Properties

Label 1014.2.b.f.337.1
Level $1014$
Weight $2$
Character 1014.337
Analytic conductor $8.097$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1014,2,Mod(337,1014)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1014.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1014, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,-6,-6,0,0,0,0,6,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.09683076496\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.1
Root \(1.80194i\) of defining polynomial
Character \(\chi\) \(=\) 1014.337
Dual form 1014.2.b.f.337.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{3} -1.00000 q^{4} -3.15883i q^{5} +1.00000i q^{6} +4.69202i q^{7} +1.00000i q^{8} +1.00000 q^{9} -3.15883 q^{10} -0.137063i q^{11} +1.00000 q^{12} +4.69202 q^{14} +3.15883i q^{15} +1.00000 q^{16} +5.60388 q^{17} -1.00000i q^{18} -4.98792i q^{19} +3.15883i q^{20} -4.69202i q^{21} -0.137063 q^{22} +6.09783 q^{23} -1.00000i q^{24} -4.97823 q^{25} -1.00000 q^{27} -4.69202i q^{28} -0.850855 q^{29} +3.15883 q^{30} +6.23490i q^{31} -1.00000i q^{32} +0.137063i q^{33} -5.60388i q^{34} +14.8213 q^{35} -1.00000 q^{36} -11.7017i q^{37} -4.98792 q^{38} +3.15883 q^{40} -4.27413i q^{41} -4.69202 q^{42} +2.09783 q^{43} +0.137063i q^{44} -3.15883i q^{45} -6.09783i q^{46} -4.98792i q^{47} -1.00000 q^{48} -15.0151 q^{49} +4.97823i q^{50} -5.60388 q^{51} -1.82908 q^{53} +1.00000i q^{54} -0.432960 q^{55} -4.69202 q^{56} +4.98792i q^{57} +0.850855i q^{58} +5.89977i q^{59} -3.15883i q^{60} +4.39612 q^{61} +6.23490 q^{62} +4.69202i q^{63} -1.00000 q^{64} +0.137063 q^{66} -4.71379i q^{67} -5.60388 q^{68} -6.09783 q^{69} -14.8213i q^{70} -0.0978347i q^{71} +1.00000i q^{72} +2.32304i q^{73} -11.7017 q^{74} +4.97823 q^{75} +4.98792i q^{76} +0.643104 q^{77} +14.5157 q^{79} -3.15883i q^{80} +1.00000 q^{81} -4.27413 q^{82} -9.85623i q^{83} +4.69202i q^{84} -17.7017i q^{85} -2.09783i q^{86} +0.850855 q^{87} +0.137063 q^{88} -17.0858i q^{89} -3.15883 q^{90} -6.09783 q^{92} -6.23490i q^{93} -4.98792 q^{94} -15.7560 q^{95} +1.00000i q^{96} +2.12737i q^{97} +15.0151i q^{98} -0.137063i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{3} - 6 q^{4} + 6 q^{9} - 2 q^{10} + 6 q^{12} + 18 q^{14} + 6 q^{16} + 16 q^{17} + 10 q^{22} - 36 q^{25} - 6 q^{27} + 22 q^{29} + 2 q^{30} - 8 q^{35} - 6 q^{36} + 8 q^{38} + 2 q^{40} - 18 q^{42}+ \cdots - 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1014\mathbb{Z}\right)^\times\).

\(n\) \(677\) \(847\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) −1.00000 −0.577350
\(4\) −1.00000 −0.500000
\(5\) − 3.15883i − 1.41267i −0.707876 0.706337i \(-0.750346\pi\)
0.707876 0.706337i \(-0.249654\pi\)
\(6\) 1.00000i 0.408248i
\(7\) 4.69202i 1.77342i 0.462329 + 0.886709i \(0.347014\pi\)
−0.462329 + 0.886709i \(0.652986\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 1.00000 0.333333
\(10\) −3.15883 −0.998911
\(11\) − 0.137063i − 0.0413262i −0.999786 0.0206631i \(-0.993422\pi\)
0.999786 0.0206631i \(-0.00657773\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0
\(14\) 4.69202 1.25400
\(15\) 3.15883i 0.815607i
\(16\) 1.00000 0.250000
\(17\) 5.60388 1.35914 0.679570 0.733611i \(-0.262167\pi\)
0.679570 + 0.733611i \(0.262167\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) − 4.98792i − 1.14431i −0.820147 0.572153i \(-0.806108\pi\)
0.820147 0.572153i \(-0.193892\pi\)
\(20\) 3.15883i 0.706337i
\(21\) − 4.69202i − 1.02388i
\(22\) −0.137063 −0.0292220
\(23\) 6.09783 1.27149 0.635743 0.771901i \(-0.280694\pi\)
0.635743 + 0.771901i \(0.280694\pi\)
\(24\) − 1.00000i − 0.204124i
\(25\) −4.97823 −0.995646
\(26\) 0 0
\(27\) −1.00000 −0.192450
\(28\) − 4.69202i − 0.886709i
\(29\) −0.850855 −0.158000 −0.0789999 0.996875i \(-0.525173\pi\)
−0.0789999 + 0.996875i \(0.525173\pi\)
\(30\) 3.15883 0.576721
\(31\) 6.23490i 1.11982i 0.828553 + 0.559910i \(0.189164\pi\)
−0.828553 + 0.559910i \(0.810836\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0.137063i 0.0238597i
\(34\) − 5.60388i − 0.961057i
\(35\) 14.8213 2.50526
\(36\) −1.00000 −0.166667
\(37\) − 11.7017i − 1.92375i −0.273491 0.961875i \(-0.588178\pi\)
0.273491 0.961875i \(-0.411822\pi\)
\(38\) −4.98792 −0.809147
\(39\) 0 0
\(40\) 3.15883 0.499455
\(41\) − 4.27413i − 0.667506i −0.942660 0.333753i \(-0.891685\pi\)
0.942660 0.333753i \(-0.108315\pi\)
\(42\) −4.69202 −0.723995
\(43\) 2.09783 0.319917 0.159958 0.987124i \(-0.448864\pi\)
0.159958 + 0.987124i \(0.448864\pi\)
\(44\) 0.137063i 0.0206631i
\(45\) − 3.15883i − 0.470891i
\(46\) − 6.09783i − 0.899077i
\(47\) − 4.98792i − 0.727563i −0.931484 0.363781i \(-0.881486\pi\)
0.931484 0.363781i \(-0.118514\pi\)
\(48\) −1.00000 −0.144338
\(49\) −15.0151 −2.14501
\(50\) 4.97823i 0.704028i
\(51\) −5.60388 −0.784700
\(52\) 0 0
\(53\) −1.82908 −0.251244 −0.125622 0.992078i \(-0.540093\pi\)
−0.125622 + 0.992078i \(0.540093\pi\)
\(54\) 1.00000i 0.136083i
\(55\) −0.432960 −0.0583804
\(56\) −4.69202 −0.626998
\(57\) 4.98792i 0.660666i
\(58\) 0.850855i 0.111723i
\(59\) 5.89977i 0.768085i 0.923315 + 0.384042i \(0.125468\pi\)
−0.923315 + 0.384042i \(0.874532\pi\)
\(60\) − 3.15883i − 0.407804i
\(61\) 4.39612 0.562866 0.281433 0.959581i \(-0.409190\pi\)
0.281433 + 0.959581i \(0.409190\pi\)
\(62\) 6.23490 0.791833
\(63\) 4.69202i 0.591139i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 0.137063 0.0168713
\(67\) − 4.71379i − 0.575881i −0.957648 0.287941i \(-0.907029\pi\)
0.957648 0.287941i \(-0.0929706\pi\)
\(68\) −5.60388 −0.679570
\(69\) −6.09783 −0.734093
\(70\) − 14.8213i − 1.77149i
\(71\) − 0.0978347i − 0.0116108i −0.999983 0.00580542i \(-0.998152\pi\)
0.999983 0.00580542i \(-0.00184793\pi\)
\(72\) 1.00000i 0.117851i
\(73\) 2.32304i 0.271892i 0.990716 + 0.135946i \(0.0434073\pi\)
−0.990716 + 0.135946i \(0.956593\pi\)
\(74\) −11.7017 −1.36030
\(75\) 4.97823 0.574836
\(76\) 4.98792i 0.572153i
\(77\) 0.643104 0.0732885
\(78\) 0 0
\(79\) 14.5157 1.63315 0.816574 0.577241i \(-0.195871\pi\)
0.816574 + 0.577241i \(0.195871\pi\)
\(80\) − 3.15883i − 0.353168i
\(81\) 1.00000 0.111111
\(82\) −4.27413 −0.471998
\(83\) − 9.85623i − 1.08186i −0.841067 0.540931i \(-0.818072\pi\)
0.841067 0.540931i \(-0.181928\pi\)
\(84\) 4.69202i 0.511942i
\(85\) − 17.7017i − 1.92002i
\(86\) − 2.09783i − 0.226215i
\(87\) 0.850855 0.0912212
\(88\) 0.137063 0.0146110
\(89\) − 17.0858i − 1.81109i −0.424254 0.905543i \(-0.639464\pi\)
0.424254 0.905543i \(-0.360536\pi\)
\(90\) −3.15883 −0.332970
\(91\) 0 0
\(92\) −6.09783 −0.635743
\(93\) − 6.23490i − 0.646529i
\(94\) −4.98792 −0.514465
\(95\) −15.7560 −1.61653
\(96\) 1.00000i 0.102062i
\(97\) 2.12737i 0.216002i 0.994151 + 0.108001i \(0.0344450\pi\)
−0.994151 + 0.108001i \(0.965555\pi\)
\(98\) 15.0151i 1.51675i
\(99\) − 0.137063i − 0.0137754i
\(100\) 4.97823 0.497823
\(101\) 9.18598 0.914039 0.457020 0.889457i \(-0.348917\pi\)
0.457020 + 0.889457i \(0.348917\pi\)
\(102\) 5.60388i 0.554866i
\(103\) −0.225209 −0.0221905 −0.0110953 0.999938i \(-0.503532\pi\)
−0.0110953 + 0.999938i \(0.503532\pi\)
\(104\) 0 0
\(105\) −14.8213 −1.44641
\(106\) 1.82908i 0.177656i
\(107\) 11.2838 1.09085 0.545424 0.838160i \(-0.316369\pi\)
0.545424 + 0.838160i \(0.316369\pi\)
\(108\) 1.00000 0.0962250
\(109\) − 0.195669i − 0.0187417i −0.999956 0.00937086i \(-0.997017\pi\)
0.999956 0.00937086i \(-0.00298288\pi\)
\(110\) 0.432960i 0.0412811i
\(111\) 11.7017i 1.11068i
\(112\) 4.69202i 0.443354i
\(113\) −0.439665 −0.0413602 −0.0206801 0.999786i \(-0.506583\pi\)
−0.0206801 + 0.999786i \(0.506583\pi\)
\(114\) 4.98792 0.467161
\(115\) − 19.2620i − 1.79619i
\(116\) 0.850855 0.0789999
\(117\) 0 0
\(118\) 5.89977 0.543118
\(119\) 26.2935i 2.41032i
\(120\) −3.15883 −0.288361
\(121\) 10.9812 0.998292
\(122\) − 4.39612i − 0.398006i
\(123\) 4.27413i 0.385385i
\(124\) − 6.23490i − 0.559910i
\(125\) − 0.0687686i − 0.00615085i
\(126\) 4.69202 0.417998
\(127\) 7.87263 0.698583 0.349291 0.937014i \(-0.386422\pi\)
0.349291 + 0.937014i \(0.386422\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) −2.09783 −0.184704
\(130\) 0 0
\(131\) −0.621334 −0.0542862 −0.0271431 0.999632i \(-0.508641\pi\)
−0.0271431 + 0.999632i \(0.508641\pi\)
\(132\) − 0.137063i − 0.0119298i
\(133\) 23.4034 2.02933
\(134\) −4.71379 −0.407210
\(135\) 3.15883i 0.271869i
\(136\) 5.60388i 0.480528i
\(137\) − 4.00000i − 0.341743i −0.985293 0.170872i \(-0.945342\pi\)
0.985293 0.170872i \(-0.0546583\pi\)
\(138\) 6.09783i 0.519082i
\(139\) −13.6582 −1.15847 −0.579235 0.815160i \(-0.696649\pi\)
−0.579235 + 0.815160i \(0.696649\pi\)
\(140\) −14.8213 −1.25263
\(141\) 4.98792i 0.420059i
\(142\) −0.0978347 −0.00821010
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 2.68771i 0.223202i
\(146\) 2.32304 0.192256
\(147\) 15.0151 1.23842
\(148\) 11.7017i 0.961875i
\(149\) 16.0586i 1.31557i 0.753205 + 0.657786i \(0.228507\pi\)
−0.753205 + 0.657786i \(0.771493\pi\)
\(150\) − 4.97823i − 0.406471i
\(151\) 21.8823i 1.78076i 0.455221 + 0.890379i \(0.349560\pi\)
−0.455221 + 0.890379i \(0.650440\pi\)
\(152\) 4.98792 0.404574
\(153\) 5.60388 0.453046
\(154\) − 0.643104i − 0.0518228i
\(155\) 19.6950 1.58194
\(156\) 0 0
\(157\) −7.90217 −0.630661 −0.315331 0.948982i \(-0.602115\pi\)
−0.315331 + 0.948982i \(0.602115\pi\)
\(158\) − 14.5157i − 1.15481i
\(159\) 1.82908 0.145056
\(160\) −3.15883 −0.249728
\(161\) 28.6112i 2.25488i
\(162\) − 1.00000i − 0.0785674i
\(163\) − 8.01938i − 0.628126i −0.949402 0.314063i \(-0.898310\pi\)
0.949402 0.314063i \(-0.101690\pi\)
\(164\) 4.27413i 0.333753i
\(165\) 0.432960 0.0337059
\(166\) −9.85623 −0.764992
\(167\) 17.0858i 1.32214i 0.750326 + 0.661068i \(0.229896\pi\)
−0.750326 + 0.661068i \(0.770104\pi\)
\(168\) 4.69202 0.361997
\(169\) 0 0
\(170\) −17.7017 −1.35766
\(171\) − 4.98792i − 0.381436i
\(172\) −2.09783 −0.159958
\(173\) 15.3448 1.16664 0.583322 0.812241i \(-0.301752\pi\)
0.583322 + 0.812241i \(0.301752\pi\)
\(174\) − 0.850855i − 0.0645032i
\(175\) − 23.3580i − 1.76570i
\(176\) − 0.137063i − 0.0103315i
\(177\) − 5.89977i − 0.443454i
\(178\) −17.0858 −1.28063
\(179\) −0.523499 −0.0391282 −0.0195641 0.999809i \(-0.506228\pi\)
−0.0195641 + 0.999809i \(0.506228\pi\)
\(180\) 3.15883i 0.235446i
\(181\) −8.89008 −0.660795 −0.330397 0.943842i \(-0.607183\pi\)
−0.330397 + 0.943842i \(0.607183\pi\)
\(182\) 0 0
\(183\) −4.39612 −0.324971
\(184\) 6.09783i 0.449538i
\(185\) −36.9638 −2.71763
\(186\) −6.23490 −0.457165
\(187\) − 0.768086i − 0.0561680i
\(188\) 4.98792i 0.363781i
\(189\) − 4.69202i − 0.341294i
\(190\) 15.7560i 1.14306i
\(191\) −7.03146 −0.508779 −0.254389 0.967102i \(-0.581874\pi\)
−0.254389 + 0.967102i \(0.581874\pi\)
\(192\) 1.00000 0.0721688
\(193\) 17.7560i 1.27811i 0.769163 + 0.639053i \(0.220673\pi\)
−0.769163 + 0.639053i \(0.779327\pi\)
\(194\) 2.12737 0.152737
\(195\) 0 0
\(196\) 15.0151 1.07250
\(197\) 18.6571i 1.32926i 0.747171 + 0.664632i \(0.231412\pi\)
−0.747171 + 0.664632i \(0.768588\pi\)
\(198\) −0.137063 −0.00974067
\(199\) −7.66248 −0.543179 −0.271589 0.962413i \(-0.587549\pi\)
−0.271589 + 0.962413i \(0.587549\pi\)
\(200\) − 4.97823i − 0.352014i
\(201\) 4.71379i 0.332485i
\(202\) − 9.18598i − 0.646323i
\(203\) − 3.99223i − 0.280200i
\(204\) 5.60388 0.392350
\(205\) −13.5013 −0.942969
\(206\) 0.225209i 0.0156911i
\(207\) 6.09783 0.423829
\(208\) 0 0
\(209\) −0.683661 −0.0472898
\(210\) 14.8213i 1.02277i
\(211\) 11.1642 0.768576 0.384288 0.923213i \(-0.374447\pi\)
0.384288 + 0.923213i \(0.374447\pi\)
\(212\) 1.82908 0.125622
\(213\) 0.0978347i 0.00670352i
\(214\) − 11.2838i − 0.771346i
\(215\) − 6.62671i − 0.451938i
\(216\) − 1.00000i − 0.0680414i
\(217\) −29.2543 −1.98591
\(218\) −0.195669 −0.0132524
\(219\) − 2.32304i − 0.156977i
\(220\) 0.432960 0.0291902
\(221\) 0 0
\(222\) 11.7017 0.785367
\(223\) − 24.6353i − 1.64970i −0.565349 0.824852i \(-0.691258\pi\)
0.565349 0.824852i \(-0.308742\pi\)
\(224\) 4.69202 0.313499
\(225\) −4.97823 −0.331882
\(226\) 0.439665i 0.0292461i
\(227\) 7.47650i 0.496233i 0.968730 + 0.248116i \(0.0798115\pi\)
−0.968730 + 0.248116i \(0.920188\pi\)
\(228\) − 4.98792i − 0.330333i
\(229\) − 19.2271i − 1.27056i −0.772280 0.635282i \(-0.780884\pi\)
0.772280 0.635282i \(-0.219116\pi\)
\(230\) −19.2620 −1.27010
\(231\) −0.643104 −0.0423131
\(232\) − 0.850855i − 0.0558614i
\(233\) −3.70171 −0.242507 −0.121254 0.992622i \(-0.538691\pi\)
−0.121254 + 0.992622i \(0.538691\pi\)
\(234\) 0 0
\(235\) −15.7560 −1.02781
\(236\) − 5.89977i − 0.384042i
\(237\) −14.5157 −0.942898
\(238\) 26.2935 1.70435
\(239\) − 8.51334i − 0.550682i −0.961347 0.275341i \(-0.911209\pi\)
0.961347 0.275341i \(-0.0887908\pi\)
\(240\) 3.15883i 0.203902i
\(241\) 17.4330i 1.12296i 0.827492 + 0.561478i \(0.189767\pi\)
−0.827492 + 0.561478i \(0.810233\pi\)
\(242\) − 10.9812i − 0.705899i
\(243\) −1.00000 −0.0641500
\(244\) −4.39612 −0.281433
\(245\) 47.4301i 3.03020i
\(246\) 4.27413 0.272508
\(247\) 0 0
\(248\) −6.23490 −0.395916
\(249\) 9.85623i 0.624613i
\(250\) −0.0687686 −0.00434931
\(251\) 3.48427 0.219925 0.109963 0.993936i \(-0.464927\pi\)
0.109963 + 0.993936i \(0.464927\pi\)
\(252\) − 4.69202i − 0.295570i
\(253\) − 0.835790i − 0.0525456i
\(254\) − 7.87263i − 0.493972i
\(255\) 17.7017i 1.10852i
\(256\) 1.00000 0.0625000
\(257\) 13.6039 0.848586 0.424293 0.905525i \(-0.360523\pi\)
0.424293 + 0.905525i \(0.360523\pi\)
\(258\) 2.09783i 0.130605i
\(259\) 54.9047 3.41161
\(260\) 0 0
\(261\) −0.850855 −0.0526666
\(262\) 0.621334i 0.0383861i
\(263\) 11.4577 0.706513 0.353256 0.935527i \(-0.385074\pi\)
0.353256 + 0.935527i \(0.385074\pi\)
\(264\) −0.137063 −0.00843567
\(265\) 5.77777i 0.354926i
\(266\) − 23.4034i − 1.43496i
\(267\) 17.0858i 1.04563i
\(268\) 4.71379i 0.287941i
\(269\) 22.3666 1.36371 0.681857 0.731485i \(-0.261172\pi\)
0.681857 + 0.731485i \(0.261172\pi\)
\(270\) 3.15883 0.192240
\(271\) − 3.87263i − 0.235245i −0.993058 0.117623i \(-0.962473\pi\)
0.993058 0.117623i \(-0.0375273\pi\)
\(272\) 5.60388 0.339785
\(273\) 0 0
\(274\) −4.00000 −0.241649
\(275\) 0.682333i 0.0411462i
\(276\) 6.09783 0.367047
\(277\) −28.7090 −1.72496 −0.862478 0.506094i \(-0.831089\pi\)
−0.862478 + 0.506094i \(0.831089\pi\)
\(278\) 13.6582i 0.819163i
\(279\) 6.23490i 0.373274i
\(280\) 14.8213i 0.885743i
\(281\) 29.0858i 1.73511i 0.497341 + 0.867555i \(0.334310\pi\)
−0.497341 + 0.867555i \(0.665690\pi\)
\(282\) 4.98792 0.297026
\(283\) −13.7560 −0.817710 −0.408855 0.912599i \(-0.634072\pi\)
−0.408855 + 0.912599i \(0.634072\pi\)
\(284\) 0.0978347i 0.00580542i
\(285\) 15.7560 0.933305
\(286\) 0 0
\(287\) 20.0543 1.18377
\(288\) − 1.00000i − 0.0589256i
\(289\) 14.4034 0.847260
\(290\) 2.68771 0.157828
\(291\) − 2.12737i − 0.124709i
\(292\) − 2.32304i − 0.135946i
\(293\) − 27.7362i − 1.62036i −0.586179 0.810182i \(-0.699368\pi\)
0.586179 0.810182i \(-0.300632\pi\)
\(294\) − 15.0151i − 0.875696i
\(295\) 18.6364 1.08505
\(296\) 11.7017 0.680148
\(297\) 0.137063i 0.00795322i
\(298\) 16.0586 0.930250
\(299\) 0 0
\(300\) −4.97823 −0.287418
\(301\) 9.84309i 0.567346i
\(302\) 21.8823 1.25919
\(303\) −9.18598 −0.527721
\(304\) − 4.98792i − 0.286077i
\(305\) − 13.8866i − 0.795146i
\(306\) − 5.60388i − 0.320352i
\(307\) 12.4590i 0.711075i 0.934662 + 0.355538i \(0.115702\pi\)
−0.934662 + 0.355538i \(0.884298\pi\)
\(308\) −0.643104 −0.0366443
\(309\) 0.225209 0.0128117
\(310\) − 19.6950i − 1.11860i
\(311\) 6.09783 0.345776 0.172888 0.984941i \(-0.444690\pi\)
0.172888 + 0.984941i \(0.444690\pi\)
\(312\) 0 0
\(313\) −12.7385 −0.720025 −0.360013 0.932947i \(-0.617228\pi\)
−0.360013 + 0.932947i \(0.617228\pi\)
\(314\) 7.90217i 0.445945i
\(315\) 14.8213 0.835087
\(316\) −14.5157 −0.816574
\(317\) 14.8140i 0.832038i 0.909356 + 0.416019i \(0.136575\pi\)
−0.909356 + 0.416019i \(0.863425\pi\)
\(318\) − 1.82908i − 0.102570i
\(319\) 0.116621i 0.00652952i
\(320\) 3.15883i 0.176584i
\(321\) −11.2838 −0.629801
\(322\) 28.6112 1.59444
\(323\) − 27.9517i − 1.55527i
\(324\) −1.00000 −0.0555556
\(325\) 0 0
\(326\) −8.01938 −0.444152
\(327\) 0.195669i 0.0108205i
\(328\) 4.27413 0.235999
\(329\) 23.4034 1.29027
\(330\) − 0.432960i − 0.0238337i
\(331\) 7.70171i 0.423324i 0.977343 + 0.211662i \(0.0678876\pi\)
−0.977343 + 0.211662i \(0.932112\pi\)
\(332\) 9.85623i 0.540931i
\(333\) − 11.7017i − 0.641250i
\(334\) 17.0858 0.934891
\(335\) −14.8901 −0.813532
\(336\) − 4.69202i − 0.255971i
\(337\) −26.5961 −1.44878 −0.724391 0.689389i \(-0.757879\pi\)
−0.724391 + 0.689389i \(0.757879\pi\)
\(338\) 0 0
\(339\) 0.439665 0.0238793
\(340\) 17.7017i 0.960010i
\(341\) 0.854576 0.0462779
\(342\) −4.98792 −0.269716
\(343\) − 37.6069i − 2.03058i
\(344\) 2.09783i 0.113108i
\(345\) 19.2620i 1.03703i
\(346\) − 15.3448i − 0.824942i
\(347\) 0.911854 0.0489509 0.0244754 0.999700i \(-0.492208\pi\)
0.0244754 + 0.999700i \(0.492208\pi\)
\(348\) −0.850855 −0.0456106
\(349\) 17.7211i 0.948588i 0.880366 + 0.474294i \(0.157297\pi\)
−0.880366 + 0.474294i \(0.842703\pi\)
\(350\) −23.3580 −1.24854
\(351\) 0 0
\(352\) −0.137063 −0.00730550
\(353\) − 26.4349i − 1.40699i −0.710702 0.703493i \(-0.751622\pi\)
0.710702 0.703493i \(-0.248378\pi\)
\(354\) −5.89977 −0.313569
\(355\) −0.309043 −0.0164023
\(356\) 17.0858i 0.905543i
\(357\) − 26.2935i − 1.39160i
\(358\) 0.523499i 0.0276678i
\(359\) − 7.76941i − 0.410054i −0.978756 0.205027i \(-0.934272\pi\)
0.978756 0.205027i \(-0.0657282\pi\)
\(360\) 3.15883 0.166485
\(361\) −5.87933 −0.309438
\(362\) 8.89008i 0.467252i
\(363\) −10.9812 −0.576364
\(364\) 0 0
\(365\) 7.33811 0.384094
\(366\) 4.39612i 0.229789i
\(367\) −13.3274 −0.695682 −0.347841 0.937553i \(-0.613085\pi\)
−0.347841 + 0.937553i \(0.613085\pi\)
\(368\) 6.09783 0.317872
\(369\) − 4.27413i − 0.222502i
\(370\) 36.9638i 1.92165i
\(371\) − 8.58211i − 0.445561i
\(372\) 6.23490i 0.323264i
\(373\) 6.70304 0.347070 0.173535 0.984828i \(-0.444481\pi\)
0.173535 + 0.984828i \(0.444481\pi\)
\(374\) −0.768086 −0.0397168
\(375\) 0.0687686i 0.00355120i
\(376\) 4.98792 0.257232
\(377\) 0 0
\(378\) −4.69202 −0.241332
\(379\) 2.41550i 0.124076i 0.998074 + 0.0620380i \(0.0197600\pi\)
−0.998074 + 0.0620380i \(0.980240\pi\)
\(380\) 15.7560 0.808266
\(381\) −7.87263 −0.403327
\(382\) 7.03146i 0.359761i
\(383\) 10.0978i 0.515975i 0.966148 + 0.257988i \(0.0830594\pi\)
−0.966148 + 0.257988i \(0.916941\pi\)
\(384\) − 1.00000i − 0.0510310i
\(385\) − 2.03146i − 0.103533i
\(386\) 17.7560 0.903757
\(387\) 2.09783 0.106639
\(388\) − 2.12737i − 0.108001i
\(389\) −25.1336 −1.27432 −0.637162 0.770730i \(-0.719892\pi\)
−0.637162 + 0.770730i \(0.719892\pi\)
\(390\) 0 0
\(391\) 34.1715 1.72813
\(392\) − 15.0151i − 0.758375i
\(393\) 0.621334 0.0313421
\(394\) 18.6571 0.939931
\(395\) − 45.8528i − 2.30710i
\(396\) 0.137063i 0.00688769i
\(397\) − 20.8358i − 1.04572i −0.852419 0.522859i \(-0.824865\pi\)
0.852419 0.522859i \(-0.175135\pi\)
\(398\) 7.66248i 0.384085i
\(399\) −23.4034 −1.17164
\(400\) −4.97823 −0.248911
\(401\) 5.95646i 0.297451i 0.988878 + 0.148726i \(0.0475171\pi\)
−0.988878 + 0.148726i \(0.952483\pi\)
\(402\) 4.71379 0.235103
\(403\) 0 0
\(404\) −9.18598 −0.457020
\(405\) − 3.15883i − 0.156964i
\(406\) −3.99223 −0.198131
\(407\) −1.60388 −0.0795012
\(408\) − 5.60388i − 0.277433i
\(409\) − 1.80194i − 0.0891001i −0.999007 0.0445500i \(-0.985815\pi\)
0.999007 0.0445500i \(-0.0141854\pi\)
\(410\) 13.5013i 0.666779i
\(411\) 4.00000i 0.197305i
\(412\) 0.225209 0.0110953
\(413\) −27.6819 −1.36214
\(414\) − 6.09783i − 0.299692i
\(415\) −31.1342 −1.52832
\(416\) 0 0
\(417\) 13.6582 0.668843
\(418\) 0.683661i 0.0334389i
\(419\) −28.4499 −1.38987 −0.694935 0.719072i \(-0.744567\pi\)
−0.694935 + 0.719072i \(0.744567\pi\)
\(420\) 14.8213 0.723206
\(421\) 13.9323i 0.679019i 0.940603 + 0.339509i \(0.110261\pi\)
−0.940603 + 0.339509i \(0.889739\pi\)
\(422\) − 11.1642i − 0.543465i
\(423\) − 4.98792i − 0.242521i
\(424\) − 1.82908i − 0.0888282i
\(425\) −27.8974 −1.35322
\(426\) 0.0978347 0.00474011
\(427\) 20.6267i 0.998196i
\(428\) −11.2838 −0.545424
\(429\) 0 0
\(430\) −6.62671 −0.319568
\(431\) − 15.9022i − 0.765980i −0.923752 0.382990i \(-0.874894\pi\)
0.923752 0.382990i \(-0.125106\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −4.77718 −0.229577 −0.114788 0.993390i \(-0.536619\pi\)
−0.114788 + 0.993390i \(0.536619\pi\)
\(434\) 29.2543i 1.40425i
\(435\) − 2.68771i − 0.128866i
\(436\) 0.195669i 0.00937086i
\(437\) − 30.4155i − 1.45497i
\(438\) −2.32304 −0.110999
\(439\) 33.6316 1.60515 0.802575 0.596552i \(-0.203463\pi\)
0.802575 + 0.596552i \(0.203463\pi\)
\(440\) − 0.432960i − 0.0206406i
\(441\) −15.0151 −0.715003
\(442\) 0 0
\(443\) −35.3749 −1.68071 −0.840357 0.542033i \(-0.817655\pi\)
−0.840357 + 0.542033i \(0.817655\pi\)
\(444\) − 11.7017i − 0.555339i
\(445\) −53.9711 −2.55847
\(446\) −24.6353 −1.16652
\(447\) − 16.0586i − 0.759546i
\(448\) − 4.69202i − 0.221677i
\(449\) − 18.0629i − 0.852442i −0.904619 0.426221i \(-0.859845\pi\)
0.904619 0.426221i \(-0.140155\pi\)
\(450\) 4.97823i 0.234676i
\(451\) −0.585826 −0.0275855
\(452\) 0.439665 0.0206801
\(453\) − 21.8823i − 1.02812i
\(454\) 7.47650 0.350890
\(455\) 0 0
\(456\) −4.98792 −0.233581
\(457\) 15.4668i 0.723507i 0.932274 + 0.361753i \(0.117822\pi\)
−0.932274 + 0.361753i \(0.882178\pi\)
\(458\) −19.2271 −0.898425
\(459\) −5.60388 −0.261567
\(460\) 19.2620i 0.898097i
\(461\) 18.8092i 0.876033i 0.898967 + 0.438017i \(0.144319\pi\)
−0.898967 + 0.438017i \(0.855681\pi\)
\(462\) 0.643104i 0.0299199i
\(463\) − 15.8431i − 0.736291i −0.929768 0.368145i \(-0.879993\pi\)
0.929768 0.368145i \(-0.120007\pi\)
\(464\) −0.850855 −0.0395000
\(465\) −19.6950 −0.913334
\(466\) 3.70171i 0.171478i
\(467\) −22.0006 −1.01807 −0.509033 0.860747i \(-0.669997\pi\)
−0.509033 + 0.860747i \(0.669997\pi\)
\(468\) 0 0
\(469\) 22.1172 1.02128
\(470\) 15.7560i 0.726770i
\(471\) 7.90217 0.364113
\(472\) −5.89977 −0.271559
\(473\) − 0.287536i − 0.0132209i
\(474\) 14.5157i 0.666730i
\(475\) 24.8310i 1.13932i
\(476\) − 26.2935i − 1.20516i
\(477\) −1.82908 −0.0837480
\(478\) −8.51334 −0.389391
\(479\) − 21.3491i − 0.975466i −0.872993 0.487733i \(-0.837824\pi\)
0.872993 0.487733i \(-0.162176\pi\)
\(480\) 3.15883 0.144180
\(481\) 0 0
\(482\) 17.4330 0.794050
\(483\) − 28.6112i − 1.30185i
\(484\) −10.9812 −0.499146
\(485\) 6.72002 0.305141
\(486\) 1.00000i 0.0453609i
\(487\) 31.6394i 1.43372i 0.697219 + 0.716859i \(0.254421\pi\)
−0.697219 + 0.716859i \(0.745579\pi\)
\(488\) 4.39612i 0.199003i
\(489\) 8.01938i 0.362649i
\(490\) 47.4301 2.14267
\(491\) 1.39911 0.0631409 0.0315704 0.999502i \(-0.489949\pi\)
0.0315704 + 0.999502i \(0.489949\pi\)
\(492\) − 4.27413i − 0.192693i
\(493\) −4.76809 −0.214744
\(494\) 0 0
\(495\) −0.432960 −0.0194601
\(496\) 6.23490i 0.279955i
\(497\) 0.459042 0.0205909
\(498\) 9.85623 0.441668
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0.0687686i 0.00307543i
\(501\) − 17.0858i − 0.763335i
\(502\) − 3.48427i − 0.155511i
\(503\) −18.3827 −0.819645 −0.409822 0.912165i \(-0.634409\pi\)
−0.409822 + 0.912165i \(0.634409\pi\)
\(504\) −4.69202 −0.208999
\(505\) − 29.0170i − 1.29124i
\(506\) −0.835790 −0.0371554
\(507\) 0 0
\(508\) −7.87263 −0.349291
\(509\) − 0.132751i − 0.00588411i −0.999996 0.00294205i \(-0.999064\pi\)
0.999996 0.00294205i \(-0.000936486\pi\)
\(510\) 17.7017 0.783845
\(511\) −10.8998 −0.482178
\(512\) − 1.00000i − 0.0441942i
\(513\) 4.98792i 0.220222i
\(514\) − 13.6039i − 0.600041i
\(515\) 0.711399i 0.0313480i
\(516\) 2.09783 0.0923520
\(517\) −0.683661 −0.0300674
\(518\) − 54.9047i − 2.41237i
\(519\) −15.3448 −0.673563
\(520\) 0 0
\(521\) 37.0508 1.62323 0.811613 0.584195i \(-0.198590\pi\)
0.811613 + 0.584195i \(0.198590\pi\)
\(522\) 0.850855i 0.0372409i
\(523\) −3.15346 −0.137891 −0.0689455 0.997620i \(-0.521963\pi\)
−0.0689455 + 0.997620i \(0.521963\pi\)
\(524\) 0.621334 0.0271431
\(525\) 23.3580i 1.01942i
\(526\) − 11.4577i − 0.499580i
\(527\) 34.9396i 1.52199i
\(528\) 0.137063i 0.00596492i
\(529\) 14.1836 0.616678
\(530\) 5.77777 0.250970
\(531\) 5.89977i 0.256028i
\(532\) −23.4034 −1.01467
\(533\) 0 0
\(534\) 17.0858 0.739373
\(535\) − 35.6437i − 1.54101i
\(536\) 4.71379 0.203605
\(537\) 0.523499 0.0225907
\(538\) − 22.3666i − 0.964292i
\(539\) 2.05802i 0.0886450i
\(540\) − 3.15883i − 0.135935i
\(541\) − 4.07846i − 0.175347i −0.996149 0.0876733i \(-0.972057\pi\)
0.996149 0.0876733i \(-0.0279432\pi\)
\(542\) −3.87263 −0.166344
\(543\) 8.89008 0.381510
\(544\) − 5.60388i − 0.240264i
\(545\) −0.618087 −0.0264759
\(546\) 0 0
\(547\) −23.0508 −0.985583 −0.492791 0.870148i \(-0.664023\pi\)
−0.492791 + 0.870148i \(0.664023\pi\)
\(548\) 4.00000i 0.170872i
\(549\) 4.39612 0.187622
\(550\) 0.682333 0.0290948
\(551\) 4.24400i 0.180800i
\(552\) − 6.09783i − 0.259541i
\(553\) 68.1081i 2.89625i
\(554\) 28.7090i 1.21973i
\(555\) 36.9638 1.56902
\(556\) 13.6582 0.579235
\(557\) − 20.4155i − 0.865033i −0.901626 0.432516i \(-0.857626\pi\)
0.901626 0.432516i \(-0.142374\pi\)
\(558\) 6.23490 0.263944
\(559\) 0 0
\(560\) 14.8213 0.626315
\(561\) 0.768086i 0.0324286i
\(562\) 29.0858 1.22691
\(563\) −21.5609 −0.908685 −0.454342 0.890827i \(-0.650126\pi\)
−0.454342 + 0.890827i \(0.650126\pi\)
\(564\) − 4.98792i − 0.210029i
\(565\) 1.38883i 0.0584285i
\(566\) 13.7560i 0.578208i
\(567\) 4.69202i 0.197046i
\(568\) 0.0978347 0.00410505
\(569\) −8.98792 −0.376793 −0.188397 0.982093i \(-0.560329\pi\)
−0.188397 + 0.982093i \(0.560329\pi\)
\(570\) − 15.7560i − 0.659946i
\(571\) −13.5603 −0.567482 −0.283741 0.958901i \(-0.591576\pi\)
−0.283741 + 0.958901i \(0.591576\pi\)
\(572\) 0 0
\(573\) 7.03146 0.293743
\(574\) − 20.0543i − 0.837050i
\(575\) −30.3564 −1.26595
\(576\) −1.00000 −0.0416667
\(577\) 16.2825i 0.677849i 0.940814 + 0.338924i \(0.110063\pi\)
−0.940814 + 0.338924i \(0.889937\pi\)
\(578\) − 14.4034i − 0.599103i
\(579\) − 17.7560i − 0.737914i
\(580\) − 2.68771i − 0.111601i
\(581\) 46.2457 1.91859
\(582\) −2.12737 −0.0881825
\(583\) 0.250700i 0.0103830i
\(584\) −2.32304 −0.0961282
\(585\) 0 0
\(586\) −27.7362 −1.14577
\(587\) 47.5706i 1.96345i 0.190307 + 0.981725i \(0.439052\pi\)
−0.190307 + 0.981725i \(0.560948\pi\)
\(588\) −15.0151 −0.619211
\(589\) 31.0992 1.28142
\(590\) − 18.6364i − 0.767248i
\(591\) − 18.6571i − 0.767451i
\(592\) − 11.7017i − 0.480937i
\(593\) − 31.0267i − 1.27411i −0.770817 0.637056i \(-0.780152\pi\)
0.770817 0.637056i \(-0.219848\pi\)
\(594\) 0.137063 0.00562378
\(595\) 83.0568 3.40500
\(596\) − 16.0586i − 0.657786i
\(597\) 7.66248 0.313604
\(598\) 0 0
\(599\) 22.3263 0.912228 0.456114 0.889921i \(-0.349241\pi\)
0.456114 + 0.889921i \(0.349241\pi\)
\(600\) 4.97823i 0.203235i
\(601\) −8.18060 −0.333694 −0.166847 0.985983i \(-0.553359\pi\)
−0.166847 + 0.985983i \(0.553359\pi\)
\(602\) 9.84309 0.401174
\(603\) − 4.71379i − 0.191960i
\(604\) − 21.8823i − 0.890379i
\(605\) − 34.6878i − 1.41026i
\(606\) 9.18598i 0.373155i
\(607\) 3.30798 0.134267 0.0671334 0.997744i \(-0.478615\pi\)
0.0671334 + 0.997744i \(0.478615\pi\)
\(608\) −4.98792 −0.202287
\(609\) 3.99223i 0.161773i
\(610\) −13.8866 −0.562253
\(611\) 0 0
\(612\) −5.60388 −0.226523
\(613\) − 10.8853i − 0.439653i −0.975539 0.219827i \(-0.929451\pi\)
0.975539 0.219827i \(-0.0705491\pi\)
\(614\) 12.4590 0.502806
\(615\) 13.5013 0.544423
\(616\) 0.643104i 0.0259114i
\(617\) − 34.5676i − 1.39164i −0.718216 0.695820i \(-0.755041\pi\)
0.718216 0.695820i \(-0.244959\pi\)
\(618\) − 0.225209i − 0.00905925i
\(619\) − 2.86592i − 0.115191i −0.998340 0.0575955i \(-0.981657\pi\)
0.998340 0.0575955i \(-0.0183434\pi\)
\(620\) −19.6950 −0.790970
\(621\) −6.09783 −0.244698
\(622\) − 6.09783i − 0.244501i
\(623\) 80.1667 3.21181
\(624\) 0 0
\(625\) −25.1084 −1.00434
\(626\) 12.7385i 0.509135i
\(627\) 0.683661 0.0273028
\(628\) 7.90217 0.315331
\(629\) − 65.5749i − 2.61464i
\(630\) − 14.8213i − 0.590495i
\(631\) 42.6631i 1.69839i 0.528079 + 0.849195i \(0.322912\pi\)
−0.528079 + 0.849195i \(0.677088\pi\)
\(632\) 14.5157i 0.577405i
\(633\) −11.1642 −0.443738
\(634\) 14.8140 0.588340
\(635\) − 24.8683i − 0.986869i
\(636\) −1.82908 −0.0725279
\(637\) 0 0
\(638\) 0.116621 0.00461707
\(639\) − 0.0978347i − 0.00387028i
\(640\) 3.15883 0.124864
\(641\) −41.3927 −1.63491 −0.817456 0.575991i \(-0.804616\pi\)
−0.817456 + 0.575991i \(0.804616\pi\)
\(642\) 11.2838i 0.445337i
\(643\) 13.7125i 0.540767i 0.962753 + 0.270383i \(0.0871505\pi\)
−0.962753 + 0.270383i \(0.912850\pi\)
\(644\) − 28.6112i − 1.12744i
\(645\) 6.62671i 0.260926i
\(646\) −27.9517 −1.09974
\(647\) −18.0086 −0.707992 −0.353996 0.935247i \(-0.615177\pi\)
−0.353996 + 0.935247i \(0.615177\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) 0.808643 0.0317420
\(650\) 0 0
\(651\) 29.2543 1.14657
\(652\) 8.01938i 0.314063i
\(653\) 46.5652 1.82224 0.911119 0.412143i \(-0.135220\pi\)
0.911119 + 0.412143i \(0.135220\pi\)
\(654\) 0.195669 0.00765128
\(655\) 1.96269i 0.0766887i
\(656\) − 4.27413i − 0.166877i
\(657\) 2.32304i 0.0906306i
\(658\) − 23.4034i − 0.912360i
\(659\) 13.8562 0.539762 0.269881 0.962894i \(-0.413016\pi\)
0.269881 + 0.962894i \(0.413016\pi\)
\(660\) −0.432960 −0.0168530
\(661\) 43.1051i 1.67660i 0.545213 + 0.838298i \(0.316449\pi\)
−0.545213 + 0.838298i \(0.683551\pi\)
\(662\) 7.70171 0.299335
\(663\) 0 0
\(664\) 9.85623 0.382496
\(665\) − 73.9275i − 2.86679i
\(666\) −11.7017 −0.453432
\(667\) −5.18837 −0.200895
\(668\) − 17.0858i − 0.661068i
\(669\) 24.6353i 0.952457i
\(670\) 14.8901i 0.575254i
\(671\) − 0.602548i − 0.0232611i
\(672\) −4.69202 −0.180999
\(673\) −30.7415 −1.18500 −0.592499 0.805571i \(-0.701859\pi\)
−0.592499 + 0.805571i \(0.701859\pi\)
\(674\) 26.5961i 1.02444i
\(675\) 4.97823 0.191612
\(676\) 0 0
\(677\) 16.5894 0.637582 0.318791 0.947825i \(-0.396723\pi\)
0.318791 + 0.947825i \(0.396723\pi\)
\(678\) − 0.439665i − 0.0168852i
\(679\) −9.98169 −0.383062
\(680\) 17.7017 0.678830
\(681\) − 7.47650i − 0.286500i
\(682\) − 0.854576i − 0.0327234i
\(683\) 34.9885i 1.33880i 0.742903 + 0.669399i \(0.233448\pi\)
−0.742903 + 0.669399i \(0.766552\pi\)
\(684\) 4.98792i 0.190718i
\(685\) −12.6353 −0.482771
\(686\) −37.6069 −1.43584
\(687\) 19.2271i 0.733561i
\(688\) 2.09783 0.0799792
\(689\) 0 0
\(690\) 19.2620 0.733294
\(691\) 14.0871i 0.535898i 0.963433 + 0.267949i \(0.0863458\pi\)
−0.963433 + 0.267949i \(0.913654\pi\)
\(692\) −15.3448 −0.583322
\(693\) 0.643104 0.0244295
\(694\) − 0.911854i − 0.0346135i
\(695\) 43.1439i 1.63654i
\(696\) 0.850855i 0.0322516i
\(697\) − 23.9517i − 0.907234i
\(698\) 17.7211 0.670753
\(699\) 3.70171 0.140012
\(700\) 23.3580i 0.882848i
\(701\) −48.6112 −1.83602 −0.918009 0.396559i \(-0.870204\pi\)
−0.918009 + 0.396559i \(0.870204\pi\)
\(702\) 0 0
\(703\) −58.3672 −2.20136
\(704\) 0.137063i 0.00516577i
\(705\) 15.7560 0.593405
\(706\) −26.4349 −0.994890
\(707\) 43.1008i 1.62097i
\(708\) 5.89977i 0.221727i
\(709\) − 17.2862i − 0.649197i −0.945852 0.324599i \(-0.894771\pi\)
0.945852 0.324599i \(-0.105229\pi\)
\(710\) 0.309043i 0.0115982i
\(711\) 14.5157 0.544382
\(712\) 17.0858 0.640316
\(713\) 38.0194i 1.42384i
\(714\) −26.2935 −0.984010
\(715\) 0 0
\(716\) 0.523499 0.0195641
\(717\) 8.51334i 0.317936i
\(718\) −7.76941 −0.289952
\(719\) −29.1207 −1.08602 −0.543009 0.839727i \(-0.682715\pi\)
−0.543009 + 0.839727i \(0.682715\pi\)
\(720\) − 3.15883i − 0.117723i
\(721\) − 1.05669i − 0.0393531i
\(722\) 5.87933i 0.218806i
\(723\) − 17.4330i − 0.648339i
\(724\) 8.89008 0.330397
\(725\) 4.23575 0.157312
\(726\) 10.9812i 0.407551i
\(727\) −45.5666 −1.68997 −0.844985 0.534790i \(-0.820391\pi\)
−0.844985 + 0.534790i \(0.820391\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) − 7.33811i − 0.271596i
\(731\) 11.7560 0.434812
\(732\) 4.39612 0.162485
\(733\) − 21.7995i − 0.805185i −0.915379 0.402592i \(-0.868109\pi\)
0.915379 0.402592i \(-0.131891\pi\)
\(734\) 13.3274i 0.491922i
\(735\) − 47.4301i − 1.74949i
\(736\) − 6.09783i − 0.224769i
\(737\) −0.646088 −0.0237990
\(738\) −4.27413 −0.157333
\(739\) 41.5663i 1.52904i 0.644599 + 0.764521i \(0.277024\pi\)
−0.644599 + 0.764521i \(0.722976\pi\)
\(740\) 36.9638 1.35881
\(741\) 0 0
\(742\) −8.58211 −0.315059
\(743\) 28.8224i 1.05739i 0.848812 + 0.528695i \(0.177319\pi\)
−0.848812 + 0.528695i \(0.822681\pi\)
\(744\) 6.23490 0.228582
\(745\) 50.7265 1.85847
\(746\) − 6.70304i − 0.245416i
\(747\) − 9.85623i − 0.360621i
\(748\) 0.768086i 0.0280840i
\(749\) 52.9439i 1.93453i
\(750\) 0.0687686 0.00251108
\(751\) −16.6203 −0.606482 −0.303241 0.952914i \(-0.598069\pi\)
−0.303241 + 0.952914i \(0.598069\pi\)
\(752\) − 4.98792i − 0.181891i
\(753\) −3.48427 −0.126974
\(754\) 0 0
\(755\) 69.1226 2.51563
\(756\) 4.69202i 0.170647i
\(757\) −40.3913 −1.46805 −0.734024 0.679123i \(-0.762360\pi\)
−0.734024 + 0.679123i \(0.762360\pi\)
\(758\) 2.41550 0.0877350
\(759\) 0.835790i 0.0303372i
\(760\) − 15.7560i − 0.571530i
\(761\) 3.29483i 0.119438i 0.998215 + 0.0597188i \(0.0190204\pi\)
−0.998215 + 0.0597188i \(0.980980\pi\)
\(762\) 7.87263i 0.285195i
\(763\) 0.918085 0.0332369
\(764\) 7.03146 0.254389
\(765\) − 17.7017i − 0.640007i
\(766\) 10.0978 0.364850
\(767\) 0 0
\(768\) −1.00000 −0.0360844
\(769\) − 2.35258i − 0.0848363i −0.999100 0.0424182i \(-0.986494\pi\)
0.999100 0.0424182i \(-0.0135062\pi\)
\(770\) −2.03146 −0.0732087
\(771\) −13.6039 −0.489932
\(772\) − 17.7560i − 0.639053i
\(773\) − 20.3937i − 0.733512i −0.930317 0.366756i \(-0.880468\pi\)
0.930317 0.366756i \(-0.119532\pi\)
\(774\) − 2.09783i − 0.0754051i
\(775\) − 31.0388i − 1.11494i
\(776\) −2.12737 −0.0763683
\(777\) −54.9047 −1.96969
\(778\) 25.1336i 0.901083i
\(779\) −21.3190 −0.763832
\(780\) 0 0
\(781\) −0.0134095 −0.000479831 0
\(782\) − 34.1715i − 1.22197i
\(783\) 0.850855 0.0304071
\(784\) −15.0151 −0.536252
\(785\) 24.9616i 0.890919i
\(786\) − 0.621334i − 0.0221622i
\(787\) − 19.6775i − 0.701429i −0.936482 0.350714i \(-0.885939\pi\)
0.936482 0.350714i \(-0.114061\pi\)
\(788\) − 18.6571i − 0.664632i
\(789\) −11.4577 −0.407905
\(790\) −45.8528 −1.63137
\(791\) − 2.06292i − 0.0733489i
\(792\) 0.137063 0.00487033
\(793\) 0 0
\(794\) −20.8358 −0.739435
\(795\) − 5.77777i − 0.204917i
\(796\) 7.66248 0.271589
\(797\) 45.8689 1.62476 0.812380 0.583128i \(-0.198172\pi\)
0.812380 + 0.583128i \(0.198172\pi\)
\(798\) 23.4034i 0.828472i
\(799\) − 27.9517i − 0.988859i
\(800\) 4.97823i 0.176007i
\(801\) − 17.0858i − 0.603695i
\(802\) 5.95646 0.210330
\(803\) 0.318404 0.0112362
\(804\) − 4.71379i − 0.166243i
\(805\) 90.3779 3.18540
\(806\) 0 0
\(807\) −22.3666 −0.787341
\(808\) 9.18598i 0.323162i
\(809\) 38.1414 1.34098 0.670490 0.741919i \(-0.266084\pi\)
0.670490 + 0.741919i \(0.266084\pi\)
\(810\) −3.15883 −0.110990
\(811\) 46.6983i 1.63980i 0.572509 + 0.819899i \(0.305970\pi\)
−0.572509 + 0.819899i \(0.694030\pi\)
\(812\) 3.99223i 0.140100i
\(813\) 3.87263i 0.135819i
\(814\) 1.60388i 0.0562158i
\(815\) −25.3319 −0.887337
\(816\) −5.60388 −0.196175
\(817\) − 10.4638i − 0.366083i
\(818\) −1.80194 −0.0630033
\(819\) 0 0
\(820\) 13.5013 0.471484
\(821\) 32.6950i 1.14106i 0.821276 + 0.570532i \(0.193263\pi\)
−0.821276 + 0.570532i \(0.806737\pi\)
\(822\) 4.00000 0.139516
\(823\) 21.6799 0.755715 0.377858 0.925864i \(-0.376661\pi\)
0.377858 + 0.925864i \(0.376661\pi\)
\(824\) − 0.225209i − 0.00784554i
\(825\) − 0.682333i − 0.0237558i
\(826\) 27.6819i 0.963175i
\(827\) 13.9172i 0.483950i 0.970283 + 0.241975i \(0.0777951\pi\)
−0.970283 + 0.241975i \(0.922205\pi\)
\(828\) −6.09783 −0.211914
\(829\) 16.4047 0.569760 0.284880 0.958563i \(-0.408046\pi\)
0.284880 + 0.958563i \(0.408046\pi\)
\(830\) 31.1342i 1.08068i
\(831\) 28.7090 0.995904
\(832\) 0 0
\(833\) −84.1426 −2.91537
\(834\) − 13.6582i − 0.472944i
\(835\) 53.9711 1.86775
\(836\) 0.683661 0.0236449
\(837\) − 6.23490i − 0.215510i
\(838\) 28.4499i 0.982787i
\(839\) − 11.6146i − 0.400982i −0.979696 0.200491i \(-0.935746\pi\)
0.979696 0.200491i \(-0.0642537\pi\)
\(840\) − 14.8213i − 0.511384i
\(841\) −28.2760 −0.975036
\(842\) 13.9323 0.480139
\(843\) − 29.0858i − 1.00177i
\(844\) −11.1642 −0.384288
\(845\) 0 0
\(846\) −4.98792 −0.171488
\(847\) 51.5241i 1.77039i
\(848\) −1.82908 −0.0628110
\(849\) 13.7560 0.472105
\(850\) 27.8974i 0.956872i
\(851\) − 71.3551i − 2.44602i
\(852\) − 0.0978347i − 0.00335176i
\(853\) − 26.2983i − 0.900436i −0.892919 0.450218i \(-0.851346\pi\)
0.892919 0.450218i \(-0.148654\pi\)
\(854\) 20.6267 0.705832
\(855\) −15.7560 −0.538844
\(856\) 11.2838i 0.385673i
\(857\) 48.6305 1.66119 0.830594 0.556879i \(-0.188001\pi\)
0.830594 + 0.556879i \(0.188001\pi\)
\(858\) 0 0
\(859\) 33.6185 1.14705 0.573524 0.819189i \(-0.305576\pi\)
0.573524 + 0.819189i \(0.305576\pi\)
\(860\) 6.62671i 0.225969i
\(861\) −20.0543 −0.683449
\(862\) −15.9022 −0.541630
\(863\) − 5.78879i − 0.197053i −0.995134 0.0985264i \(-0.968587\pi\)
0.995134 0.0985264i \(-0.0314129\pi\)
\(864\) 1.00000i 0.0340207i
\(865\) − 48.4717i − 1.64809i
\(866\) 4.77718i 0.162335i
\(867\) −14.4034 −0.489166
\(868\) 29.2543 0.992955
\(869\) − 1.98957i − 0.0674917i
\(870\) −2.68771 −0.0911219
\(871\) 0 0
\(872\) 0.195669 0.00662620
\(873\) 2.12737i 0.0720007i
\(874\) −30.4155 −1.02882
\(875\) 0.322664 0.0109080
\(876\) 2.32304i 0.0784884i
\(877\) 9.50604i 0.320996i 0.987036 + 0.160498i \(0.0513100\pi\)
−0.987036 + 0.160498i \(0.948690\pi\)
\(878\) − 33.6316i − 1.13501i
\(879\) 27.7362i 0.935517i
\(880\) −0.432960 −0.0145951
\(881\) 46.7875 1.57631 0.788155 0.615477i \(-0.211037\pi\)
0.788155 + 0.615477i \(0.211037\pi\)
\(882\) 15.0151i 0.505584i
\(883\) −3.03146 −0.102017 −0.0510084 0.998698i \(-0.516244\pi\)
−0.0510084 + 0.998698i \(0.516244\pi\)
\(884\) 0 0
\(885\) −18.6364 −0.626456
\(886\) 35.3749i 1.18844i
\(887\) 37.0180 1.24294 0.621472 0.783436i \(-0.286535\pi\)
0.621472 + 0.783436i \(0.286535\pi\)
\(888\) −11.7017 −0.392684
\(889\) 36.9385i 1.23888i
\(890\) 53.9711i 1.80911i
\(891\) − 0.137063i − 0.00459179i
\(892\) 24.6353i 0.824852i
\(893\) −24.8793 −0.832555
\(894\) −16.0586 −0.537080
\(895\) 1.65365i 0.0552753i
\(896\) −4.69202 −0.156749
\(897\) 0 0
\(898\) −18.0629 −0.602767
\(899\) − 5.30499i − 0.176931i
\(900\) 4.97823 0.165941
\(901\) −10.2500 −0.341476
\(902\) 0.585826i 0.0195059i
\(903\) − 9.84309i − 0.327557i
\(904\) − 0.439665i − 0.0146230i
\(905\) 28.0823i 0.933487i
\(906\) −21.8823 −0.726991
\(907\) −19.0965 −0.634089 −0.317045 0.948411i \(-0.602690\pi\)
−0.317045 + 0.948411i \(0.602690\pi\)
\(908\) − 7.47650i − 0.248116i
\(909\) 9.18598 0.304680
\(910\) 0 0
\(911\) −31.3142 −1.03749 −0.518743 0.854930i \(-0.673600\pi\)
−0.518743 + 0.854930i \(0.673600\pi\)
\(912\) 4.98792i 0.165166i
\(913\) −1.35093 −0.0447092
\(914\) 15.4668 0.511597
\(915\) 13.8866i 0.459078i
\(916\) 19.2271i 0.635282i
\(917\) − 2.91531i − 0.0962721i
\(918\) 5.60388i 0.184955i
\(919\) 30.3967 1.00270 0.501348 0.865246i \(-0.332838\pi\)
0.501348 + 0.865246i \(0.332838\pi\)
\(920\) 19.2620 0.635051
\(921\) − 12.4590i − 0.410539i
\(922\) 18.8092 0.619449
\(923\) 0 0
\(924\) 0.643104 0.0211566
\(925\) 58.2538i 1.91537i
\(926\) −15.8431 −0.520636
\(927\) −0.225209 −0.00739685
\(928\) 0.850855i 0.0279307i
\(929\) − 40.5810i − 1.33142i −0.746210 0.665710i \(-0.768129\pi\)
0.746210 0.665710i \(-0.231871\pi\)
\(930\) 19.6950i 0.645825i
\(931\) 74.8939i 2.45455i
\(932\) 3.70171 0.121254
\(933\) −6.09783 −0.199634
\(934\) 22.0006i 0.719881i
\(935\) −2.42626 −0.0793470
\(936\) 0 0
\(937\) −18.7047 −0.611056 −0.305528 0.952183i \(-0.598833\pi\)
−0.305528 + 0.952183i \(0.598833\pi\)
\(938\) − 22.1172i − 0.722153i
\(939\) 12.7385 0.415707
\(940\) 15.7560 0.513904
\(941\) − 4.04998i − 0.132026i −0.997819 0.0660128i \(-0.978972\pi\)
0.997819 0.0660128i \(-0.0210278\pi\)
\(942\) − 7.90217i − 0.257466i
\(943\) − 26.0629i − 0.848725i
\(944\) 5.89977i 0.192021i
\(945\) −14.8213 −0.482137
\(946\) −0.287536 −0.00934861
\(947\) − 11.5356i − 0.374856i −0.982278 0.187428i \(-0.939985\pi\)
0.982278 0.187428i \(-0.0600151\pi\)
\(948\) 14.5157 0.471449
\(949\) 0 0
\(950\) 24.8310 0.805624
\(951\) − 14.8140i − 0.480377i
\(952\) −26.2935 −0.852177
\(953\) 9.57109 0.310038 0.155019 0.987911i \(-0.450456\pi\)
0.155019 + 0.987911i \(0.450456\pi\)
\(954\) 1.82908i 0.0592188i
\(955\) 22.2112i 0.718738i
\(956\) 8.51334i 0.275341i
\(957\) − 0.116621i − 0.00376982i
\(958\) −21.3491 −0.689759
\(959\) 18.7681 0.606053
\(960\) − 3.15883i − 0.101951i
\(961\) −7.87395 −0.253998
\(962\) 0 0
\(963\) 11.2838 0.363616
\(964\) − 17.4330i − 0.561478i
\(965\) 56.0883 1.80555
\(966\) −28.6112 −0.920549
\(967\) − 61.2073i − 1.96829i −0.177357 0.984147i \(-0.556755\pi\)
0.177357 0.984147i \(-0.443245\pi\)
\(968\) 10.9812i 0.352950i
\(969\) 27.9517i 0.897937i
\(970\) − 6.72002i − 0.215767i
\(971\) −28.8595 −0.926145 −0.463072 0.886320i \(-0.653253\pi\)
−0.463072 + 0.886320i \(0.653253\pi\)
\(972\) 1.00000 0.0320750
\(973\) − 64.0844i − 2.05445i
\(974\) 31.6394 1.01379
\(975\) 0 0
\(976\) 4.39612 0.140717
\(977\) − 46.6305i − 1.49184i −0.666034 0.745922i \(-0.732009\pi\)
0.666034 0.745922i \(-0.267991\pi\)
\(978\) 8.01938 0.256431
\(979\) −2.34183 −0.0748452
\(980\) − 47.4301i − 1.51510i
\(981\) − 0.195669i − 0.00624724i
\(982\) − 1.39911i − 0.0446473i
\(983\) 55.6883i 1.77618i 0.459669 + 0.888090i \(0.347968\pi\)
−0.459669 + 0.888090i \(0.652032\pi\)
\(984\) −4.27413 −0.136254
\(985\) 58.9347 1.87782
\(986\) 4.76809i 0.151847i
\(987\) −23.4034 −0.744939
\(988\) 0 0
\(989\) 12.7922 0.406770
\(990\) 0.432960i 0.0137604i
\(991\) −9.32172 −0.296114 −0.148057 0.988979i \(-0.547302\pi\)
−0.148057 + 0.988979i \(0.547302\pi\)
\(992\) 6.23490 0.197958
\(993\) − 7.70171i − 0.244406i
\(994\) − 0.459042i − 0.0145599i
\(995\) 24.2045i 0.767334i
\(996\) − 9.85623i − 0.312307i
\(997\) 46.0253 1.45764 0.728819 0.684707i \(-0.240070\pi\)
0.728819 + 0.684707i \(0.240070\pi\)
\(998\) 0 0
\(999\) 11.7017i 0.370226i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.b.f.337.1 6
3.2 odd 2 3042.2.b.o.1351.6 6
13.2 odd 12 1014.2.e.n.529.1 6
13.3 even 3 1014.2.i.h.823.4 12
13.4 even 6 1014.2.i.h.361.6 12
13.5 odd 4 1014.2.a.l.1.1 3
13.6 odd 12 1014.2.e.n.991.1 6
13.7 odd 12 1014.2.e.l.991.3 6
13.8 odd 4 1014.2.a.n.1.3 yes 3
13.9 even 3 1014.2.i.h.361.1 12
13.10 even 6 1014.2.i.h.823.3 12
13.11 odd 12 1014.2.e.l.529.3 6
13.12 even 2 inner 1014.2.b.f.337.6 6
39.5 even 4 3042.2.a.bh.1.3 3
39.8 even 4 3042.2.a.ba.1.1 3
39.38 odd 2 3042.2.b.o.1351.1 6
52.31 even 4 8112.2.a.cj.1.1 3
52.47 even 4 8112.2.a.cm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1014.2.a.l.1.1 3 13.5 odd 4
1014.2.a.n.1.3 yes 3 13.8 odd 4
1014.2.b.f.337.1 6 1.1 even 1 trivial
1014.2.b.f.337.6 6 13.12 even 2 inner
1014.2.e.l.529.3 6 13.11 odd 12
1014.2.e.l.991.3 6 13.7 odd 12
1014.2.e.n.529.1 6 13.2 odd 12
1014.2.e.n.991.1 6 13.6 odd 12
1014.2.i.h.361.1 12 13.9 even 3
1014.2.i.h.361.6 12 13.4 even 6
1014.2.i.h.823.3 12 13.10 even 6
1014.2.i.h.823.4 12 13.3 even 3
3042.2.a.ba.1.1 3 39.8 even 4
3042.2.a.bh.1.3 3 39.5 even 4
3042.2.b.o.1351.1 6 39.38 odd 2
3042.2.b.o.1351.6 6 3.2 odd 2
8112.2.a.cj.1.1 3 52.31 even 4
8112.2.a.cm.1.3 3 52.47 even 4