Defining parameters
Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1014.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 12 \) | ||
Sturm bound: | \(546\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(1014, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 784 | 100 | 684 |
Cusp forms | 672 | 100 | 572 |
Eisenstein series | 112 | 0 | 112 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces
Decomposition of \(S_{3}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{3}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)