Properties

Label 1014.3
Level 1014
Weight 3
Dimension 14028
Nonzero newspaces 12
Sturm bound 170352
Trace bound 4

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) = \( 3 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(170352\)
Trace bound: \(4\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{3}(\Gamma_1(1014))\).

Total New Old
Modular forms 57696 14028 43668
Cusp forms 55872 14028 41844
Eisenstein series 1824 0 1824

Trace form

\( 14028 q - 80 q^{7} - 48 q^{8} - 24 q^{9} - 120 q^{10} - 48 q^{11} + 48 q^{13} + 96 q^{14} + 144 q^{15} + 64 q^{16} + 144 q^{17} + 72 q^{18} + 160 q^{19} + 96 q^{20} - 120 q^{21} - 96 q^{23} + 144 q^{27}+ \cdots + 1224 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{3}^{\mathrm{new}}(\Gamma_1(1014))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1014.3.c \(\chi_{1014}(677, \cdot)\) n/a 104 1
1014.3.d \(\chi_{1014}(1013, \cdot)\) n/a 104 1
1014.3.f \(\chi_{1014}(577, \cdot)\) 1014.3.f.a 4 2
1014.3.f.b 4
1014.3.f.c 4
1014.3.f.d 4
1014.3.f.e 4
1014.3.f.f 4
1014.3.f.g 4
1014.3.f.h 8
1014.3.f.i 8
1014.3.f.j 8
1014.3.f.k 24
1014.3.f.l 24
1014.3.h \(\chi_{1014}(191, \cdot)\) n/a 204 2
1014.3.j \(\chi_{1014}(23, \cdot)\) n/a 204 2
1014.3.l \(\chi_{1014}(19, \cdot)\) n/a 208 4
1014.3.n \(\chi_{1014}(77, \cdot)\) n/a 1440 12
1014.3.o \(\chi_{1014}(53, \cdot)\) n/a 1440 12
1014.3.s \(\chi_{1014}(31, \cdot)\) n/a 1488 24
1014.3.t \(\chi_{1014}(17, \cdot)\) n/a 2928 24
1014.3.v \(\chi_{1014}(29, \cdot)\) n/a 2928 24
1014.3.w \(\chi_{1014}(7, \cdot)\) n/a 2880 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{3}^{\mathrm{old}}(\Gamma_1(1014))\) into lower level spaces

\( S_{3}^{\mathrm{old}}(\Gamma_1(1014)) \cong \) \(S_{3}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)