Defining parameters
| Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1014.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 7 \) | ||
| Sturm bound: | \(364\) | ||
| Trace bound: | \(10\) | ||
| Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(1014, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 210 | 26 | 184 |
| Cusp forms | 154 | 26 | 128 |
| Eisenstein series | 56 | 0 | 56 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(1014, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(1014, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(1014, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(78, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(169, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(338, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(507, [\chi])\)\(^{\oplus 2}\)