)
0.647207 + 0.762315i \(0.275937\pi\)
\(32\) −4.00000 + 4.00000i −0.125000 + 0.125000i
\(33\) 6.03779 + 6.03779i 0.182963 + 0.182963i
\(34\) 26.1246 + 26.1246i 0.768371 + 0.768371i
\(35\) 29.1717 0.833478
\(36\) 6.00000i 0.166667i
\(37\) −10.3200 10.3200i −0.278919 0.278919i 0.553758 0.832677i \(-0.313193\pi\)
−0.832677 + 0.553758i \(0.813193\pi\)
\(38\) 43.4397i 1.14315i
\(39\) 0 0
\(40\) 15.0800 0.376999
\(41\) 7.79177 7.79177i 0.190043 0.190043i −0.605672 0.795715i \(-0.707095\pi\)
0.795715 + 0.605672i \(0.207095\pi\)
\(42\) −13.4024 −0.319105
\(43\) 38.2640i 0.889860i 0.895565 + 0.444930i \(0.146772\pi\)
−0.895565 + 0.444930i \(0.853228\pi\)
\(44\) 6.97184 6.97184i 0.158451 0.158451i
\(45\) −11.3100 + 11.3100i −0.251333 + 0.251333i
\(46\) 37.2382 + 37.2382i 0.809526 + 0.809526i
\(47\) 27.8611 + 27.8611i 0.592789 + 0.592789i 0.938384 0.345595i \(-0.112323\pi\)
−0.345595 + 0.938384i \(0.612323\pi\)
\(48\) −6.92820 −0.144338
\(49\) 19.0626i 0.389032i
\(50\) −3.42563 3.42563i −0.0685127 0.0685127i
\(51\) 45.2491i 0.887238i
\(52\) 0 0
\(53\) 49.9991 0.943378 0.471689 0.881765i \(-0.343644\pi\)
0.471689 + 0.881765i \(0.343644\pi\)
\(54\) 5.19615 5.19615i 0.0962250 0.0962250i
\(55\) −26.2838 −0.477886
\(56\) 15.4758i 0.276353i
\(57\) 37.6199 37.6199i 0.659998 0.659998i
\(58\) 36.3770 36.3770i 0.627190 0.627190i
\(59\) −19.1413 19.1413i −0.324429 0.324429i 0.526034 0.850463i \(-0.323678\pi\)
−0.850463 + 0.526034i \(0.823678\pi\)
\(60\) 13.0596 + 13.0596i 0.217660 + 0.217660i
\(61\) 83.7923 1.37364 0.686822 0.726826i \(-0.259005\pi\)
0.686822 + 0.726826i \(0.259005\pi\)
\(62\) 7.13670i 0.115108i
\(63\) −11.6068 11.6068i −0.184235 0.184235i
\(64\) 8.00000i 0.125000i
\(65\) 0 0
\(66\) 12.0756 0.182963
\(67\) −83.7289 + 83.7289i −1.24968 + 1.24968i −0.293826 + 0.955859i \(0.594929\pi\)
−0.955859 + 0.293826i \(0.905071\pi\)
\(68\) 52.2492 0.768371
\(69\) 64.4984i 0.934760i
\(70\) 29.1717 29.1717i 0.416739 0.416739i
\(71\) 27.7368 27.7368i 0.390659 0.390659i −0.484263 0.874922i \(-0.660912\pi\)
0.874922 + 0.484263i \(0.160912\pi\)
\(72\) −6.00000 6.00000i −0.0833333 0.0833333i
\(73\) 76.1331 + 76.1331i 1.04292 + 1.04292i 0.999037 + 0.0438822i \(0.0139726\pi\)
0.0438822 + 0.999037i \(0.486027\pi\)
\(74\) −20.6400 −0.278919
\(75\) 5.93337i 0.0791116i
\(76\) −43.4397 43.4397i −0.571575 0.571575i
\(77\) 26.9736i 0.350307i
\(78\) 0 0
\(79\) 103.672 1.31230 0.656149 0.754631i \(-0.272184\pi\)
0.656149 + 0.754631i \(0.272184\pi\)
\(80\) 15.0800 15.0800i 0.188499 0.188499i
\(81\) 9.00000 0.111111
\(82\) 15.5835i 0.190043i
\(83\) −49.8772 + 49.8772i −0.600930 + 0.600930i −0.940559 0.339629i \(-0.889698\pi\)
0.339629 + 0.940559i \(0.389698\pi\)
\(84\) −13.4024 + 13.4024i −0.159552 + 0.159552i
\(85\) −98.4894 98.4894i −1.15870 1.15870i
\(86\) 38.2640 + 38.2640i 0.444930 + 0.444930i
\(87\) 63.0069 0.724217
\(88\) 13.9437i 0.158451i
\(89\) 31.2373 + 31.2373i 0.350980 + 0.350980i 0.860474 0.509494i \(-0.170167\pi\)
−0.509494 + 0.860474i \(0.670167\pi\)
\(90\) 22.6199i 0.251333i
\(91\) 0 0
\(92\) 74.4764 0.809526
\(93\) −6.18056 + 6.18056i −0.0664577 + 0.0664577i
\(94\) 55.7222 0.592789
\(95\) 163.767i 1.72386i
\(96\) −6.92820 + 6.92820i −0.0721688 + 0.0721688i
\(97\) −99.3124 + 99.3124i −1.02384 + 1.02384i −0.0241301 + 0.999709i \(0.507682\pi\)
−0.999709 + 0.0241301i \(0.992318\pi\)
\(98\) −19.0626 19.0626i −0.194516 0.194516i
\(99\) 10.4578 + 10.4578i 0.105634 + 0.105634i
\(100\) −6.85127 −0.0685127
\(101\) 173.923i 1.72201i 0.508599 + 0.861003i \(0.330163\pi\)
−0.508599 + 0.861003i \(0.669837\pi\)
\(102\) 45.2491 + 45.2491i 0.443619 + 0.443619i
\(103\) 155.027i 1.50512i −0.658524 0.752560i \(-0.728819\pi\)
0.658524 0.752560i \(-0.271181\pi\)
\(104\) 0 0
\(105\) 50.5269 0.481209
\(106\) 49.9991 49.9991i 0.471689 0.471689i
\(107\) −182.242 −1.70319 −0.851596 0.524199i \(-0.824365\pi\)
−0.851596 + 0.524199i \(0.824365\pi\)
\(108\) 10.3923i 0.0962250i
\(109\) 57.3652 57.3652i 0.526287 0.526287i −0.393176 0.919463i \(-0.628624\pi\)
0.919463 + 0.393176i \(0.128624\pi\)
\(110\) −26.2838 + 26.2838i −0.238943 + 0.238943i
\(111\) −17.8748 17.8748i −0.161034 0.161034i
\(112\) 15.4758 + 15.4758i 0.138176 + 0.138176i
\(113\) 52.6082 0.465559 0.232780 0.972530i \(-0.425218\pi\)
0.232780 + 0.972530i \(0.425218\pi\)
\(114\) 75.2398i 0.659998i
\(115\) −140.388 140.388i −1.22076 1.22076i
\(116\) 72.7541i 0.627190i
\(117\) 0 0
\(118\) −38.2826 −0.324429
\(119\) 101.075 101.075i 0.849366 0.849366i
\(120\) 26.1192 0.217660
\(121\) 96.6967i 0.799147i
\(122\) 83.7923 83.7923i 0.686822 0.686822i
\(123\) 13.4957 13.4957i 0.109721 0.109721i
\(124\) 7.13670 + 7.13670i 0.0575540 + 0.0575540i
\(125\) −81.3351 81.3351i −0.650681 0.650681i
\(126\) −23.2136 −0.184235
\(127\) 190.997i 1.50391i 0.659212 + 0.751957i \(0.270890\pi\)
−0.659212 + 0.751957i \(0.729110\pi\)
\(128\) 8.00000 + 8.00000i 0.0625000 + 0.0625000i
\(129\) 66.2752i 0.513761i
\(130\) 0 0
\(131\) −59.2049 −0.451946 −0.225973 0.974134i \(-0.572556\pi\)
−0.225973 + 0.974134i \(0.572556\pi\)
\(132\) 12.0756 12.0756i 0.0914817 0.0914817i
\(133\) −168.066 −1.26365
\(134\) 167.458i 1.24968i
\(135\) −19.5894 + 19.5894i −0.145107 + 0.145107i
\(136\) 52.2492 52.2492i 0.384185 0.384185i
\(137\) −171.924 171.924i −1.25492 1.25492i −0.953487 0.301436i \(-0.902534\pi\)
−0.301436 0.953487i \(-0.597466\pi\)
\(138\) 64.4984 + 64.4984i 0.467380 + 0.467380i
\(139\) −219.773 −1.58110 −0.790549 0.612399i \(-0.790205\pi\)
−0.790549 + 0.612399i \(0.790205\pi\)
\(140\) 58.3435i 0.416739i
\(141\) 48.2568 + 48.2568i 0.342247 + 0.342247i
\(142\) 55.4736i 0.390659i
\(143\) 0 0
\(144\) −12.0000 −0.0833333
\(145\) −137.141 + 137.141i −0.945800 + 0.945800i
\(146\) 152.266 1.04292
\(147\) 33.0174i 0.224608i
\(148\) −20.6400 + 20.6400i −0.139460 + 0.139460i
\(149\) 152.728 152.728i 1.02502 1.02502i 0.0253424 0.999679i \(-0.491932\pi\)
0.999679 0.0253424i \(-0.00806760\pi\)
\(150\) −5.93337 5.93337i −0.0395558 0.0395558i
\(151\) 82.7928 + 82.7928i 0.548296 + 0.548296i 0.925948 0.377651i \(-0.123268\pi\)
−0.377651 + 0.925948i \(0.623268\pi\)
\(152\) −86.8794 −0.571575
\(153\) 78.3738i 0.512247i
\(154\) −26.9736 26.9736i −0.175153 0.175153i
\(155\) 26.9053i 0.173582i
\(156\) 0 0
\(157\) 27.5664 0.175582 0.0877911 0.996139i \(-0.472019\pi\)
0.0877911 + 0.996139i \(0.472019\pi\)
\(158\) 103.672 103.672i 0.656149 0.656149i
\(159\) 86.6009 0.544660
\(160\) 30.1599i 0.188499i
\(161\) 144.072 144.072i 0.894859 0.894859i
\(162\) 9.00000 9.00000i 0.0555556 0.0555556i
\(163\) 70.1303 + 70.1303i 0.430247 + 0.430247i 0.888712 0.458465i \(-0.151601\pi\)
−0.458465 + 0.888712i \(0.651601\pi\)
\(164\) −15.5835 15.5835i −0.0950216 0.0950216i
\(165\) −45.5248 −0.275908
\(166\) 99.7544i 0.600930i
\(167\) 46.3471 + 46.3471i 0.277527 + 0.277527i 0.832121 0.554594i \(-0.187126\pi\)
−0.554594 + 0.832121i \(0.687126\pi\)
\(168\) 26.8048i 0.159552i
\(169\) 0 0
\(170\) −196.979 −1.15870
\(171\) 65.1595 65.1595i 0.381050 0.381050i
\(172\) 76.5280 0.444930
\(173\) 128.629i 0.743518i −0.928329 0.371759i \(-0.878755\pi\)
0.928329 0.371759i \(-0.121245\pi\)
\(174\) 63.0069 63.0069i 0.362108 0.362108i
\(175\) −13.2536 + 13.2536i −0.0757347 + 0.0757347i
\(176\) −13.9437 13.9437i −0.0792254 0.0792254i
\(177\) −33.1537 33.1537i −0.187309 0.187309i
\(178\) 62.4745 0.350980
\(179\) 79.6484i 0.444963i −0.974937 0.222482i \(-0.928584\pi\)
0.974937 0.222482i \(-0.0714158\pi\)
\(180\) 22.6199 + 22.6199i 0.125666 + 0.125666i
\(181\) 66.6961i 0.368487i −0.982881 0.184243i \(-0.941017\pi\)
0.982881 0.184243i \(-0.0589834\pi\)
\(182\) 0 0
\(183\) 145.132 0.793074
\(184\) 74.4764 74.4764i 0.404763 0.404763i
\(185\) 77.8126 0.420609
\(186\) 12.3611i 0.0664577i
\(187\) −91.0682 + 91.0682i −0.486996 + 0.486996i
\(188\) 55.7222 55.7222i 0.296395 0.296395i
\(189\) −20.1036 20.1036i −0.106368 0.106368i
\(190\) 163.767 + 163.767i 0.861932 + 0.861932i
\(191\) 89.4356 0.468249 0.234125 0.972207i \(-0.424778\pi\)
0.234125 + 0.972207i \(0.424778\pi\)
\(192\) 13.8564i 0.0721688i
\(193\) −94.9756 94.9756i −0.492102 0.492102i 0.416866 0.908968i \(-0.363128\pi\)
−0.908968 + 0.416866i \(0.863128\pi\)
\(194\) 198.625i 1.02384i
\(195\) 0 0
\(196\) −38.1252 −0.194516
\(197\) −26.0190 + 26.0190i −0.132076 + 0.132076i −0.770054 0.637978i \(-0.779771\pi\)
0.637978 + 0.770054i \(0.279771\pi\)
\(198\) 20.9155 0.105634
\(199\) 90.5342i 0.454946i −0.973784 0.227473i \(-0.926954\pi\)
0.973784 0.227473i \(-0.0730463\pi\)
\(200\) −6.85127 + 6.85127i −0.0342563 + 0.0342563i
\(201\) −145.023 + 145.023i −0.721506 + 0.721506i
\(202\) 173.923 + 173.923i 0.861003 + 0.861003i
\(203\) −140.741 140.741i −0.693303 0.693303i
\(204\) 90.4983 0.443619
\(205\) 58.7498i 0.286584i
\(206\) −155.027 155.027i −0.752560 0.752560i
\(207\) 111.715i 0.539684i
\(208\) 0 0
\(209\) 151.427 0.724532
\(210\) 50.5269 50.5269i 0.240604 0.240604i
\(211\) −310.627 −1.47217 −0.736084 0.676890i \(-0.763327\pi\)
−0.736084 + 0.676890i \(0.763327\pi\)
\(212\) 99.9981i 0.471689i
\(213\) 48.0416 48.0416i 0.225547 0.225547i
\(214\) −182.242 + 182.242i −0.851596 + 0.851596i
\(215\) −144.255 144.255i −0.670953 0.670953i
\(216\) −10.3923 10.3923i −0.0481125 0.0481125i
\(217\) 27.6115 0.127242
\(218\) 114.730i 0.526287i
\(219\) 131.866 + 131.866i 0.602130 + 0.602130i
\(220\) 52.5675i 0.238943i
\(221\) 0 0
\(222\) −35.7495 −0.161034
\(223\) −153.225 + 153.225i −0.687107 + 0.687107i −0.961592 0.274484i \(-0.911493\pi\)
0.274484 + 0.961592i \(0.411493\pi\)
\(224\) 30.9515 0.138176
\(225\) 10.2769i 0.0456751i
\(226\) 52.6082 52.6082i 0.232780 0.232780i
\(227\) 190.324 190.324i 0.838430 0.838430i −0.150223 0.988652i \(-0.547999\pi\)
0.988652 + 0.150223i \(0.0479990\pi\)
\(228\) −75.2398 75.2398i −0.329999 0.329999i
\(229\) −176.747 176.747i −0.771822 0.771822i 0.206603 0.978425i \(-0.433759\pi\)
−0.978425 + 0.206603i \(0.933759\pi\)
\(230\) −280.775 −1.22076
\(231\) 46.7197i 0.202250i
\(232\) −72.7541 72.7541i −0.313595 0.313595i
\(233\) 412.535i 1.77054i 0.465080 + 0.885269i \(0.346025\pi\)
−0.465080 + 0.885269i \(0.653975\pi\)
\(234\) 0 0
\(235\) −210.072 −0.893923
\(236\) −38.2826 + 38.2826i −0.162215 + 0.162215i
\(237\) 179.564 0.757656
\(238\) 202.149i 0.849366i
\(239\) 11.6678 11.6678i 0.0488194 0.0488194i −0.682276 0.731095i \(-0.739010\pi\)
0.731095 + 0.682276i \(0.239010\pi\)
\(240\) 26.1192 26.1192i 0.108830 0.108830i
\(241\) 171.252 + 171.252i 0.710589 + 0.710589i 0.966658 0.256070i \(-0.0824276\pi\)
−0.256070 + 0.966658i \(0.582428\pi\)
\(242\) −96.6967 96.6967i −0.399573 0.399573i
\(243\) 15.5885 0.0641500
\(244\) 167.585i 0.686822i
\(245\) 71.8658 + 71.8658i 0.293330 + 0.293330i
\(246\) 26.9915i 0.109721i
\(247\) 0 0
\(248\) 14.2734 0.0575540
\(249\) −86.3898 + 86.3898i −0.346947 + 0.346947i
\(250\) −162.670 −0.650681
\(251\) 40.4473i 0.161144i 0.996749 + 0.0805722i \(0.0256748\pi\)
−0.996749 + 0.0805722i \(0.974325\pi\)
\(252\) −23.2136 + 23.2136i −0.0921176 + 0.0921176i
\(253\) −129.809 + 129.809i −0.513080 + 0.513080i
\(254\) 190.997 + 190.997i 0.751957 + 0.751957i
\(255\) −170.589 170.589i −0.668975 0.668975i
\(256\) 16.0000 0.0625000
\(257\) 163.494i 0.636164i −0.948063 0.318082i \(-0.896961\pi\)
0.948063 0.318082i \(-0.103039\pi\)
\(258\) 66.2752 + 66.2752i 0.256881 + 0.256881i
\(259\) 79.8550i 0.308320i
\(260\) 0 0
\(261\) 109.131 0.418127
\(262\) −59.2049 + 59.2049i −0.225973 + 0.225973i
\(263\) 4.14190 0.0157487 0.00787433 0.999969i \(-0.497493\pi\)
0.00787433 + 0.999969i \(0.497493\pi\)
\(264\) 24.1512i 0.0914817i
\(265\) −188.496 + 188.496i −0.711305 + 0.711305i
\(266\) −168.066 + 168.066i −0.631826 + 0.631826i
\(267\) 54.1045 + 54.1045i 0.202639 + 0.202639i
\(268\) 167.458 + 167.458i 0.624842 + 0.624842i
\(269\) 270.955 1.00727 0.503634 0.863917i \(-0.331996\pi\)
0.503634 + 0.863917i \(0.331996\pi\)
\(270\) 39.1789i 0.145107i
\(271\) 124.334 + 124.334i 0.458796 + 0.458796i 0.898260 0.439464i \(-0.144832\pi\)
−0.439464 + 0.898260i \(0.644832\pi\)
\(272\) 104.498i 0.384185i
\(273\) 0 0
\(274\) −343.849 −1.25492
\(275\) 11.9415 11.9415i 0.0434236 0.0434236i
\(276\) 128.997 0.467380
\(277\) 553.304i 1.99749i −0.0501154 0.998743i \(-0.515959\pi\)
0.0501154 0.998743i \(-0.484041\pi\)
\(278\) −219.773 + 219.773i −0.790549 + 0.790549i
\(279\) −10.7050 + 10.7050i −0.0383693 + 0.0383693i
\(280\) −58.3435 58.3435i −0.208369 0.208369i
\(281\) −62.7814 62.7814i −0.223422 0.223422i 0.586516 0.809938i \(-0.300499\pi\)
−0.809938 + 0.586516i \(0.800499\pi\)
\(282\) 96.5136 0.342247
\(283\) 341.345i 1.20617i 0.797679 + 0.603083i \(0.206061\pi\)
−0.797679 + 0.603083i \(0.793939\pi\)
\(284\) −55.4736 55.4736i −0.195330 0.195330i
\(285\) 283.653i 0.995274i
\(286\) 0 0
\(287\) −60.2918 −0.210076
\(288\) −12.0000 + 12.0000i −0.0416667 + 0.0416667i
\(289\) −393.495 −1.36157
\(290\) 274.282i 0.945800i
\(291\) −172.014 + 172.014i −0.591114 + 0.591114i
\(292\) 152.266 152.266i 0.521459 0.521459i
\(293\) 275.307 + 275.307i 0.939613 + 0.939613i 0.998278 0.0586650i \(-0.0186844\pi\)
−0.0586650 + 0.998278i \(0.518684\pi\)
\(294\) −33.0174 33.0174i −0.112304 0.112304i
\(295\) 144.325 0.489238
\(296\) 41.2800i 0.139460i
\(297\) 18.1134 + 18.1134i 0.0609878 + 0.0609878i
\(298\) 305.456i 1.02502i
\(299\) 0 0
\(300\) −11.8667 −0.0395558
\(301\) 148.041 148.041i 0.491831 0.491831i
\(302\) 165.586 0.548296
\(303\) 301.243i 0.994201i
\(304\) −86.8794 + 86.8794i −0.285787 + 0.285787i
\(305\) −315.896 + 315.896i −1.03572 + 1.03572i
\(306\) 78.3738 + 78.3738i 0.256124 + 0.256124i
\(307\) −151.708 151.708i −0.494164 0.494164i 0.415451 0.909615i \(-0.363624\pi\)
−0.909615 + 0.415451i \(0.863624\pi\)
\(308\) −53.9473 −0.175153
\(309\) 268.515i 0.868981i
\(310\) −26.9053 26.9053i −0.0867912 0.0867912i
\(311\) 242.225i 0.778859i −0.921056 0.389429i \(-0.872672\pi\)
0.921056 0.389429i \(-0.127328\pi\)
\(312\) 0 0
\(313\) 49.4596 0.158018 0.0790089 0.996874i \(-0.474824\pi\)
0.0790089 + 0.996874i \(0.474824\pi\)
\(314\) 27.5664 27.5664i 0.0877911 0.0877911i
\(315\) 87.5152 0.277826
\(316\) 207.343i 0.656149i
\(317\) −66.1813 + 66.1813i −0.208774 + 0.208774i −0.803746 0.594972i \(-0.797163\pi\)
0.594972 + 0.803746i \(0.297163\pi\)
\(318\) 86.6009 86.6009i 0.272330 0.272330i
\(319\) 126.807 + 126.807i 0.397515 + 0.397515i
\(320\) −30.1599 30.1599i −0.0942497 0.0942497i
\(321\) −315.652 −0.983338
\(322\) 288.145i 0.894859i
\(323\) 567.422 + 567.422i 1.75673 + 1.75673i
\(324\) 18.0000i 0.0555556i
\(325\) 0 0
\(326\) 140.261 0.430247
\(327\) 99.3595 99.3595i 0.303852 0.303852i
\(328\) −31.1671 −0.0950216
\(329\) 215.586i 0.655276i
\(330\) −45.5248 + 45.5248i −0.137954 + 0.137954i
\(331\) 152.672 152.672i 0.461246 0.461246i −0.437818 0.899064i \(-0.644248\pi\)
0.899064 + 0.437818i \(0.144248\pi\)
\(332\) 99.7544 + 99.7544i 0.300465 + 0.300465i
\(333\) −30.9600 30.9600i −0.0929730 0.0929730i
\(334\) 92.6942 0.277527
\(335\) 631.314i 1.88452i
\(336\) 26.8048 + 26.8048i 0.0797762 + 0.0797762i
\(337\) 440.101i 1.30594i −0.757385 0.652969i \(-0.773523\pi\)
0.757385 0.652969i \(-0.226477\pi\)
\(338\) 0 0
\(339\) 91.1201 0.268791
\(340\) −196.979 + 196.979i −0.579350 + 0.579350i
\(341\) −24.8780 −0.0729559
\(342\) 130.319i 0.381050i
\(343\) −263.330 + 263.330i −0.767726 + 0.767726i
\(344\) 76.5280 76.5280i 0.222465 0.222465i
\(345\) −243.158 243.158i −0.704807 0.704807i
\(346\) −128.629 128.629i −0.371759 0.371759i
\(347\) −124.893 −0.359922 −0.179961 0.983674i \(-0.557597\pi\)
−0.179961 + 0.983674i \(0.557597\pi\)
\(348\) 126.014i 0.362108i
\(349\) −357.385 357.385i −1.02402 1.02402i −0.999704 0.0243202i \(-0.992258\pi\)
−0.0243202 0.999704i \(-0.507742\pi\)
\(350\) 26.5071i 0.0757347i
\(351\) 0 0
\(352\) −27.8874 −0.0792254
\(353\) 82.3626 82.3626i 0.233322 0.233322i −0.580756 0.814078i \(-0.697243\pi\)
0.814078 + 0.580756i \(0.197243\pi\)
\(354\) −66.3075 −0.187309
\(355\) 209.135i 0.589112i
\(356\) 62.4745 62.4745i 0.175490 0.175490i
\(357\) 175.066 175.066i 0.490382 0.490382i
\(358\) −79.6484 79.6484i −0.222482 0.222482i
\(359\) −390.725 390.725i −1.08837 1.08837i −0.995696 0.0926747i \(-0.970458\pi\)
−0.0926747 0.995696i \(-0.529542\pi\)
\(360\) 45.2399 0.125666
\(361\) 582.504i 1.61358i
\(362\) −66.6961 66.6961i −0.184243 0.184243i
\(363\) 167.484i 0.461387i
\(364\) 0 0
\(365\) −574.042 −1.57272
\(366\) 145.132 145.132i 0.396537 0.396537i
\(367\) 368.677 1.00457 0.502285 0.864702i \(-0.332493\pi\)
0.502285 + 0.864702i \(0.332493\pi\)
\(368\) 148.953i 0.404763i
\(369\) 23.3753 23.3753i 0.0633477 0.0633477i
\(370\) 77.8126 77.8126i 0.210304 0.210304i
\(371\) −193.443 193.443i −0.521411 0.521411i
\(372\) 12.3611 + 12.3611i 0.0332288 + 0.0332288i
\(373\) −174.888 −0.468869 −0.234435 0.972132i \(-0.575324\pi\)
−0.234435 + 0.972132i \(0.575324\pi\)
\(374\) 182.136i 0.486996i
\(375\) −140.877 140.877i −0.375671 0.375671i
\(376\) 111.444i 0.296395i
\(377\) 0 0
\(378\) −40.2072 −0.106368
\(379\) −270.602 + 270.602i −0.713990 + 0.713990i −0.967368 0.253377i \(-0.918459\pi\)
0.253377 + 0.967368i \(0.418459\pi\)
\(380\) 327.534 0.861932
\(381\) 330.817i 0.868285i
\(382\) 89.4356 89.4356i 0.234125 0.234125i
\(383\) 49.7751 49.7751i 0.129961 0.129961i −0.639134 0.769095i \(-0.720707\pi\)
0.769095 + 0.639134i \(0.220707\pi\)
\(384\) 13.8564 + 13.8564i 0.0360844 + 0.0360844i
\(385\) 101.690 + 101.690i 0.264131 + 0.264131i
\(386\) −189.951 −0.492102
\(387\) 114.792i 0.296620i
\(388\) 198.625 + 198.625i 0.511919 + 0.511919i
\(389\) 359.190i 0.923368i 0.887044 + 0.461684i \(0.152755\pi\)
−0.887044 + 0.461684i \(0.847245\pi\)
\(390\) 0 0
\(391\) −972.833 −2.48806
\(392\) −38.1252 + 38.1252i −0.0972581 + 0.0972581i
\(393\) −102.546 −0.260931
\(394\) 52.0381i 0.132076i
\(395\) −390.841 + 390.841i −0.989470 + 0.989470i
\(396\) 20.9155 20.9155i 0.0528170 0.0528170i
\(397\) 462.559 + 462.559i 1.16514 + 1.16514i 0.983335 + 0.181802i \(0.0581929\pi\)
0.181802 + 0.983335i \(0.441807\pi\)
\(398\) −90.5342 90.5342i −0.227473 0.227473i
\(399\) −291.098 −0.729569
\(400\) 13.7025i 0.0342563i
\(401\) 532.299 + 532.299i 1.32743 + 1.32743i 0.907606 + 0.419822i \(0.137908\pi\)
0.419822 + 0.907606i \(0.362092\pi\)
\(402\) 290.045i 0.721506i
\(403\) 0 0
\(404\) 347.845 0.861003
\(405\) −33.9299 + 33.9299i −0.0837775 + 0.0837775i
\(406\) −281.481 −0.693303
\(407\) 71.9494i 0.176780i
\(408\) 90.4983 90.4983i 0.221809 0.221809i
\(409\) −106.915 + 106.915i −0.261406 + 0.261406i −0.825625 0.564219i \(-0.809177\pi\)
0.564219 + 0.825625i \(0.309177\pi\)
\(410\) 58.7498 + 58.7498i 0.143292 + 0.143292i
\(411\) −297.782 297.782i −0.724530 0.724530i
\(412\) −310.055 −0.752560
\(413\) 148.113i 0.358628i
\(414\) 111.715 + 111.715i 0.269842 + 0.269842i
\(415\) 376.073i 0.906200i
\(416\) 0 0
\(417\) −380.657 −0.912847
\(418\) 151.427 151.427i 0.362266 0.362266i
\(419\) 210.680 0.502816 0.251408 0.967881i \(-0.419106\pi\)
0.251408 + 0.967881i \(0.419106\pi\)
\(420\) 101.054i 0.240604i
\(421\) 62.4036 62.4036i 0.148227 0.148227i −0.629099 0.777326i \(-0.716576\pi\)
0.777326 + 0.629099i \(0.216576\pi\)
\(422\) −310.627 + 310.627i −0.736084 + 0.736084i
\(423\) 83.5833 + 83.5833i 0.197596 + 0.197596i
\(424\) −99.9981 99.9981i −0.235845 0.235845i
\(425\) 89.4933 0.210572
\(426\) 96.0831i 0.225547i
\(427\) −324.187 324.187i −0.759221 0.759221i
\(428\) 364.483i 0.851596i
\(429\) 0 0
\(430\) −288.510 −0.670953
\(431\) 44.3693 44.3693i 0.102945 0.102945i −0.653758 0.756703i \(-0.726809\pi\)
0.756703 + 0.653758i \(0.226809\pi\)
\(432\) −20.7846 −0.0481125
\(433\) 80.6942i 0.186361i 0.995649 + 0.0931804i \(0.0297033\pi\)
−0.995649 + 0.0931804i \(0.970297\pi\)
\(434\) 27.6115 27.6115i 0.0636209 0.0636209i
\(435\) −237.535 + 237.535i −0.546058 + 0.546058i
\(436\) −114.730 114.730i −0.263143 0.263143i
\(437\) 808.808 + 808.808i 1.85082 + 1.85082i
\(438\) 263.733 0.602130
\(439\) 32.6159i 0.0742959i 0.999310 + 0.0371480i \(0.0118273\pi\)
−0.999310 + 0.0371480i \(0.988173\pi\)
\(440\) 52.5675 + 52.5675i 0.119472 + 0.119472i
\(441\) 57.1878i 0.129677i
\(442\) 0 0
\(443\) 228.810 0.516502 0.258251 0.966078i \(-0.416854\pi\)
0.258251 + 0.966078i \(0.416854\pi\)
\(444\) −35.7495 + 35.7495i −0.0805170 + 0.0805170i
\(445\) −235.528 −0.529277
\(446\) 306.450i 0.687107i
\(447\) 264.533 264.533i 0.591796 0.591796i
\(448\) 30.9515 30.9515i 0.0690882 0.0690882i
\(449\) −38.0255 38.0255i −0.0846893 0.0846893i 0.663493 0.748182i \(-0.269073\pi\)
−0.748182 + 0.663493i \(0.769073\pi\)
\(450\) −10.2769 10.2769i −0.0228376 0.0228376i
\(451\) 54.3230 0.120450
\(452\) 105.216i 0.232780i
\(453\) 143.401 + 143.401i 0.316559 + 0.316559i
\(454\) 380.647i 0.838430i
\(455\) 0 0
\(456\) −150.480 −0.329999
\(457\) −558.092 + 558.092i −1.22121 + 1.22121i −0.254004 + 0.967203i \(0.581748\pi\)
−0.967203 + 0.254004i \(0.918252\pi\)
\(458\) −353.495 −0.771822
\(459\) 135.747i 0.295746i
\(460\) −280.775 + 280.775i −0.610381 + 0.610381i
\(461\) −157.751 + 157.751i −0.342194 + 0.342194i −0.857192 0.514998i \(-0.827793\pi\)
0.514998 + 0.857192i \(0.327793\pi\)
\(462\) −46.7197 46.7197i −0.101125 0.101125i
\(463\) −320.752 320.752i −0.692769 0.692769i 0.270071 0.962840i \(-0.412953\pi\)
−0.962840 + 0.270071i \(0.912953\pi\)
\(464\) −145.508 −0.313595
\(465\) 46.6013i 0.100218i
\(466\) 412.535 + 412.535i 0.885269 + 0.885269i
\(467\) 46.9561i 0.100548i −0.998735 0.0502742i \(-0.983990\pi\)
0.998735 0.0502742i \(-0.0160095\pi\)
\(468\) 0 0
\(469\) 647.884 1.38142
\(470\) −210.072 + 210.072i −0.446962 + 0.446962i
\(471\) 47.7464 0.101372
\(472\) 76.5653i 0.162215i
\(473\) −133.385 + 133.385i −0.281998 + 0.281998i
\(474\) 179.564 179.564i 0.378828 0.378828i
\(475\) −74.4042 74.4042i −0.156640 0.156640i
\(476\) −202.149 202.149i −0.424683 0.424683i
\(477\) 149.997 0.314459
\(478\) 23.3357i 0.0488194i
\(479\) −341.797 341.797i −0.713563 0.713563i 0.253716 0.967279i \(-0.418347\pi\)
−0.967279 + 0.253716i \(0.918347\pi\)
\(480\) 52.2385i 0.108830i
\(481\) 0 0
\(482\) 342.504 0.710589
\(483\) 249.541 249.541i 0.516647 0.516647i
\(484\) −193.393 −0.399573
\(485\) 748.813i 1.54394i
\(486\) 15.5885 15.5885i 0.0320750 0.0320750i
\(487\) 195.401 195.401i 0.401234 0.401234i −0.477434 0.878668i \(-0.658433\pi\)
0.878668 + 0.477434i \(0.158433\pi\)
\(488\) −167.585 167.585i −0.343411 0.343411i
\(489\) 121.469 + 121.469i 0.248403 + 0.248403i
\(490\) 143.732 0.293330
\(491\) 34.9120i 0.0711038i −0.999368 0.0355519i \(-0.988681\pi\)
0.999368 0.0355519i \(-0.0113189\pi\)
\(492\) −26.9915 26.9915i −0.0548607 0.0548607i
\(493\) 950.335i 1.92766i
\(494\) 0 0
\(495\) −78.8513 −0.159295
\(496\) 14.2734 14.2734i 0.0287770 0.0287770i
\(497\) −214.624 −0.431839
\(498\) 172.780i 0.346947i
\(499\) 266.311 266.311i 0.533689 0.533689i −0.387979 0.921668i \(-0.626827\pi\)
0.921668 + 0.387979i \(0.126827\pi\)
\(500\) −162.670 + 162.670i −0.325340 + 0.325340i
\(501\) 80.2755 + 80.2755i 0.160231 + 0.160231i
\(502\) 40.4473 + 40.4473i 0.0805722 + 0.0805722i
\(503\) 473.341 0.941035 0.470518 0.882391i \(-0.344067\pi\)
0.470518 + 0.882391i \(0.344067\pi\)
\(504\) 46.4273i 0.0921176i
\(505\) −655.687 655.687i −1.29839 1.29839i
\(506\) 259.619i 0.513080i
\(507\) 0 0
\(508\) 381.994 0.751957
\(509\) −356.092 + 356.092i −0.699591 + 0.699591i −0.964322 0.264731i \(-0.914717\pi\)
0.264731 + 0.964322i \(0.414717\pi\)
\(510\) −341.177 −0.668975
\(511\) 589.109i 1.15285i
\(512\) 16.0000 16.0000i 0.0312500 0.0312500i
\(513\) 112.860 112.860i 0.219999 0.219999i
\(514\) −163.494 163.494i −0.318082 0.318082i
\(515\) 584.451 + 584.451i 1.13486 + 1.13486i
\(516\) 132.550 0.256881
\(517\) 194.243i 0.375712i
\(518\) 79.8550 + 79.8550i 0.154160 + 0.154160i
\(519\) 222.791i 0.429270i
\(520\) 0 0
\(521\) 164.557 0.315849 0.157924 0.987451i \(-0.449520\pi\)
0.157924 + 0.987451i \(0.449520\pi\)
\(522\) 109.131 109.131i 0.209063 0.209063i
\(523\) 269.222 0.514765 0.257382 0.966310i \(-0.417140\pi\)
0.257382 + 0.966310i \(0.417140\pi\)
\(524\) 118.410i 0.225973i
\(525\) −22.9559 + 22.9559i −0.0437255 + 0.0437255i
\(526\) 4.14190 4.14190i 0.00787433 0.00787433i
\(527\) −93.2217 93.2217i −0.176891 0.176891i
\(528\) −24.1512 24.1512i −0.0457408 0.0457408i
\(529\) −857.683 −1.62133
\(530\) 376.992i 0.711305i
\(531\) −57.4239 57.4239i −0.108143 0.108143i
\(532\) 336.131i 0.631826i
\(533\) 0 0
\(534\) 108.209 0.202639
\(535\) 687.049 687.049i 1.28420 1.28420i
\(536\) 334.916 0.624842
\(537\) 137.955i 0.256900i
\(538\) 270.955 270.955i 0.503634 0.503634i
\(539\) 66.4507 66.4507i 0.123285 0.123285i
\(540\) 39.1789 + 39.1789i 0.0725535 + 0.0725535i
\(541\) 233.134 + 233.134i 0.430931 + 0.430931i 0.888945 0.458014i \(-0.151439\pi\)
−0.458014 + 0.888945i \(0.651439\pi\)
\(542\) 248.667 0.458796
\(543\) 115.521i 0.212746i
\(544\) −104.498 104.498i −0.192093 0.192093i
\(545\) 432.533i 0.793638i
\(546\) 0 0
\(547\) −5.40285 −0.00987723 −0.00493862 0.999988i \(-0.501572\pi\)
−0.00493862 + 0.999988i \(0.501572\pi\)
\(548\) −343.849 + 343.849i −0.627461 + 0.627461i
\(549\) 251.377 0.457881
\(550\) 23.8830i 0.0434236i
\(551\) 790.103 790.103i 1.43394 1.43394i
\(552\) 128.997 128.997i 0.233690 0.233690i
\(553\) −401.099 401.099i −0.725315 0.725315i
\(554\) −553.304 553.304i −0.998743 0.998743i
\(555\) 134.775 0.242839
\(556\) 439.545i 0.790549i
\(557\) 265.762 + 265.762i 0.477131 + 0.477131i 0.904213 0.427082i \(-0.140458\pi\)
−0.427082 + 0.904213i \(0.640458\pi\)
\(558\) 21.4101i 0.0383693i
\(559\) 0 0
\(560\) −116.687 −0.208369
\(561\) −157.735 + 157.735i −0.281167 + 0.281167i
\(562\) −125.563 −0.223422
\(563\) 202.971i 0.360517i −0.983619 0.180258i \(-0.942307\pi\)
0.983619 0.180258i \(-0.0576934\pi\)
\(564\) 96.5136 96.5136i 0.171123 0.171123i
\(565\) −198.332 + 198.332i −0.351031 + 0.351031i
\(566\) 341.345 + 341.345i 0.603083 + 0.603083i
\(567\) −34.8205 34.8205i −0.0614118 0.0614118i
\(568\) −110.947 −0.195330
\(569\) 213.041i 0.374413i 0.982321 + 0.187207i \(0.0599434\pi\)
−0.982321 + 0.187207i \(0.940057\pi\)
\(570\) 283.653 + 283.653i 0.497637 + 0.497637i
\(571\) 681.429i 1.19340i −0.802466 0.596698i \(-0.796479\pi\)
0.802466 0.596698i \(-0.203521\pi\)
\(572\) 0 0
\(573\) 154.907 0.270344
\(574\) −60.2918 + 60.2918i −0.105038 + 0.105038i
\(575\) 127.564 0.221851
\(576\) 24.0000i 0.0416667i
\(577\) −193.569 + 193.569i −0.335476 + 0.335476i −0.854661 0.519186i \(-0.826235\pi\)
0.519186 + 0.854661i \(0.326235\pi\)
\(578\) −393.495 + 393.495i −0.680787 + 0.680787i
\(579\) −164.503 164.503i −0.284115 0.284115i
\(580\) 274.282 + 274.282i 0.472900 + 0.472900i
\(581\) 385.944 0.664275
\(582\) 344.028i 0.591114i
\(583\) 174.293 + 174.293i 0.298958 + 0.298958i
\(584\) 304.532i 0.521459i
\(585\) 0 0
\(586\) 550.613 0.939613
\(587\) 638.458 638.458i 1.08766 1.08766i 0.0918940 0.995769i \(-0.470708\pi\)
0.995769 0.0918940i \(-0.0292921\pi\)
\(588\) −66.0348 −0.112304
\(589\) 155.008i 0.263171i
\(590\) 144.325 144.325i 0.244619 0.244619i
\(591\) −45.0663 + 45.0663i −0.0762543 + 0.0762543i
\(592\) 41.2800 + 41.2800i 0.0697298 + 0.0697298i
\(593\) 573.894 + 573.894i 0.967780 + 0.967780i 0.999497 0.0317166i \(-0.0100974\pi\)
−0.0317166 + 0.999497i \(0.510097\pi\)
\(594\) 36.2267 0.0609878
\(595\) 762.100i 1.28084i
\(596\) −305.456 305.456i −0.512511 0.512511i
\(597\) 156.810i 0.262663i
\(598\) 0 0
\(599\) −525.606 −0.877472 −0.438736 0.898616i \(-0.644574\pi\)
−0.438736 + 0.898616i \(0.644574\pi\)
\(600\) −11.8667 + 11.8667i −0.0197779 + 0.0197779i
\(601\) 960.818 1.59870 0.799349 0.600867i \(-0.205178\pi\)
0.799349 + 0.600867i \(0.205178\pi\)
\(602\) 296.082i 0.491831i
\(603\) −251.187 + 251.187i −0.416562 + 0.416562i
\(604\) 165.586 165.586i 0.274148 0.274148i
\(605\) 364.546 + 364.546i 0.602555 + 0.602555i
\(606\) 301.243 + 301.243i 0.497100 + 0.497100i
\(607\) −619.758 −1.02102 −0.510509 0.859872i \(-0.670543\pi\)
−0.510509 + 0.859872i \(0.670543\pi\)
\(608\) 173.759i 0.285787i
\(609\) −243.770 243.770i −0.400279 0.400279i
\(610\) 631.792i 1.03572i
\(611\) 0 0
\(612\) 156.748 0.256124
\(613\) 444.841 444.841i 0.725679 0.725679i −0.244077 0.969756i \(-0.578485\pi\)
0.969756 + 0.244077i \(0.0784849\pi\)
\(614\) −303.417 −0.494164
\(615\) 101.758i 0.165459i
\(616\) −53.9473 + 53.9473i −0.0875767 + 0.0875767i
\(617\) −24.2555 + 24.2555i −0.0393121 + 0.0393121i −0.726490 0.687178i \(-0.758849\pi\)
0.687178 + 0.726490i \(0.258849\pi\)
\(618\) −268.515 268.515i −0.434491 0.434491i
\(619\) 99.9062 + 99.9062i 0.161399 + 0.161399i 0.783186 0.621787i \(-0.213593\pi\)
−0.621787 + 0.783186i \(0.713593\pi\)
\(620\) −53.8105 −0.0867912
\(621\) 193.495i 0.311587i
\(622\) −242.225 242.225i −0.389429 0.389429i
\(623\) 241.710i 0.387978i
\(624\) 0 0
\(625\) 698.906 1.11825
\(626\) 49.4596 49.4596i 0.0790089 0.0790089i
\(627\) 262.280 0.418309
\(628\) 55.1328i 0.0877911i
\(629\) 269.606 269.606i 0.428626 0.428626i
\(630\) 87.5152 87.5152i 0.138913 0.138913i
\(631\) 170.213 + 170.213i 0.269751 + 0.269751i 0.829000 0.559249i \(-0.188910\pi\)
−0.559249 + 0.829000i \(0.688910\pi\)
\(632\) −207.343 207.343i −0.328075 0.328075i
\(633\) −538.023 −0.849957
\(634\) 132.363i 0.208774i
\(635\) −720.057 720.057i −1.13395 1.13395i
\(636\) 173.202i 0.272330i
\(637\) 0 0
\(638\) 253.615 0.397515
\(639\) 83.2104 83.2104i 0.130220 0.130220i
\(640\) −60.3198 −0.0942497
\(641\) 706.615i 1.10236i 0.834385 + 0.551182i \(0.185823\pi\)
−0.834385 + 0.551182i \(0.814177\pi\)
\(642\) −315.652 + 315.652i −0.491669 + 0.491669i
\(643\) 742.784 742.784i 1.15519 1.15519i 0.169688 0.985498i \(-0.445724\pi\)
0.985498 0.169688i \(-0.0542760\pi\)
\(644\) −288.145 288.145i −0.447430 0.447430i
\(645\) −249.857 249.857i −0.387375 0.387375i
\(646\) 1134.84 1.75673
\(647\) 461.398i 0.713134i −0.934270 0.356567i \(-0.883947\pi\)
0.934270 0.356567i \(-0.116053\pi\)
\(648\) −18.0000 18.0000i −0.0277778 0.0277778i
\(649\) 133.450i 0.205624i
\(650\) 0 0
\(651\) 47.8245 0.0734631
\(652\) 140.261 140.261i 0.215124 0.215124i
\(653\) −313.633 −0.480295 −0.240148 0.970736i \(-0.577196\pi\)
−0.240148 + 0.970736i \(0.577196\pi\)
\(654\) 198.719i 0.303852i
\(655\) 223.202 223.202i 0.340766 0.340766i
\(656\) −31.1671 + 31.1671i −0.0475108 + 0.0475108i
\(657\) 228.399 + 228.399i 0.347640 + 0.347640i
\(658\) −215.586 215.586i −0.327638 0.327638i
\(659\) 415.245 0.630115 0.315057 0.949073i \(-0.397976\pi\)
0.315057 + 0.949073i \(0.397976\pi\)
\(660\) 91.0496i 0.137954i
\(661\) 31.9625 + 31.9625i 0.0483547 + 0.0483547i 0.730871 0.682516i \(-0.239114\pi\)
−0.682516 + 0.730871i \(0.739114\pi\)
\(662\) 305.345i 0.461246i
\(663\) 0 0
\(664\) 199.509 0.300465
\(665\) 633.605 633.605i 0.952790 0.952790i
\(666\) −61.9200 −0.0929730
\(667\) 1354.61i 2.03091i
\(668\) 92.6942 92.6942i 0.138764 0.138764i
\(669\) −265.393 + 265.393i −0.396702 + 0.396702i
\(670\) −631.314 631.314i −0.942260 0.942260i
\(671\) 292.093 + 292.093i 0.435310 + 0.435310i
\(672\) 53.6096 0.0797762
\(673\) 341.508i 0.507441i −0.967278 0.253720i \(-0.918346\pi\)
0.967278 0.253720i \(-0.0816543\pi\)
\(674\) −440.101 440.101i −0.652969 0.652969i
\(675\) 17.8001i 0.0263705i
\(676\) 0 0
\(677\) 1060.95 1.56714 0.783568 0.621306i \(-0.213398\pi\)
0.783568 + 0.621306i \(0.213398\pi\)
\(678\) 91.1201 91.1201i 0.134395 0.134395i
\(679\) 768.467 1.13176
\(680\) 393.958i 0.579350i
\(681\) 329.650 329.650i 0.484068 0.484068i
\(682\) −24.8780 + 24.8780i −0.0364779 + 0.0364779i
\(683\) −137.929 137.929i −0.201945 0.201945i 0.598888 0.800833i \(-0.295610\pi\)
−0.800833 + 0.598888i \(0.795610\pi\)
\(684\) −130.319 130.319i −0.190525 0.190525i
\(685\) 1296.31 1.89242
\(686\) 526.660i 0.767726i
\(687\) −306.135 306.135i −0.445612 0.445612i
\(688\) 153.056i 0.222465i
\(689\) 0 0
\(690\) −486.317 −0.704807
\(691\) 398.988 398.988i 0.577407 0.577407i −0.356781 0.934188i \(-0.616126\pi\)
0.934188 + 0.356781i \(0.116126\pi\)
\(692\) −257.257 −0.371759
\(693\) 80.9209i 0.116769i
\(694\) −124.893 + 124.893i −0.179961 + 0.179961i
\(695\) 828.540 828.540i 1.19214 1.19214i
\(696\) −126.014 126.014i −0.181054 0.181054i
\(697\) 203.557 + 203.557i 0.292047 + 0.292047i
\(698\) −714.769 −1.02402
\(699\) 714.532i 1.02222i
\(700\) 26.5071 + 26.5071i 0.0378674 + 0.0378674i
\(701\) 589.971i 0.841613i 0.907150 + 0.420807i \(0.138253\pi\)
−0.907150 + 0.420807i \(0.861747\pi\)
\(702\) 0 0
\(703\) −448.298 −0.637692
\(704\) −27.8874 + 27.8874i −0.0396127 + 0.0396127i
\(705\) −363.855 −0.516107
\(706\) 164.725i 0.233322i
\(707\) 672.897 672.897i 0.951763 0.951763i
\(708\) −66.3075 + 66.3075i −0.0936546 + 0.0936546i
\(709\) −98.7332 98.7332i −0.139257 0.139257i 0.634042 0.773299i \(-0.281395\pi\)
−0.773299 + 0.634042i \(0.781395\pi\)
\(710\) 209.135 + 209.135i 0.294556 + 0.294556i
\(711\) 311.015 0.437433
\(712\) 124.949i 0.175490i
\(713\) −132.879 132.879i −0.186366 0.186366i
\(714\) 350.132i 0.490382i
\(715\) 0 0
\(716\) −159.297 −0.222482
\(717\) 20.2093 20.2093i 0.0281859 0.0281859i
\(718\) −781.450 −1.08837
\(719\) 708.385i 0.985236i 0.870246 + 0.492618i \(0.163960\pi\)
−0.870246 + 0.492618i \(0.836040\pi\)
\(720\) 45.2399 45.2399i 0.0628331 0.0628331i
\(721\) −599.791 + 599.791i −0.831888 + 0.831888i
\(722\) −582.504 582.504i −0.806792 0.806792i
\(723\) 296.617 + 296.617i 0.410259 + 0.410259i
\(724\) −133.392 −0.184243
\(725\) 124.614i 0.171882i
\(726\) −167.484 167.484i −0.230694 0.230694i
\(727\) 970.555i 1.33501i −0.744603 0.667507i \(-0.767361\pi\)
0.744603 0.667507i \(-0.232639\pi\)
\(728\) 0 0
\(729\) 27.0000 0.0370370
\(730\) −574.042 + 574.042i −0.786359 + 0.786359i
\(731\) −999.632 −1.36748
\(732\) 290.265i 0.396537i
\(733\) 523.682 523.682i 0.714437 0.714437i −0.253023 0.967460i \(-0.581425\pi\)
0.967460 + 0.253023i \(0.0814250\pi\)
\(734\) 368.677 368.677i 0.502285 0.502285i
\(735\) 124.475 + 124.475i 0.169354 + 0.169354i
\(736\) −148.953 148.953i −0.202381 0.202381i
\(737\) −583.744 −0.792055
\(738\) 46.7506i 0.0633477i
\(739\) 630.840 + 630.840i 0.853640 + 0.853640i 0.990579 0.136939i \(-0.0437266\pi\)
−0.136939 + 0.990579i \(0.543727\pi\)
\(740\) 155.625i 0.210304i
\(741\) 0 0
\(742\) −386.887 −0.521411
\(743\) 50.2030 50.2030i 0.0675680 0.0675680i −0.672515 0.740083i \(-0.734786\pi\)
0.740083 + 0.672515i \(0.234786\pi\)
\(744\) 24.7222 0.0332288
\(745\) 1151.57i 1.54573i
\(746\) −174.888 + 174.888i −0.234435 + 0.234435i
\(747\) −149.632 + 149.632i −0.200310 + 0.200310i
\(748\) 182.136 + 182.136i 0.243498 + 0.243498i
\(749\) 705.082 + 705.082i 0.941364 + 0.941364i
\(750\) −281.753 −0.375671
\(751\) 794.498i 1.05792i 0.848647 + 0.528960i \(0.177418\pi\)
−0.848647 + 0.528960i \(0.822582\pi\)
\(752\) −111.444 111.444i −0.148197 0.148197i
\(753\) 70.0567i 0.0930368i
\(754\) 0 0
\(755\) −624.256 −0.826829
\(756\) −40.2072 + 40.2072i −0.0531841 + 0.0531841i
\(757\) 545.450 0.720541 0.360271 0.932848i \(-0.382684\pi\)
0.360271 + 0.932848i \(0.382684\pi\)
\(758\) 541.205i 0.713990i
\(759\) −224.836 + 224.836i −0.296227 + 0.296227i
\(760\) 327.534 327.534i 0.430966 0.430966i
\(761\) 88.4825 + 88.4825i 0.116271 + 0.116271i 0.762849 0.646577i \(-0.223800\pi\)
−0.646577 + 0.762849i \(0.723800\pi\)
\(762\) 330.817 + 330.817i 0.434143 + 0.434143i
\(763\) −443.886 −0.581763
\(764\) 178.871i 0.234125i
\(765\) −295.468 295.468i −0.386233 0.386233i
\(766\) 99.5502i 0.129961i
\(767\) 0 0
\(768\) 27.7128 0.0360844
\(769\) 200.890 200.890i 0.261235 0.261235i −0.564321 0.825556i \(-0.690862\pi\)
0.825556 + 0.564321i \(0.190862\pi\)
\(770\) 203.381 0.264131
\(771\) 283.180i 0.367290i
\(772\) −189.951 + 189.951i −0.246051 + 0.246051i
\(773\) 714.337 714.337i 0.924110 0.924110i −0.0732069 0.997317i \(-0.523323\pi\)
0.997317 + 0.0732069i \(0.0233233\pi\)
\(774\) 114.792 + 114.792i 0.148310 + 0.148310i
\(775\) 12.2239 + 12.2239i 0.0157727 + 0.0157727i
\(776\) 397.250 0.511919
\(777\) 138.313i 0.178009i
\(778\) 359.190 + 359.190i 0.461684 + 0.461684i
\(779\) 338.472i 0.434496i
\(780\) 0 0
\(781\) 193.377 0.247601
\(782\) −972.833 + 972.833i −1.24403 + 1.24403i
\(783\) 189.021 0.241406
\(784\) 76.2504i 0.0972581i
\(785\) −103.925 + 103.925i −0.132389 + 0.132389i
\(786\) −102.546 + 102.546i −0.130466 + 0.130466i
\(787\) −1057.22 1057.22i −1.34336 1.34336i −0.892690 0.450670i \(-0.851185\pi\)
−0.450670 0.892690i \(-0.648815\pi\)
\(788\) 52.0381 + 52.0381i 0.0660382 + 0.0660382i
\(789\) 7.17398 0.00909250
\(790\) 781.681i 0.989470i
\(791\) −203.538 203.538i −0.257317 0.257317i
\(792\) 41.8310i 0.0528170i
\(793\) 0 0
\(794\) 925.119 1.16514
\(795\) −326.484 + 326.484i −0.410672 + 0.410672i
\(796\) −181.068 −0.227473
\(797\) 1039.27i 1.30397i −0.758231 0.651986i \(-0.773936\pi\)
0.758231 0.651986i \(-0.226064\pi\)
\(798\) −291.098 + 291.098i −0.364785 + 0.364785i
\(799\) −727.860 + 727.860i −0.910963 + 0.910963i
\(800\) 13.7025 + 13.7025i 0.0171282 + 0.0171282i
\(801\) 93.7118 + 93.7118i 0.116993 + 0.116993i
\(802\) 1064.60 1.32743
\(803\) 530.788i 0.661006i
\(804\) 290.045 + 290.045i 0.360753 + 0.360753i
\(805\) 1086.30i 1.34944i
\(806\) 0 0
\(807\) 469.308 0.581546
\(808\) 347.845 347.845i 0.430502 0.430502i
\(809\) 1420.18 1.75548 0.877738 0.479141i \(-0.159052\pi\)
0.877738 + 0.479141i \(0.159052\pi\)
\(810\) 67.8598i 0.0837775i
\(811\) 519.737 519.737i 0.640859 0.640859i −0.309908 0.950767i \(-0.600298\pi\)
0.950767 + 0.309908i \(0.100298\pi\)
\(812\) −281.481 + 281.481i −0.346652 + 0.346652i
\(813\) 215.352 + 215.352i 0.264886 + 0.264886i
\(814\) −71.9494 71.9494i −0.0883899 0.0883899i
\(815\) −528.781 −0.648811
\(816\) 180.997i 0.221809i
\(817\) 831.088 + 831.088i 1.01724 + 1.01724i
\(818\) 213.830i 0.261406i
\(819\) 0 0
\(820\) 117.500 0.143292
\(821\) −862.830 + 862.830i −1.05095 + 1.05095i −0.0523199 + 0.998630i \(0.516662\pi\)
−0.998630 + 0.0523199i \(0.983338\pi\)
\(822\) −595.563 −0.724530
\(823\) 252.703i 0.307051i −0.988145 0.153525i \(-0.950937\pi\)
0.988145 0.153525i \(-0.0490627\pi\)
\(824\) −310.055 + 310.055i −0.376280 + 0.376280i
\(825\) 20.6833 20.6833i 0.0250706 0.0250706i
\(826\) 148.113 + 148.113i 0.179314 + 0.179314i
\(827\) −1148.09 1148.09i −1.38826 1.38826i −0.828980 0.559278i \(-0.811078\pi\)
−0.559278 0.828980i \(-0.688922\pi\)
\(828\) 223.429 0.269842
\(829\) 1345.34i 1.62285i −0.584455 0.811426i \(-0.698692\pi\)
0.584455 0.811426i \(-0.301308\pi\)
\(830\) −376.073 376.073i −0.453100 0.453100i
\(831\) 958.350i 1.15325i
\(832\) 0 0
\(833\) 498.003 0.597842
\(834\) −380.657 + 380.657i −0.456424 + 0.456424i
\(835\) −349.456 −0.418510
\(836\) 302.855i 0.362266i
\(837\) −18.5417 + 18.5417i −0.0221526 + 0.0221526i
\(838\) 210.680 210.680i 0.251408 0.251408i
\(839\) 60.7079 + 60.7079i 0.0723574 + 0.0723574i 0.742359 0.670002i \(-0.233707\pi\)
−0.670002 + 0.742359i \(0.733707\pi\)
\(840\) −101.054 101.054i −0.120302 0.120302i
\(841\) 482.288 0.573470
\(842\) 124.807i 0.148227i
\(843\) −108.741 108.741i −0.128992 0.128992i
\(844\) 621.255i 0.736084i
\(845\) 0 0
\(846\) 167.167 0.197596
\(847\) −374.114 + 374.114i −0.441693 + 0.441693i
\(848\) −199.996 −0.235845
\(849\) 591.227i 0.696380i
\(850\) 89.4933 89.4933i 0.105286 0.105286i
\(851\) 384.298 384.298i 0.451584 0.451584i
\(852\) −96.0831 96.0831i −0.112774 0.112774i
\(853\) 995.685 + 995.685i 1.16727 + 1.16727i 0.982846 + 0.184428i \(0.0590434\pi\)
0.184428 + 0.982846i \(0.440957\pi\)
\(854\) −648.375 −0.759221
\(855\) 491.302i 0.574622i
\(856\) 364.483 + 364.483i 0.425798 + 0.425798i
\(857\) 1713.66i 1.99961i −0.0197851 0.999804i \(-0.506298\pi\)
0.0197851 0.999804i \(-0.493702\pi\)
\(858\) 0 0
\(859\) 1251.13 1.45650 0.728249 0.685313i \(-0.240334\pi\)
0.728249 + 0.685313i \(0.240334\pi\)
\(860\) −288.510 + 288.510i −0.335476 + 0.335476i
\(861\) −104.428 −0.121287
\(862\) 88.7386i 0.102945i
\(863\) −468.627 + 468.627i −0.543021 + 0.543021i −0.924413 0.381392i \(-0.875445\pi\)
0.381392 + 0.924413i \(0.375445\pi\)
\(864\) −20.7846 + 20.7846i −0.0240563 + 0.0240563i
\(865\) 484.928 + 484.928i 0.560611 + 0.560611i
\(866\) 80.6942 + 80.6942i 0.0931804 + 0.0931804i
\(867\) −681.553 −0.786105
\(868\) 55.2229i 0.0636209i
\(869\) 361.391 + 361.391i 0.415870 + 0.415870i
\(870\) 475.070i 0.546058i
\(871\) 0 0
\(872\) −229.461 −0.263143
\(873\) −297.937 + 297.937i −0.341280 + 0.341280i
\(874\) 1617.62 1.85082
\(875\) 629.362i 0.719270i
\(876\) 263.733 263.733i 0.301065 0.301065i
\(877\) 27.1349 27.1349i 0.0309406 0.0309406i −0.691467 0.722408i \(-0.743035\pi\)
0.722408 + 0.691467i \(0.243035\pi\)
\(878\) 32.6159 + 32.6159i 0.0371480 + 0.0371480i
\(879\) 476.845 + 476.845i 0.542486 + 0.542486i
\(880\) 105.135 0.119472
\(881\) 1347.93i 1.53001i −0.644027 0.765003i \(-0.722738\pi\)
0.644027 0.765003i \(-0.277262\pi\)
\(882\) −57.1878 57.1878i −0.0648387 0.0648387i
\(883\) 762.177i 0.863168i 0.902073 + 0.431584i \(0.142045\pi\)
−0.902073 + 0.431584i \(0.857955\pi\)
\(884\) 0 0
\(885\) 249.978 0.282461
\(886\) 228.810 228.810i 0.258251 0.258251i
\(887\) −665.668 −0.750471 −0.375236 0.926929i \(-0.622438\pi\)
−0.375236 + 0.926929i \(0.622438\pi\)
\(888\) 71.4991i 0.0805170i
\(889\) 738.957 738.957i 0.831222 0.831222i
\(890\) −235.528 + 235.528i −0.264638 + 0.264638i
\(891\) 31.3733 + 31.3733i 0.0352113 + 0.0352113i
\(892\) 306.450 + 306.450i 0.343554 + 0.343554i
\(893\) 1210.28 1.35529
\(894\) 529.066i 0.591796i
\(895\) 300.274 + 300.274i 0.335501 + 0.335501i
\(896\) 61.9031i 0.0690882i
\(897\) 0 0
\(898\) −76.0510 −0.0846893
\(899\) −129.806 + 129.806i −0.144389 + 0.144389i
\(900\) −20.5538 −0.0228376
\(901\) 1306.21i 1.44973i
\(902\) 54.3230 54.3230i 0.0602250 0.0602250i
\(903\) 256.415 256.415i 0.283959 0.283959i
\(904\) −105.216 105.216i −0.116390 0.116390i
\(905\) 251.443 + 251.443i 0.277838 + 0.277838i
\(906\) 286.803 0.316559
\(907\) 1284.18i 1.41586i −0.706284 0.707929i \(-0.749630\pi\)
0.706284 0.707929i \(-0.250370\pi\)
\(908\) −380.647 380.647i −0.419215 0.419215i
\(909\) 521.768i 0.574002i
\(910\) 0 0
\(911\) −1105.31 −1.21329 −0.606644 0.794973i \(-0.707485\pi\)
−0.606644 + 0.794973i \(0.707485\pi\)
\(912\) −150.480 + 150.480i −0.164999 + 0.164999i
\(913\) −347.736 −0.380872
\(914\) 1116.18i 1.22121i
\(915\) −547.148 + 547.148i −0.597976 + 0.597976i
\(916\) −353.495 + 353.495i −0.385911 + 0.385911i
\(917\) 229.060 + 229.060i 0.249793 + 0.249793i
\(918\) 135.747 + 135.747i 0.147873 + 0.147873i
\(919\) −1527.45 −1.66208 −0.831040 0.556212i \(-0.812254\pi\)
−0.831040 + 0.556212i \(0.812254\pi\)
\(920\) 561.550i 0.610381i
\(921\) −262.767 262.767i −0.285306 0.285306i
\(922\) 315.503i 0.342194i
\(923\) 0 0
\(924\) −93.4394 −0.101125
\(925\) −35.3525 + 35.3525i −0.0382190 + 0.0382190i
\(926\) −641.504 −0.692769
\(927\) 465.082i 0.501706i
\(928\) −145.508 + 145.508i −0.156798 + 0.156798i
\(929\) −1288.66 + 1288.66i −1.38714 + 1.38714i −0.555886 + 0.831259i \(0.687621\pi\)
−0.831259 + 0.555886i \(0.812379\pi\)
\(930\) −46.6013 46.6013i −0.0501089 0.0501089i
\(931\) −414.037 414.037i −0.444722 0.444722i
\(932\) 825.070 0.885269
\(933\) 419.546i 0.449674i
\(934\) −46.9561 46.9561i −0.0502742 0.0502742i
\(935\) 686.653i 0.734388i
\(936\) 0 0
\(937\) −182.294 −0.194551 −0.0972755 0.995257i \(-0.531013\pi\)
−0.0972755 + 0.995257i \(0.531013\pi\)
\(938\) 647.884 647.884i 0.690708 0.690708i
\(939\) 85.6665 0.0912316
\(940\) 420.144i 0.446962i
\(941\) −358.362 + 358.362i −0.380831 + 0.380831i −0.871401 0.490571i \(-0.836788\pi\)
0.490571 + 0.871401i \(0.336788\pi\)
\(942\) 47.7464 47.7464i 0.0506862 0.0506862i
\(943\) 290.151 + 290.151i 0.307690 + 0.307690i
\(944\) 76.5653 + 76.5653i 0.0811073 + 0.0811073i
\(945\) 151.581 0.160403
\(946\) 266.770i 0.281998i
\(947\) −95.6115 95.6115i −0.100963 0.100963i 0.654821 0.755784i \(-0.272744\pi\)
−0.755784 + 0.654821i \(0.772744\pi\)
\(948\) 359.129i 0.378828i
\(949\) 0 0
\(950\) −148.808 −0.156640
\(951\) −114.629 + 114.629i −0.120536 + 0.120536i
\(952\) −404.298 −0.424683
\(953\) 679.051i 0.712541i −0.934383 0.356270i \(-0.884048\pi\)
0.934383 0.356270i \(-0.115952\pi\)
\(954\) 149.997 149.997i 0.157230 0.157230i
\(955\) −337.171 + 337.171i −0.353059 + 0.353059i
\(956\) −23.3357 23.3357i −0.0244097 0.0244097i
\(957\) 219.637 + 219.637i 0.229506 + 0.229506i
\(958\) −683.594 −0.713563
\(959\) 1330.33i 1.38721i
\(960\) −52.2385 52.2385i −0.0544151 0.0544151i
\(961\) 935.534i 0.973500i
\(962\) 0 0
\(963\) −546.725 −0.567731
\(964\) 342.504 342.504i 0.355294 0.355294i
\(965\) 716.114 0.742087
\(966\) 499.081i 0.516647i
\(967\) −814.203 + 814.203i −0.841989 + 0.841989i −0.989117 0.147129i \(-0.952997\pi\)
0.147129 + 0.989117i \(0.452997\pi\)
\(968\) −193.393 + 193.393i −0.199787 + 0.199787i
\(969\) 982.804 + 982.804i 1.01425 + 1.01425i
\(970\) −748.813 748.813i −0.771972 0.771972i
\(971\) 283.673 0.292145 0.146073 0.989274i \(-0.453337\pi\)
0.146073 + 0.989274i \(0.453337\pi\)
\(972\) 31.1769i 0.0320750i
\(973\) 850.287 + 850.287i 0.873882 + 0.873882i
\(974\) 390.801i 0.401234i
\(975\) 0 0
\(976\) −335.169 −0.343411
\(977\) −663.701 + 663.701i −0.679326 + 0.679326i −0.959848 0.280522i \(-0.909493\pi\)
0.280522 + 0.959848i \(0.409493\pi\)
\(978\) 242.939 0.248403
\(979\) 217.781i 0.222453i
\(980\) 143.732 143.732i 0.146665 0.146665i
\(981\) 172.096 172.096i 0.175429 0.175429i
\(982\) −34.9120 34.9120i −0.0355519 0.0355519i
\(983\) 1288.44 + 1288.44i 1.31073 + 1.31073i 0.920880 + 0.389845i \(0.127471\pi\)
0.389845 + 0.920880i \(0.372529\pi\)
\(984\) −53.9830 −0.0548607
\(985\) 196.183i 0.199171i
\(986\) 950.335 + 950.335i 0.963829 + 0.963829i
\(987\) 373.406i 0.378324i
\(988\) 0 0
\(989\) −1424.88 −1.44073
\(990\) −78.8513 + 78.8513i −0.0796477 + 0.0796477i
\(991\) 1044.65 1.05414 0.527069 0.849822i \(-0.323291\pi\)
0.527069 + 0.849822i \(0.323291\pi\)
\(992\) 28.5468i 0.0287770i
\(993\) 264.437 264.437i 0.266301 0.266301i
\(994\) −214.624 + 214.624i −0.215920 + 0.215920i
\(995\) 341.313 + 341.313i 0.343028 + 0.343028i
\(996\) 172.780 + 172.780i 0.173474 + 0.173474i
\(997\) 834.569 0.837080 0.418540 0.908198i \(-0.362542\pi\)
0.418540 + 0.908198i \(0.362542\pi\)
\(998\) 532.622i 0.533689i
\(999\) −53.6243 53.6243i −0.0536780 0.0536780i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.3.f.l.577.10 yes 24
13.5 odd 4 1014.3.f.k.775.10 yes 24
13.8 odd 4 inner 1014.3.f.l.775.10 yes 24
13.12 even 2 1014.3.f.k.577.10 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1014.3.f.k.577.10 24 13.12 even 2
1014.3.f.k.775.10 yes 24 13.5 odd 4
1014.3.f.l.577.10 yes 24 1.1 even 1 trivial
1014.3.f.l.775.10 yes 24 13.8 odd 4 inner