Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1014,3,Mod(577,1014)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1014, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3]))
N = Newforms(chi, 3, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1014.577");
S:= CuspForms(chi, 3);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 1014.f (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(27.6294988061\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
577.1 | 1.00000 | − | 1.00000i | −1.73205 | − | 2.00000i | 6.13024 | − | 6.13024i | −1.73205 | + | 1.73205i | −7.22737 | − | 7.22737i | −2.00000 | − | 2.00000i | 3.00000 | − | 12.2605i | ||||||
577.2 | 1.00000 | − | 1.00000i | −1.73205 | − | 2.00000i | 1.79330 | − | 1.79330i | −1.73205 | + | 1.73205i | −1.33439 | − | 1.33439i | −2.00000 | − | 2.00000i | 3.00000 | − | 3.58660i | ||||||
577.3 | 1.00000 | − | 1.00000i | −1.73205 | − | 2.00000i | −2.55415 | + | 2.55415i | −1.73205 | + | 1.73205i | 5.86894 | + | 5.86894i | −2.00000 | − | 2.00000i | 3.00000 | 5.10829i | |||||||
577.4 | 1.00000 | − | 1.00000i | −1.73205 | − | 2.00000i | −1.48148 | + | 1.48148i | −1.73205 | + | 1.73205i | 1.99239 | + | 1.99239i | −2.00000 | − | 2.00000i | 3.00000 | 2.96297i | |||||||
577.5 | 1.00000 | − | 1.00000i | −1.73205 | − | 2.00000i | 0.325674 | − | 0.325674i | −1.73205 | + | 1.73205i | −1.39966 | − | 1.39966i | −2.00000 | − | 2.00000i | 3.00000 | − | 0.651349i | ||||||
577.6 | 1.00000 | − | 1.00000i | −1.73205 | − | 2.00000i | −5.67769 | + | 5.67769i | −1.73205 | + | 1.73205i | 8.10009 | + | 8.10009i | −2.00000 | − | 2.00000i | 3.00000 | 11.3554i | |||||||
577.7 | 1.00000 | − | 1.00000i | 1.73205 | − | 2.00000i | 2.81770 | − | 2.81770i | 1.73205 | − | 1.73205i | 0.00760663 | + | 0.00760663i | −2.00000 | − | 2.00000i | 3.00000 | − | 5.63540i | ||||||
577.8 | 1.00000 | − | 1.00000i | 1.73205 | − | 2.00000i | −0.400777 | + | 0.400777i | 1.73205 | − | 1.73205i | 9.22737 | + | 9.22737i | −2.00000 | − | 2.00000i | 3.00000 | 0.801554i | |||||||
577.9 | 1.00000 | − | 1.00000i | 1.73205 | − | 2.00000i | −0.315011 | + | 0.315011i | 1.73205 | − | 1.73205i | 3.33439 | + | 3.33439i | −2.00000 | − | 2.00000i | 3.00000 | 0.630023i | |||||||
577.10 | 1.00000 | − | 1.00000i | 1.73205 | − | 2.00000i | −3.76999 | + | 3.76999i | 1.73205 | − | 1.73205i | −3.86894 | − | 3.86894i | −2.00000 | − | 2.00000i | 3.00000 | 7.53998i | |||||||
577.11 | 1.00000 | − | 1.00000i | 1.73205 | − | 2.00000i | 1.79162 | − | 1.79162i | 1.73205 | − | 1.73205i | −6.10009 | − | 6.10009i | −2.00000 | − | 2.00000i | 3.00000 | − | 3.58324i | ||||||
577.12 | 1.00000 | − | 1.00000i | 1.73205 | − | 2.00000i | 5.34056 | − | 5.34056i | 1.73205 | − | 1.73205i | 3.39966 | + | 3.39966i | −2.00000 | − | 2.00000i | 3.00000 | − | 10.6811i | ||||||
775.1 | 1.00000 | + | 1.00000i | −1.73205 | 2.00000i | 6.13024 | + | 6.13024i | −1.73205 | − | 1.73205i | −7.22737 | + | 7.22737i | −2.00000 | + | 2.00000i | 3.00000 | 12.2605i | ||||||||
775.2 | 1.00000 | + | 1.00000i | −1.73205 | 2.00000i | 1.79330 | + | 1.79330i | −1.73205 | − | 1.73205i | −1.33439 | + | 1.33439i | −2.00000 | + | 2.00000i | 3.00000 | 3.58660i | ||||||||
775.3 | 1.00000 | + | 1.00000i | −1.73205 | 2.00000i | −2.55415 | − | 2.55415i | −1.73205 | − | 1.73205i | 5.86894 | − | 5.86894i | −2.00000 | + | 2.00000i | 3.00000 | − | 5.10829i | |||||||
775.4 | 1.00000 | + | 1.00000i | −1.73205 | 2.00000i | −1.48148 | − | 1.48148i | −1.73205 | − | 1.73205i | 1.99239 | − | 1.99239i | −2.00000 | + | 2.00000i | 3.00000 | − | 2.96297i | |||||||
775.5 | 1.00000 | + | 1.00000i | −1.73205 | 2.00000i | 0.325674 | + | 0.325674i | −1.73205 | − | 1.73205i | −1.39966 | + | 1.39966i | −2.00000 | + | 2.00000i | 3.00000 | 0.651349i | ||||||||
775.6 | 1.00000 | + | 1.00000i | −1.73205 | 2.00000i | −5.67769 | − | 5.67769i | −1.73205 | − | 1.73205i | 8.10009 | − | 8.10009i | −2.00000 | + | 2.00000i | 3.00000 | − | 11.3554i | |||||||
775.7 | 1.00000 | + | 1.00000i | 1.73205 | 2.00000i | 2.81770 | + | 2.81770i | 1.73205 | + | 1.73205i | 0.00760663 | − | 0.00760663i | −2.00000 | + | 2.00000i | 3.00000 | 5.63540i | ||||||||
775.8 | 1.00000 | + | 1.00000i | 1.73205 | 2.00000i | −0.400777 | − | 0.400777i | 1.73205 | + | 1.73205i | 9.22737 | − | 9.22737i | −2.00000 | + | 2.00000i | 3.00000 | − | 0.801554i | |||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.d | odd | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1014.3.f.l | yes | 24 |
13.b | even | 2 | 1 | 1014.3.f.k | ✓ | 24 | |
13.d | odd | 4 | 1 | 1014.3.f.k | ✓ | 24 | |
13.d | odd | 4 | 1 | inner | 1014.3.f.l | yes | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1014.3.f.k | ✓ | 24 | 13.b | even | 2 | 1 | |
1014.3.f.k | ✓ | 24 | 13.d | odd | 4 | 1 | |
1014.3.f.l | yes | 24 | 1.a | even | 1 | 1 | trivial |
1014.3.f.l | yes | 24 | 13.d | odd | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(1014, [\chi])\):
\( T_{5}^{24} - 8 T_{5}^{23} + 32 T_{5}^{22} + 128 T_{5}^{21} + 5660 T_{5}^{20} - 40712 T_{5}^{19} + \cdots + 3990322561 \)
|
\( T_{7}^{24} - 24 T_{7}^{23} + 288 T_{7}^{22} - 1056 T_{7}^{21} + 18588 T_{7}^{20} - 411184 T_{7}^{19} + \cdots + 2360915221729 \)
|