Properties

Label 1014.2
Level 1014
Weight 2
Dimension 7013
Nonzero newspaces 12
Sturm bound 113568
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) = \( 2 \)
Nonzero newspaces: \( 12 \)
Sturm bound: \(113568\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_1(1014))\).

Total New Old
Modular forms 29304 7013 22291
Cusp forms 27481 7013 20468
Eisenstein series 1823 0 1823

Trace form

\( 7013 q - q^{2} - q^{3} - q^{4} - 6 q^{5} - q^{6} + 8 q^{7} + 11 q^{8} + 7 q^{9} + 54 q^{10} + 36 q^{11} + 7 q^{12} + 48 q^{13} + 40 q^{14} + 42 q^{15} + 15 q^{16} + 42 q^{17} + 11 q^{18} + 92 q^{19}+ \cdots - 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_1(1014))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
1014.2.a \(\chi_{1014}(1, \cdot)\) 1014.2.a.a 1 1
1014.2.a.b 1
1014.2.a.c 1
1014.2.a.d 1
1014.2.a.e 1
1014.2.a.f 1
1014.2.a.g 1
1014.2.a.h 2
1014.2.a.i 2
1014.2.a.j 2
1014.2.a.k 2
1014.2.a.l 3
1014.2.a.m 3
1014.2.a.n 3
1014.2.a.o 3
1014.2.b \(\chi_{1014}(337, \cdot)\) 1014.2.b.a 2 1
1014.2.b.b 2
1014.2.b.c 2
1014.2.b.d 4
1014.2.b.e 4
1014.2.b.f 6
1014.2.b.g 6
1014.2.e \(\chi_{1014}(529, \cdot)\) 1014.2.e.a 2 2
1014.2.e.b 2
1014.2.e.c 2
1014.2.e.d 2
1014.2.e.e 2
1014.2.e.f 2
1014.2.e.g 4
1014.2.e.h 4
1014.2.e.i 4
1014.2.e.j 4
1014.2.e.k 6
1014.2.e.l 6
1014.2.e.m 6
1014.2.e.n 6
1014.2.g \(\chi_{1014}(239, \cdot)\) 1014.2.g.a 8 2
1014.2.g.b 12
1014.2.g.c 16
1014.2.g.d 16
1014.2.g.e 48
1014.2.i \(\chi_{1014}(361, \cdot)\) 1014.2.i.a 4 2
1014.2.i.b 4
1014.2.i.c 4
1014.2.i.d 4
1014.2.i.e 4
1014.2.i.f 4
1014.2.i.g 12
1014.2.i.h 12
1014.2.k \(\chi_{1014}(89, \cdot)\) n/a 208 4
1014.2.m \(\chi_{1014}(79, \cdot)\) n/a 336 12
1014.2.p \(\chi_{1014}(25, \cdot)\) n/a 360 12
1014.2.q \(\chi_{1014}(55, \cdot)\) n/a 720 24
1014.2.r \(\chi_{1014}(5, \cdot)\) n/a 1488 24
1014.2.u \(\chi_{1014}(43, \cdot)\) n/a 768 24
1014.2.x \(\chi_{1014}(11, \cdot)\) n/a 2880 48

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_1(1014))\) into lower level spaces

\( S_{2}^{\mathrm{old}}(\Gamma_1(1014)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(13))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(507))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_1(1014))\)\(^{\oplus 1}\)