Properties

Label 3042.2.a.bh.1.3
Level 30423042
Weight 22
Character 3042.1
Self dual yes
Analytic conductor 24.29024.290
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3042,2,Mod(1,3042)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3042.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3042, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: N N == 3042=232132 3042 = 2 \cdot 3^{2} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3042.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,3,0,3,1,0,-9,3,0,1,5,0,0,-9,0,3,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 24.290492294924.2904922949
Analytic rank: 00
Dimension: 33
Coefficient field: Q(ζ14)+\Q(\zeta_{14})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x3x22x+1 x^{3} - x^{2} - 2x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1014)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.3
Root 0.4450420.445042 of defining polynomial
Character χ\chi == 3042.1

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+1.00000q2+1.00000q4+3.15883q54.69202q7+1.00000q8+3.15883q100.137063q114.69202q14+1.00000q16+5.60388q174.98792q19+3.15883q200.137063q22+6.09783q23+4.97823q254.69202q28+0.850855q29+6.23490q31+1.00000q32+5.60388q3414.8213q35+11.7017q374.98792q38+3.15883q40+4.27413q412.09783q430.137063q44+6.09783q464.98792q47+15.0151q49+4.97823q50+1.82908q530.432960q554.69202q56+0.850855q58+5.89977q59+4.39612q61+6.23490q62+1.00000q644.71379q67+5.60388q6814.8213q70+0.0978347q712.32304q73+11.7017q744.98792q76+0.643104q77+14.5157q79+3.15883q80+4.27413q82+9.85623q83+17.7017q852.09783q860.137063q8817.0858q89+6.09783q924.98792q9415.7560q95+2.12737q97+15.0151q98+O(q100)q+1.00000 q^{2} +1.00000 q^{4} +3.15883 q^{5} -4.69202 q^{7} +1.00000 q^{8} +3.15883 q^{10} -0.137063 q^{11} -4.69202 q^{14} +1.00000 q^{16} +5.60388 q^{17} -4.98792 q^{19} +3.15883 q^{20} -0.137063 q^{22} +6.09783 q^{23} +4.97823 q^{25} -4.69202 q^{28} +0.850855 q^{29} +6.23490 q^{31} +1.00000 q^{32} +5.60388 q^{34} -14.8213 q^{35} +11.7017 q^{37} -4.98792 q^{38} +3.15883 q^{40} +4.27413 q^{41} -2.09783 q^{43} -0.137063 q^{44} +6.09783 q^{46} -4.98792 q^{47} +15.0151 q^{49} +4.97823 q^{50} +1.82908 q^{53} -0.432960 q^{55} -4.69202 q^{56} +0.850855 q^{58} +5.89977 q^{59} +4.39612 q^{61} +6.23490 q^{62} +1.00000 q^{64} -4.71379 q^{67} +5.60388 q^{68} -14.8213 q^{70} +0.0978347 q^{71} -2.32304 q^{73} +11.7017 q^{74} -4.98792 q^{76} +0.643104 q^{77} +14.5157 q^{79} +3.15883 q^{80} +4.27413 q^{82} +9.85623 q^{83} +17.7017 q^{85} -2.09783 q^{86} -0.137063 q^{88} -17.0858 q^{89} +6.09783 q^{92} -4.98792 q^{94} -15.7560 q^{95} +2.12737 q^{97} +15.0151 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+3q2+3q4+q59q7+3q8+q10+5q119q14+3q16+8q17+4q19+q20+5q22+18q259q2811q295q31+3q32+8q34++20q98+O(q100) 3 q + 3 q^{2} + 3 q^{4} + q^{5} - 9 q^{7} + 3 q^{8} + q^{10} + 5 q^{11} - 9 q^{14} + 3 q^{16} + 8 q^{17} + 4 q^{19} + q^{20} + 5 q^{22} + 18 q^{25} - 9 q^{28} - 11 q^{29} - 5 q^{31} + 3 q^{32} + 8 q^{34}+ \cdots + 20 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.00000 0.707107
33 0 0
44 1.00000 0.500000
55 3.15883 1.41267 0.706337 0.707876i 0.250346π-0.250346\pi
0.706337 + 0.707876i 0.250346π0.250346\pi
66 0 0
77 −4.69202 −1.77342 −0.886709 0.462329i 0.847014π-0.847014\pi
−0.886709 + 0.462329i 0.847014π0.847014\pi
88 1.00000 0.353553
99 0 0
1010 3.15883 0.998911
1111 −0.137063 −0.0413262 −0.0206631 0.999786i 0.506578π-0.506578\pi
−0.0206631 + 0.999786i 0.506578π0.506578\pi
1212 0 0
1313 0 0
1414 −4.69202 −1.25400
1515 0 0
1616 1.00000 0.250000
1717 5.60388 1.35914 0.679570 0.733611i 0.262167π-0.262167\pi
0.679570 + 0.733611i 0.262167π0.262167\pi
1818 0 0
1919 −4.98792 −1.14431 −0.572153 0.820147i 0.693892π-0.693892\pi
−0.572153 + 0.820147i 0.693892π0.693892\pi
2020 3.15883 0.706337
2121 0 0
2222 −0.137063 −0.0292220
2323 6.09783 1.27149 0.635743 0.771901i 0.280694π-0.280694\pi
0.635743 + 0.771901i 0.280694π0.280694\pi
2424 0 0
2525 4.97823 0.995646
2626 0 0
2727 0 0
2828 −4.69202 −0.886709
2929 0.850855 0.158000 0.0789999 0.996875i 0.474827π-0.474827\pi
0.0789999 + 0.996875i 0.474827π0.474827\pi
3030 0 0
3131 6.23490 1.11982 0.559910 0.828553i 0.310836π-0.310836\pi
0.559910 + 0.828553i 0.310836π0.310836\pi
3232 1.00000 0.176777
3333 0 0
3434 5.60388 0.961057
3535 −14.8213 −2.50526
3636 0 0
3737 11.7017 1.92375 0.961875 0.273491i 0.0881783π-0.0881783\pi
0.961875 + 0.273491i 0.0881783π0.0881783\pi
3838 −4.98792 −0.809147
3939 0 0
4040 3.15883 0.499455
4141 4.27413 0.667506 0.333753 0.942660i 0.391685π-0.391685\pi
0.333753 + 0.942660i 0.391685π0.391685\pi
4242 0 0
4343 −2.09783 −0.319917 −0.159958 0.987124i 0.551136π-0.551136\pi
−0.159958 + 0.987124i 0.551136π0.551136\pi
4444 −0.137063 −0.0206631
4545 0 0
4646 6.09783 0.899077
4747 −4.98792 −0.727563 −0.363781 0.931484i 0.618514π-0.618514\pi
−0.363781 + 0.931484i 0.618514π0.618514\pi
4848 0 0
4949 15.0151 2.14501
5050 4.97823 0.704028
5151 0 0
5252 0 0
5353 1.82908 0.251244 0.125622 0.992078i 0.459907π-0.459907\pi
0.125622 + 0.992078i 0.459907π0.459907\pi
5454 0 0
5555 −0.432960 −0.0583804
5656 −4.69202 −0.626998
5757 0 0
5858 0.850855 0.111723
5959 5.89977 0.768085 0.384042 0.923315i 0.374532π-0.374532\pi
0.384042 + 0.923315i 0.374532π0.374532\pi
6060 0 0
6161 4.39612 0.562866 0.281433 0.959581i 0.409190π-0.409190\pi
0.281433 + 0.959581i 0.409190π0.409190\pi
6262 6.23490 0.791833
6363 0 0
6464 1.00000 0.125000
6565 0 0
6666 0 0
6767 −4.71379 −0.575881 −0.287941 0.957648i 0.592971π-0.592971\pi
−0.287941 + 0.957648i 0.592971π0.592971\pi
6868 5.60388 0.679570
6969 0 0
7070 −14.8213 −1.77149
7171 0.0978347 0.0116108 0.00580542 0.999983i 0.498152π-0.498152\pi
0.00580542 + 0.999983i 0.498152π0.498152\pi
7272 0 0
7373 −2.32304 −0.271892 −0.135946 0.990716i 0.543407π-0.543407\pi
−0.135946 + 0.990716i 0.543407π0.543407\pi
7474 11.7017 1.36030
7575 0 0
7676 −4.98792 −0.572153
7777 0.643104 0.0732885
7878 0 0
7979 14.5157 1.63315 0.816574 0.577241i 0.195871π-0.195871\pi
0.816574 + 0.577241i 0.195871π0.195871\pi
8080 3.15883 0.353168
8181 0 0
8282 4.27413 0.471998
8383 9.85623 1.08186 0.540931 0.841067i 0.318072π-0.318072\pi
0.540931 + 0.841067i 0.318072π0.318072\pi
8484 0 0
8585 17.7017 1.92002
8686 −2.09783 −0.226215
8787 0 0
8888 −0.137063 −0.0146110
8989 −17.0858 −1.81109 −0.905543 0.424254i 0.860536π-0.860536\pi
−0.905543 + 0.424254i 0.860536π0.860536\pi
9090 0 0
9191 0 0
9292 6.09783 0.635743
9393 0 0
9494 −4.98792 −0.514465
9595 −15.7560 −1.61653
9696 0 0
9797 2.12737 0.216002 0.108001 0.994151i 0.465555π-0.465555\pi
0.108001 + 0.994151i 0.465555π0.465555\pi
9898 15.0151 1.51675
9999 0 0
100100 4.97823 0.497823
101101 9.18598 0.914039 0.457020 0.889457i 0.348917π-0.348917\pi
0.457020 + 0.889457i 0.348917π0.348917\pi
102102 0 0
103103 0.225209 0.0221905 0.0110953 0.999938i 0.496468π-0.496468\pi
0.0110953 + 0.999938i 0.496468π0.496468\pi
104104 0 0
105105 0 0
106106 1.82908 0.177656
107107 −11.2838 −1.09085 −0.545424 0.838160i 0.683631π-0.683631\pi
−0.545424 + 0.838160i 0.683631π0.683631\pi
108108 0 0
109109 −0.195669 −0.0187417 −0.00937086 0.999956i 0.502983π-0.502983\pi
−0.00937086 + 0.999956i 0.502983π0.502983\pi
110110 −0.432960 −0.0412811
111111 0 0
112112 −4.69202 −0.443354
113113 0.439665 0.0413602 0.0206801 0.999786i 0.493417π-0.493417\pi
0.0206801 + 0.999786i 0.493417π0.493417\pi
114114 0 0
115115 19.2620 1.79619
116116 0.850855 0.0789999
117117 0 0
118118 5.89977 0.543118
119119 −26.2935 −2.41032
120120 0 0
121121 −10.9812 −0.998292
122122 4.39612 0.398006
123123 0 0
124124 6.23490 0.559910
125125 −0.0687686 −0.00615085
126126 0 0
127127 −7.87263 −0.698583 −0.349291 0.937014i 0.613578π-0.613578\pi
−0.349291 + 0.937014i 0.613578π0.613578\pi
128128 1.00000 0.0883883
129129 0 0
130130 0 0
131131 0.621334 0.0542862 0.0271431 0.999632i 0.491359π-0.491359\pi
0.0271431 + 0.999632i 0.491359π0.491359\pi
132132 0 0
133133 23.4034 2.02933
134134 −4.71379 −0.407210
135135 0 0
136136 5.60388 0.480528
137137 −4.00000 −0.341743 −0.170872 0.985293i 0.554658π-0.554658\pi
−0.170872 + 0.985293i 0.554658π0.554658\pi
138138 0 0
139139 −13.6582 −1.15847 −0.579235 0.815160i 0.696649π-0.696649\pi
−0.579235 + 0.815160i 0.696649π0.696649\pi
140140 −14.8213 −1.25263
141141 0 0
142142 0.0978347 0.00821010
143143 0 0
144144 0 0
145145 2.68771 0.223202
146146 −2.32304 −0.192256
147147 0 0
148148 11.7017 0.961875
149149 −16.0586 −1.31557 −0.657786 0.753205i 0.728507π-0.728507\pi
−0.657786 + 0.753205i 0.728507π0.728507\pi
150150 0 0
151151 −21.8823 −1.78076 −0.890379 0.455221i 0.849560π-0.849560\pi
−0.890379 + 0.455221i 0.849560π0.849560\pi
152152 −4.98792 −0.404574
153153 0 0
154154 0.643104 0.0518228
155155 19.6950 1.58194
156156 0 0
157157 −7.90217 −0.630661 −0.315331 0.948982i 0.602115π-0.602115\pi
−0.315331 + 0.948982i 0.602115π0.602115\pi
158158 14.5157 1.15481
159159 0 0
160160 3.15883 0.249728
161161 −28.6112 −2.25488
162162 0 0
163163 8.01938 0.628126 0.314063 0.949402i 0.398310π-0.398310\pi
0.314063 + 0.949402i 0.398310π0.398310\pi
164164 4.27413 0.333753
165165 0 0
166166 9.85623 0.764992
167167 17.0858 1.32214 0.661068 0.750326i 0.270104π-0.270104\pi
0.661068 + 0.750326i 0.270104π0.270104\pi
168168 0 0
169169 0 0
170170 17.7017 1.35766
171171 0 0
172172 −2.09783 −0.159958
173173 15.3448 1.16664 0.583322 0.812241i 0.301752π-0.301752\pi
0.583322 + 0.812241i 0.301752π0.301752\pi
174174 0 0
175175 −23.3580 −1.76570
176176 −0.137063 −0.0103315
177177 0 0
178178 −17.0858 −1.28063
179179 −0.523499 −0.0391282 −0.0195641 0.999809i 0.506228π-0.506228\pi
−0.0195641 + 0.999809i 0.506228π0.506228\pi
180180 0 0
181181 8.89008 0.660795 0.330397 0.943842i 0.392817π-0.392817\pi
0.330397 + 0.943842i 0.392817π0.392817\pi
182182 0 0
183183 0 0
184184 6.09783 0.449538
185185 36.9638 2.71763
186186 0 0
187187 −0.768086 −0.0561680
188188 −4.98792 −0.363781
189189 0 0
190190 −15.7560 −1.14306
191191 7.03146 0.508779 0.254389 0.967102i 0.418126π-0.418126\pi
0.254389 + 0.967102i 0.418126π0.418126\pi
192192 0 0
193193 −17.7560 −1.27811 −0.639053 0.769163i 0.720673π-0.720673\pi
−0.639053 + 0.769163i 0.720673π0.720673\pi
194194 2.12737 0.152737
195195 0 0
196196 15.0151 1.07250
197197 −18.6571 −1.32926 −0.664632 0.747171i 0.731412π-0.731412\pi
−0.664632 + 0.747171i 0.731412π0.731412\pi
198198 0 0
199199 7.66248 0.543179 0.271589 0.962413i 0.412451π-0.412451\pi
0.271589 + 0.962413i 0.412451π0.412451\pi
200200 4.97823 0.352014
201201 0 0
202202 9.18598 0.646323
203203 −3.99223 −0.280200
204204 0 0
205205 13.5013 0.942969
206206 0.225209 0.0156911
207207 0 0
208208 0 0
209209 0.683661 0.0472898
210210 0 0
211211 11.1642 0.768576 0.384288 0.923213i 0.374447π-0.374447\pi
0.384288 + 0.923213i 0.374447π0.374447\pi
212212 1.82908 0.125622
213213 0 0
214214 −11.2838 −0.771346
215215 −6.62671 −0.451938
216216 0 0
217217 −29.2543 −1.98591
218218 −0.195669 −0.0132524
219219 0 0
220220 −0.432960 −0.0291902
221221 0 0
222222 0 0
223223 −24.6353 −1.64970 −0.824852 0.565349i 0.808742π-0.808742\pi
−0.824852 + 0.565349i 0.808742π0.808742\pi
224224 −4.69202 −0.313499
225225 0 0
226226 0.439665 0.0292461
227227 −7.47650 −0.496233 −0.248116 0.968730i 0.579812π-0.579812\pi
−0.248116 + 0.968730i 0.579812π0.579812\pi
228228 0 0
229229 19.2271 1.27056 0.635282 0.772280i 0.280884π-0.280884\pi
0.635282 + 0.772280i 0.280884π0.280884\pi
230230 19.2620 1.27010
231231 0 0
232232 0.850855 0.0558614
233233 −3.70171 −0.242507 −0.121254 0.992622i 0.538691π-0.538691\pi
−0.121254 + 0.992622i 0.538691π0.538691\pi
234234 0 0
235235 −15.7560 −1.02781
236236 5.89977 0.384042
237237 0 0
238238 −26.2935 −1.70435
239239 8.51334 0.550682 0.275341 0.961347i 0.411209π-0.411209\pi
0.275341 + 0.961347i 0.411209π0.411209\pi
240240 0 0
241241 −17.4330 −1.12296 −0.561478 0.827492i 0.689767π-0.689767\pi
−0.561478 + 0.827492i 0.689767π0.689767\pi
242242 −10.9812 −0.705899
243243 0 0
244244 4.39612 0.281433
245245 47.4301 3.03020
246246 0 0
247247 0 0
248248 6.23490 0.395916
249249 0 0
250250 −0.0687686 −0.00434931
251251 3.48427 0.219925 0.109963 0.993936i 0.464927π-0.464927\pi
0.109963 + 0.993936i 0.464927π0.464927\pi
252252 0 0
253253 −0.835790 −0.0525456
254254 −7.87263 −0.493972
255255 0 0
256256 1.00000 0.0625000
257257 13.6039 0.848586 0.424293 0.905525i 0.360523π-0.360523\pi
0.424293 + 0.905525i 0.360523π0.360523\pi
258258 0 0
259259 −54.9047 −3.41161
260260 0 0
261261 0 0
262262 0.621334 0.0383861
263263 −11.4577 −0.706513 −0.353256 0.935527i 0.614926π-0.614926\pi
−0.353256 + 0.935527i 0.614926π0.614926\pi
264264 0 0
265265 5.77777 0.354926
266266 23.4034 1.43496
267267 0 0
268268 −4.71379 −0.287941
269269 −22.3666 −1.36371 −0.681857 0.731485i 0.738828π-0.738828\pi
−0.681857 + 0.731485i 0.738828π0.738828\pi
270270 0 0
271271 3.87263 0.235245 0.117623 0.993058i 0.462473π-0.462473\pi
0.117623 + 0.993058i 0.462473π0.462473\pi
272272 5.60388 0.339785
273273 0 0
274274 −4.00000 −0.241649
275275 −0.682333 −0.0411462
276276 0 0
277277 28.7090 1.72496 0.862478 0.506094i 0.168911π-0.168911\pi
0.862478 + 0.506094i 0.168911π0.168911\pi
278278 −13.6582 −0.819163
279279 0 0
280280 −14.8213 −0.885743
281281 29.0858 1.73511 0.867555 0.497341i 0.165690π-0.165690\pi
0.867555 + 0.497341i 0.165690π0.165690\pi
282282 0 0
283283 13.7560 0.817710 0.408855 0.912599i 0.365928π-0.365928\pi
0.408855 + 0.912599i 0.365928π0.365928\pi
284284 0.0978347 0.00580542
285285 0 0
286286 0 0
287287 −20.0543 −1.18377
288288 0 0
289289 14.4034 0.847260
290290 2.68771 0.157828
291291 0 0
292292 −2.32304 −0.135946
293293 −27.7362 −1.62036 −0.810182 0.586179i 0.800632π-0.800632\pi
−0.810182 + 0.586179i 0.800632π0.800632\pi
294294 0 0
295295 18.6364 1.08505
296296 11.7017 0.680148
297297 0 0
298298 −16.0586 −0.930250
299299 0 0
300300 0 0
301301 9.84309 0.567346
302302 −21.8823 −1.25919
303303 0 0
304304 −4.98792 −0.286077
305305 13.8866 0.795146
306306 0 0
307307 −12.4590 −0.711075 −0.355538 0.934662i 0.615702π-0.615702\pi
−0.355538 + 0.934662i 0.615702π0.615702\pi
308308 0.643104 0.0366443
309309 0 0
310310 19.6950 1.11860
311311 6.09783 0.345776 0.172888 0.984941i 0.444690π-0.444690\pi
0.172888 + 0.984941i 0.444690π0.444690\pi
312312 0 0
313313 −12.7385 −0.720025 −0.360013 0.932947i 0.617228π-0.617228\pi
−0.360013 + 0.932947i 0.617228π0.617228\pi
314314 −7.90217 −0.445945
315315 0 0
316316 14.5157 0.816574
317317 −14.8140 −0.832038 −0.416019 0.909356i 0.636575π-0.636575\pi
−0.416019 + 0.909356i 0.636575π0.636575\pi
318318 0 0
319319 −0.116621 −0.00652952
320320 3.15883 0.176584
321321 0 0
322322 −28.6112 −1.59444
323323 −27.9517 −1.55527
324324 0 0
325325 0 0
326326 8.01938 0.444152
327327 0 0
328328 4.27413 0.235999
329329 23.4034 1.29027
330330 0 0
331331 7.70171 0.423324 0.211662 0.977343i 0.432112π-0.432112\pi
0.211662 + 0.977343i 0.432112π0.432112\pi
332332 9.85623 0.540931
333333 0 0
334334 17.0858 0.934891
335335 −14.8901 −0.813532
336336 0 0
337337 26.5961 1.44878 0.724391 0.689389i 0.242121π-0.242121\pi
0.724391 + 0.689389i 0.242121π0.242121\pi
338338 0 0
339339 0 0
340340 17.7017 0.960010
341341 −0.854576 −0.0462779
342342 0 0
343343 −37.6069 −2.03058
344344 −2.09783 −0.113108
345345 0 0
346346 15.3448 0.824942
347347 −0.911854 −0.0489509 −0.0244754 0.999700i 0.507792π-0.507792\pi
−0.0244754 + 0.999700i 0.507792π0.507792\pi
348348 0 0
349349 −17.7211 −0.948588 −0.474294 0.880366i 0.657297π-0.657297\pi
−0.474294 + 0.880366i 0.657297π0.657297\pi
350350 −23.3580 −1.24854
351351 0 0
352352 −0.137063 −0.00730550
353353 26.4349 1.40699 0.703493 0.710702i 0.251622π-0.251622\pi
0.703493 + 0.710702i 0.251622π0.251622\pi
354354 0 0
355355 0.309043 0.0164023
356356 −17.0858 −0.905543
357357 0 0
358358 −0.523499 −0.0276678
359359 −7.76941 −0.410054 −0.205027 0.978756i 0.565728π-0.565728\pi
−0.205027 + 0.978756i 0.565728π0.565728\pi
360360 0 0
361361 5.87933 0.309438
362362 8.89008 0.467252
363363 0 0
364364 0 0
365365 −7.33811 −0.384094
366366 0 0
367367 −13.3274 −0.695682 −0.347841 0.937553i 0.613085π-0.613085\pi
−0.347841 + 0.937553i 0.613085π0.613085\pi
368368 6.09783 0.317872
369369 0 0
370370 36.9638 1.92165
371371 −8.58211 −0.445561
372372 0 0
373373 6.70304 0.347070 0.173535 0.984828i 0.444481π-0.444481\pi
0.173535 + 0.984828i 0.444481π0.444481\pi
374374 −0.768086 −0.0397168
375375 0 0
376376 −4.98792 −0.257232
377377 0 0
378378 0 0
379379 2.41550 0.124076 0.0620380 0.998074i 0.480240π-0.480240\pi
0.0620380 + 0.998074i 0.480240π0.480240\pi
380380 −15.7560 −0.808266
381381 0 0
382382 7.03146 0.359761
383383 −10.0978 −0.515975 −0.257988 0.966148i 0.583059π-0.583059\pi
−0.257988 + 0.966148i 0.583059π0.583059\pi
384384 0 0
385385 2.03146 0.103533
386386 −17.7560 −0.903757
387387 0 0
388388 2.12737 0.108001
389389 −25.1336 −1.27432 −0.637162 0.770730i 0.719892π-0.719892\pi
−0.637162 + 0.770730i 0.719892π0.719892\pi
390390 0 0
391391 34.1715 1.72813
392392 15.0151 0.758375
393393 0 0
394394 −18.6571 −0.939931
395395 45.8528 2.30710
396396 0 0
397397 20.8358 1.04572 0.522859 0.852419i 0.324865π-0.324865\pi
0.522859 + 0.852419i 0.324865π0.324865\pi
398398 7.66248 0.384085
399399 0 0
400400 4.97823 0.248911
401401 5.95646 0.297451 0.148726 0.988878i 0.452483π-0.452483\pi
0.148726 + 0.988878i 0.452483π0.452483\pi
402402 0 0
403403 0 0
404404 9.18598 0.457020
405405 0 0
406406 −3.99223 −0.198131
407407 −1.60388 −0.0795012
408408 0 0
409409 −1.80194 −0.0891001 −0.0445500 0.999007i 0.514185π-0.514185\pi
−0.0445500 + 0.999007i 0.514185π0.514185\pi
410410 13.5013 0.666779
411411 0 0
412412 0.225209 0.0110953
413413 −27.6819 −1.36214
414414 0 0
415415 31.1342 1.52832
416416 0 0
417417 0 0
418418 0.683661 0.0334389
419419 28.4499 1.38987 0.694935 0.719072i 0.255433π-0.255433\pi
0.694935 + 0.719072i 0.255433π0.255433\pi
420420 0 0
421421 13.9323 0.679019 0.339509 0.940603i 0.389739π-0.389739\pi
0.339509 + 0.940603i 0.389739π0.389739\pi
422422 11.1642 0.543465
423423 0 0
424424 1.82908 0.0888282
425425 27.8974 1.35322
426426 0 0
427427 −20.6267 −0.998196
428428 −11.2838 −0.545424
429429 0 0
430430 −6.62671 −0.319568
431431 15.9022 0.765980 0.382990 0.923752i 0.374894π-0.374894\pi
0.382990 + 0.923752i 0.374894π0.374894\pi
432432 0 0
433433 4.77718 0.229577 0.114788 0.993390i 0.463381π-0.463381\pi
0.114788 + 0.993390i 0.463381π0.463381\pi
434434 −29.2543 −1.40425
435435 0 0
436436 −0.195669 −0.00937086
437437 −30.4155 −1.45497
438438 0 0
439439 −33.6316 −1.60515 −0.802575 0.596552i 0.796537π-0.796537\pi
−0.802575 + 0.596552i 0.796537π0.796537\pi
440440 −0.432960 −0.0206406
441441 0 0
442442 0 0
443443 35.3749 1.68071 0.840357 0.542033i 0.182345π-0.182345\pi
0.840357 + 0.542033i 0.182345π0.182345\pi
444444 0 0
445445 −53.9711 −2.55847
446446 −24.6353 −1.16652
447447 0 0
448448 −4.69202 −0.221677
449449 −18.0629 −0.852442 −0.426221 0.904619i 0.640155π-0.640155\pi
−0.426221 + 0.904619i 0.640155π0.640155\pi
450450 0 0
451451 −0.585826 −0.0275855
452452 0.439665 0.0206801
453453 0 0
454454 −7.47650 −0.350890
455455 0 0
456456 0 0
457457 15.4668 0.723507 0.361753 0.932274i 0.382178π-0.382178\pi
0.361753 + 0.932274i 0.382178π0.382178\pi
458458 19.2271 0.898425
459459 0 0
460460 19.2620 0.898097
461461 −18.8092 −0.876033 −0.438017 0.898967i 0.644319π-0.644319\pi
−0.438017 + 0.898967i 0.644319π0.644319\pi
462462 0 0
463463 15.8431 0.736291 0.368145 0.929768i 0.379993π-0.379993\pi
0.368145 + 0.929768i 0.379993π0.379993\pi
464464 0.850855 0.0395000
465465 0 0
466466 −3.70171 −0.171478
467467 −22.0006 −1.01807 −0.509033 0.860747i 0.669997π-0.669997\pi
−0.509033 + 0.860747i 0.669997π0.669997\pi
468468 0 0
469469 22.1172 1.02128
470470 −15.7560 −0.726770
471471 0 0
472472 5.89977 0.271559
473473 0.287536 0.0132209
474474 0 0
475475 −24.8310 −1.13932
476476 −26.2935 −1.20516
477477 0 0
478478 8.51334 0.389391
479479 −21.3491 −0.975466 −0.487733 0.872993i 0.662176π-0.662176\pi
−0.487733 + 0.872993i 0.662176π0.662176\pi
480480 0 0
481481 0 0
482482 −17.4330 −0.794050
483483 0 0
484484 −10.9812 −0.499146
485485 6.72002 0.305141
486486 0 0
487487 31.6394 1.43372 0.716859 0.697219i 0.245579π-0.245579\pi
0.716859 + 0.697219i 0.245579π0.245579\pi
488488 4.39612 0.199003
489489 0 0
490490 47.4301 2.14267
491491 1.39911 0.0631409 0.0315704 0.999502i 0.489949π-0.489949\pi
0.0315704 + 0.999502i 0.489949π0.489949\pi
492492 0 0
493493 4.76809 0.214744
494494 0 0
495495 0 0
496496 6.23490 0.279955
497497 −0.459042 −0.0205909
498498 0 0
499499 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
500500 −0.0687686 −0.00307543
501501 0 0
502502 3.48427 0.155511
503503 18.3827 0.819645 0.409822 0.912165i 0.365591π-0.365591\pi
0.409822 + 0.912165i 0.365591π0.365591\pi
504504 0 0
505505 29.0170 1.29124
506506 −0.835790 −0.0371554
507507 0 0
508508 −7.87263 −0.349291
509509 0.132751 0.00588411 0.00294205 0.999996i 0.499064π-0.499064\pi
0.00294205 + 0.999996i 0.499064π0.499064\pi
510510 0 0
511511 10.8998 0.482178
512512 1.00000 0.0441942
513513 0 0
514514 13.6039 0.600041
515515 0.711399 0.0313480
516516 0 0
517517 0.683661 0.0300674
518518 −54.9047 −2.41237
519519 0 0
520520 0 0
521521 −37.0508 −1.62323 −0.811613 0.584195i 0.801410π-0.801410\pi
−0.811613 + 0.584195i 0.801410π0.801410\pi
522522 0 0
523523 −3.15346 −0.137891 −0.0689455 0.997620i 0.521963π-0.521963\pi
−0.0689455 + 0.997620i 0.521963π0.521963\pi
524524 0.621334 0.0271431
525525 0 0
526526 −11.4577 −0.499580
527527 34.9396 1.52199
528528 0 0
529529 14.1836 0.616678
530530 5.77777 0.250970
531531 0 0
532532 23.4034 1.01467
533533 0 0
534534 0 0
535535 −35.6437 −1.54101
536536 −4.71379 −0.203605
537537 0 0
538538 −22.3666 −0.964292
539539 −2.05802 −0.0886450
540540 0 0
541541 4.07846 0.175347 0.0876733 0.996149i 0.472057π-0.472057\pi
0.0876733 + 0.996149i 0.472057π0.472057\pi
542542 3.87263 0.166344
543543 0 0
544544 5.60388 0.240264
545545 −0.618087 −0.0264759
546546 0 0
547547 −23.0508 −0.985583 −0.492791 0.870148i 0.664023π-0.664023\pi
−0.492791 + 0.870148i 0.664023π0.664023\pi
548548 −4.00000 −0.170872
549549 0 0
550550 −0.682333 −0.0290948
551551 −4.24400 −0.180800
552552 0 0
553553 −68.1081 −2.89625
554554 28.7090 1.21973
555555 0 0
556556 −13.6582 −0.579235
557557 −20.4155 −0.865033 −0.432516 0.901626i 0.642374π-0.642374\pi
−0.432516 + 0.901626i 0.642374π0.642374\pi
558558 0 0
559559 0 0
560560 −14.8213 −0.626315
561561 0 0
562562 29.0858 1.22691
563563 −21.5609 −0.908685 −0.454342 0.890827i 0.650126π-0.650126\pi
−0.454342 + 0.890827i 0.650126π0.650126\pi
564564 0 0
565565 1.38883 0.0584285
566566 13.7560 0.578208
567567 0 0
568568 0.0978347 0.00410505
569569 −8.98792 −0.376793 −0.188397 0.982093i 0.560329π-0.560329\pi
−0.188397 + 0.982093i 0.560329π0.560329\pi
570570 0 0
571571 13.5603 0.567482 0.283741 0.958901i 0.408424π-0.408424\pi
0.283741 + 0.958901i 0.408424π0.408424\pi
572572 0 0
573573 0 0
574574 −20.0543 −0.837050
575575 30.3564 1.26595
576576 0 0
577577 16.2825 0.677849 0.338924 0.940814i 0.389937π-0.389937\pi
0.338924 + 0.940814i 0.389937π0.389937\pi
578578 14.4034 0.599103
579579 0 0
580580 2.68771 0.111601
581581 −46.2457 −1.91859
582582 0 0
583583 −0.250700 −0.0103830
584584 −2.32304 −0.0961282
585585 0 0
586586 −27.7362 −1.14577
587587 −47.5706 −1.96345 −0.981725 0.190307i 0.939052π-0.939052\pi
−0.981725 + 0.190307i 0.939052π0.939052\pi
588588 0 0
589589 −31.0992 −1.28142
590590 18.6364 0.767248
591591 0 0
592592 11.7017 0.480937
593593 −31.0267 −1.27411 −0.637056 0.770817i 0.719848π-0.719848\pi
−0.637056 + 0.770817i 0.719848π0.719848\pi
594594 0 0
595595 −83.0568 −3.40500
596596 −16.0586 −0.657786
597597 0 0
598598 0 0
599599 −22.3263 −0.912228 −0.456114 0.889921i 0.650759π-0.650759\pi
−0.456114 + 0.889921i 0.650759π0.650759\pi
600600 0 0
601601 −8.18060 −0.333694 −0.166847 0.985983i 0.553359π-0.553359\pi
−0.166847 + 0.985983i 0.553359π0.553359\pi
602602 9.84309 0.401174
603603 0 0
604604 −21.8823 −0.890379
605605 −34.6878 −1.41026
606606 0 0
607607 3.30798 0.134267 0.0671334 0.997744i 0.478615π-0.478615\pi
0.0671334 + 0.997744i 0.478615π0.478615\pi
608608 −4.98792 −0.202287
609609 0 0
610610 13.8866 0.562253
611611 0 0
612612 0 0
613613 −10.8853 −0.439653 −0.219827 0.975539i 0.570549π-0.570549\pi
−0.219827 + 0.975539i 0.570549π0.570549\pi
614614 −12.4590 −0.502806
615615 0 0
616616 0.643104 0.0259114
617617 34.5676 1.39164 0.695820 0.718216i 0.255041π-0.255041\pi
0.695820 + 0.718216i 0.255041π0.255041\pi
618618 0 0
619619 2.86592 0.115191 0.0575955 0.998340i 0.481657π-0.481657\pi
0.0575955 + 0.998340i 0.481657π0.481657\pi
620620 19.6950 0.790970
621621 0 0
622622 6.09783 0.244501
623623 80.1667 3.21181
624624 0 0
625625 −25.1084 −1.00434
626626 −12.7385 −0.509135
627627 0 0
628628 −7.90217 −0.315331
629629 65.5749 2.61464
630630 0 0
631631 −42.6631 −1.69839 −0.849195 0.528079i 0.822912π-0.822912\pi
−0.849195 + 0.528079i 0.822912π0.822912\pi
632632 14.5157 0.577405
633633 0 0
634634 −14.8140 −0.588340
635635 −24.8683 −0.986869
636636 0 0
637637 0 0
638638 −0.116621 −0.00461707
639639 0 0
640640 3.15883 0.124864
641641 −41.3927 −1.63491 −0.817456 0.575991i 0.804616π-0.804616\pi
−0.817456 + 0.575991i 0.804616π0.804616\pi
642642 0 0
643643 13.7125 0.540767 0.270383 0.962753i 0.412850π-0.412850\pi
0.270383 + 0.962753i 0.412850π0.412850\pi
644644 −28.6112 −1.12744
645645 0 0
646646 −27.9517 −1.09974
647647 −18.0086 −0.707992 −0.353996 0.935247i 0.615177π-0.615177\pi
−0.353996 + 0.935247i 0.615177π0.615177\pi
648648 0 0
649649 −0.808643 −0.0317420
650650 0 0
651651 0 0
652652 8.01938 0.314063
653653 −46.5652 −1.82224 −0.911119 0.412143i 0.864780π-0.864780\pi
−0.911119 + 0.412143i 0.864780π0.864780\pi
654654 0 0
655655 1.96269 0.0766887
656656 4.27413 0.166877
657657 0 0
658658 23.4034 0.912360
659659 −13.8562 −0.539762 −0.269881 0.962894i 0.586984π-0.586984\pi
−0.269881 + 0.962894i 0.586984π0.586984\pi
660660 0 0
661661 −43.1051 −1.67660 −0.838298 0.545213i 0.816449π-0.816449\pi
−0.838298 + 0.545213i 0.816449π0.816449\pi
662662 7.70171 0.299335
663663 0 0
664664 9.85623 0.382496
665665 73.9275 2.86679
666666 0 0
667667 5.18837 0.200895
668668 17.0858 0.661068
669669 0 0
670670 −14.8901 −0.575254
671671 −0.602548 −0.0232611
672672 0 0
673673 30.7415 1.18500 0.592499 0.805571i 0.298141π-0.298141\pi
0.592499 + 0.805571i 0.298141π0.298141\pi
674674 26.5961 1.02444
675675 0 0
676676 0 0
677677 −16.5894 −0.637582 −0.318791 0.947825i 0.603277π-0.603277\pi
−0.318791 + 0.947825i 0.603277π0.603277\pi
678678 0 0
679679 −9.98169 −0.383062
680680 17.7017 0.678830
681681 0 0
682682 −0.854576 −0.0327234
683683 34.9885 1.33880 0.669399 0.742903i 0.266552π-0.266552\pi
0.669399 + 0.742903i 0.266552π0.266552\pi
684684 0 0
685685 −12.6353 −0.482771
686686 −37.6069 −1.43584
687687 0 0
688688 −2.09783 −0.0799792
689689 0 0
690690 0 0
691691 14.0871 0.535898 0.267949 0.963433i 0.413654π-0.413654\pi
0.267949 + 0.963433i 0.413654π0.413654\pi
692692 15.3448 0.583322
693693 0 0
694694 −0.911854 −0.0346135
695695 −43.1439 −1.63654
696696 0 0
697697 23.9517 0.907234
698698 −17.7211 −0.670753
699699 0 0
700700 −23.3580 −0.882848
701701 −48.6112 −1.83602 −0.918009 0.396559i 0.870204π-0.870204\pi
−0.918009 + 0.396559i 0.870204π0.870204\pi
702702 0 0
703703 −58.3672 −2.20136
704704 −0.137063 −0.00516577
705705 0 0
706706 26.4349 0.994890
707707 −43.1008 −1.62097
708708 0 0
709709 17.2862 0.649197 0.324599 0.945852i 0.394771π-0.394771\pi
0.324599 + 0.945852i 0.394771π0.394771\pi
710710 0.309043 0.0115982
711711 0 0
712712 −17.0858 −0.640316
713713 38.0194 1.42384
714714 0 0
715715 0 0
716716 −0.523499 −0.0195641
717717 0 0
718718 −7.76941 −0.289952
719719 −29.1207 −1.08602 −0.543009 0.839727i 0.682715π-0.682715\pi
−0.543009 + 0.839727i 0.682715π0.682715\pi
720720 0 0
721721 −1.05669 −0.0393531
722722 5.87933 0.218806
723723 0 0
724724 8.89008 0.330397
725725 4.23575 0.157312
726726 0 0
727727 45.5666 1.68997 0.844985 0.534790i 0.179609π-0.179609\pi
0.844985 + 0.534790i 0.179609π0.179609\pi
728728 0 0
729729 0 0
730730 −7.33811 −0.271596
731731 −11.7560 −0.434812
732732 0 0
733733 −21.7995 −0.805185 −0.402592 0.915379i 0.631891π-0.631891\pi
−0.402592 + 0.915379i 0.631891π0.631891\pi
734734 −13.3274 −0.491922
735735 0 0
736736 6.09783 0.224769
737737 0.646088 0.0237990
738738 0 0
739739 −41.5663 −1.52904 −0.764521 0.644599i 0.777024π-0.777024\pi
−0.764521 + 0.644599i 0.777024π0.777024\pi
740740 36.9638 1.35881
741741 0 0
742742 −8.58211 −0.315059
743743 −28.8224 −1.05739 −0.528695 0.848812i 0.677319π-0.677319\pi
−0.528695 + 0.848812i 0.677319π0.677319\pi
744744 0 0
745745 −50.7265 −1.85847
746746 6.70304 0.245416
747747 0 0
748748 −0.768086 −0.0280840
749749 52.9439 1.93453
750750 0 0
751751 16.6203 0.606482 0.303241 0.952914i 0.401931π-0.401931\pi
0.303241 + 0.952914i 0.401931π0.401931\pi
752752 −4.98792 −0.181891
753753 0 0
754754 0 0
755755 −69.1226 −2.51563
756756 0 0
757757 −40.3913 −1.46805 −0.734024 0.679123i 0.762360π-0.762360\pi
−0.734024 + 0.679123i 0.762360π0.762360\pi
758758 2.41550 0.0877350
759759 0 0
760760 −15.7560 −0.571530
761761 3.29483 0.119438 0.0597188 0.998215i 0.480980π-0.480980\pi
0.0597188 + 0.998215i 0.480980π0.480980\pi
762762 0 0
763763 0.918085 0.0332369
764764 7.03146 0.254389
765765 0 0
766766 −10.0978 −0.364850
767767 0 0
768768 0 0
769769 −2.35258 −0.0848363 −0.0424182 0.999100i 0.513506π-0.513506\pi
−0.0424182 + 0.999100i 0.513506π0.513506\pi
770770 2.03146 0.0732087
771771 0 0
772772 −17.7560 −0.639053
773773 20.3937 0.733512 0.366756 0.930317i 0.380468π-0.380468\pi
0.366756 + 0.930317i 0.380468π0.380468\pi
774774 0 0
775775 31.0388 1.11494
776776 2.12737 0.0763683
777777 0 0
778778 −25.1336 −0.901083
779779 −21.3190 −0.763832
780780 0 0
781781 −0.0134095 −0.000479831 0
782782 34.1715 1.22197
783783 0 0
784784 15.0151 0.536252
785785 −24.9616 −0.890919
786786 0 0
787787 19.6775 0.701429 0.350714 0.936482i 0.385939π-0.385939\pi
0.350714 + 0.936482i 0.385939π0.385939\pi
788788 −18.6571 −0.664632
789789 0 0
790790 45.8528 1.63137
791791 −2.06292 −0.0733489
792792 0 0
793793 0 0
794794 20.8358 0.739435
795795 0 0
796796 7.66248 0.271589
797797 45.8689 1.62476 0.812380 0.583128i 0.198172π-0.198172\pi
0.812380 + 0.583128i 0.198172π0.198172\pi
798798 0 0
799799 −27.9517 −0.988859
800800 4.97823 0.176007
801801 0 0
802802 5.95646 0.210330
803803 0.318404 0.0112362
804804 0 0
805805 −90.3779 −3.18540
806806 0 0
807807 0 0
808808 9.18598 0.323162
809809 −38.1414 −1.34098 −0.670490 0.741919i 0.733916π-0.733916\pi
−0.670490 + 0.741919i 0.733916π0.733916\pi
810810 0 0
811811 46.6983 1.63980 0.819899 0.572509i 0.194030π-0.194030\pi
0.819899 + 0.572509i 0.194030π0.194030\pi
812812 −3.99223 −0.140100
813813 0 0
814814 −1.60388 −0.0562158
815815 25.3319 0.887337
816816 0 0
817817 10.4638 0.366083
818818 −1.80194 −0.0630033
819819 0 0
820820 13.5013 0.471484
821821 −32.6950 −1.14106 −0.570532 0.821276i 0.693263π-0.693263\pi
−0.570532 + 0.821276i 0.693263π0.693263\pi
822822 0 0
823823 −21.6799 −0.755715 −0.377858 0.925864i 0.623339π-0.623339\pi
−0.377858 + 0.925864i 0.623339π0.623339\pi
824824 0.225209 0.00784554
825825 0 0
826826 −27.6819 −0.963175
827827 13.9172 0.483950 0.241975 0.970283i 0.422205π-0.422205\pi
0.241975 + 0.970283i 0.422205π0.422205\pi
828828 0 0
829829 −16.4047 −0.569760 −0.284880 0.958563i 0.591954π-0.591954\pi
−0.284880 + 0.958563i 0.591954π0.591954\pi
830830 31.1342 1.08068
831831 0 0
832832 0 0
833833 84.1426 2.91537
834834 0 0
835835 53.9711 1.86775
836836 0.683661 0.0236449
837837 0 0
838838 28.4499 0.982787
839839 −11.6146 −0.400982 −0.200491 0.979696i 0.564254π-0.564254\pi
−0.200491 + 0.979696i 0.564254π0.564254\pi
840840 0 0
841841 −28.2760 −0.975036
842842 13.9323 0.480139
843843 0 0
844844 11.1642 0.384288
845845 0 0
846846 0 0
847847 51.5241 1.77039
848848 1.82908 0.0628110
849849 0 0
850850 27.8974 0.956872
851851 71.3551 2.44602
852852 0 0
853853 26.2983 0.900436 0.450218 0.892919i 0.351346π-0.351346\pi
0.450218 + 0.892919i 0.351346π0.351346\pi
854854 −20.6267 −0.705832
855855 0 0
856856 −11.2838 −0.385673
857857 48.6305 1.66119 0.830594 0.556879i 0.188001π-0.188001\pi
0.830594 + 0.556879i 0.188001π0.188001\pi
858858 0 0
859859 33.6185 1.14705 0.573524 0.819189i 0.305576π-0.305576\pi
0.573524 + 0.819189i 0.305576π0.305576\pi
860860 −6.62671 −0.225969
861861 0 0
862862 15.9022 0.541630
863863 5.78879 0.197053 0.0985264 0.995134i 0.468587π-0.468587\pi
0.0985264 + 0.995134i 0.468587π0.468587\pi
864864 0 0
865865 48.4717 1.64809
866866 4.77718 0.162335
867867 0 0
868868 −29.2543 −0.992955
869869 −1.98957 −0.0674917
870870 0 0
871871 0 0
872872 −0.195669 −0.00662620
873873 0 0
874874 −30.4155 −1.02882
875875 0.322664 0.0109080
876876 0 0
877877 9.50604 0.320996 0.160498 0.987036i 0.448690π-0.448690\pi
0.160498 + 0.987036i 0.448690π0.448690\pi
878878 −33.6316 −1.13501
879879 0 0
880880 −0.432960 −0.0145951
881881 46.7875 1.57631 0.788155 0.615477i 0.211037π-0.211037\pi
0.788155 + 0.615477i 0.211037π0.211037\pi
882882 0 0
883883 3.03146 0.102017 0.0510084 0.998698i 0.483756π-0.483756\pi
0.0510084 + 0.998698i 0.483756π0.483756\pi
884884 0 0
885885 0 0
886886 35.3749 1.18844
887887 −37.0180 −1.24294 −0.621472 0.783436i 0.713465π-0.713465\pi
−0.621472 + 0.783436i 0.713465π0.713465\pi
888888 0 0
889889 36.9385 1.23888
890890 −53.9711 −1.80911
891891 0 0
892892 −24.6353 −0.824852
893893 24.8793 0.832555
894894 0 0
895895 −1.65365 −0.0552753
896896 −4.69202 −0.156749
897897 0 0
898898 −18.0629 −0.602767
899899 5.30499 0.176931
900900 0 0
901901 10.2500 0.341476
902902 −0.585826 −0.0195059
903903 0 0
904904 0.439665 0.0146230
905905 28.0823 0.933487
906906 0 0
907907 19.0965 0.634089 0.317045 0.948411i 0.397310π-0.397310\pi
0.317045 + 0.948411i 0.397310π0.397310\pi
908908 −7.47650 −0.248116
909909 0 0
910910 0 0
911911 31.3142 1.03749 0.518743 0.854930i 0.326400π-0.326400\pi
0.518743 + 0.854930i 0.326400π0.326400\pi
912912 0 0
913913 −1.35093 −0.0447092
914914 15.4668 0.511597
915915 0 0
916916 19.2271 0.635282
917917 −2.91531 −0.0962721
918918 0 0
919919 30.3967 1.00270 0.501348 0.865246i 0.332838π-0.332838\pi
0.501348 + 0.865246i 0.332838π0.332838\pi
920920 19.2620 0.635051
921921 0 0
922922 −18.8092 −0.619449
923923 0 0
924924 0 0
925925 58.2538 1.91537
926926 15.8431 0.520636
927927 0 0
928928 0.850855 0.0279307
929929 40.5810 1.33142 0.665710 0.746210i 0.268129π-0.268129\pi
0.665710 + 0.746210i 0.268129π0.268129\pi
930930 0 0
931931 −74.8939 −2.45455
932932 −3.70171 −0.121254
933933 0 0
934934 −22.0006 −0.719881
935935 −2.42626 −0.0793470
936936 0 0
937937 −18.7047 −0.611056 −0.305528 0.952183i 0.598833π-0.598833\pi
−0.305528 + 0.952183i 0.598833π0.598833\pi
938938 22.1172 0.722153
939939 0 0
940940 −15.7560 −0.513904
941941 4.04998 0.132026 0.0660128 0.997819i 0.478972π-0.478972\pi
0.0660128 + 0.997819i 0.478972π0.478972\pi
942942 0 0
943943 26.0629 0.848725
944944 5.89977 0.192021
945945 0 0
946946 0.287536 0.00934861
947947 −11.5356 −0.374856 −0.187428 0.982278i 0.560015π-0.560015\pi
−0.187428 + 0.982278i 0.560015π0.560015\pi
948948 0 0
949949 0 0
950950 −24.8310 −0.805624
951951 0 0
952952 −26.2935 −0.852177
953953 9.57109 0.310038 0.155019 0.987911i 0.450456π-0.450456\pi
0.155019 + 0.987911i 0.450456π0.450456\pi
954954 0 0
955955 22.2112 0.718738
956956 8.51334 0.275341
957957 0 0
958958 −21.3491 −0.689759
959959 18.7681 0.606053
960960 0 0
961961 7.87395 0.253998
962962 0 0
963963 0 0
964964 −17.4330 −0.561478
965965 −56.0883 −1.80555
966966 0 0
967967 −61.2073 −1.96829 −0.984147 0.177357i 0.943245π-0.943245\pi
−0.984147 + 0.177357i 0.943245π0.943245\pi
968968 −10.9812 −0.352950
969969 0 0
970970 6.72002 0.215767
971971 28.8595 0.926145 0.463072 0.886320i 0.346747π-0.346747\pi
0.463072 + 0.886320i 0.346747π0.346747\pi
972972 0 0
973973 64.0844 2.05445
974974 31.6394 1.01379
975975 0 0
976976 4.39612 0.140717
977977 46.6305 1.49184 0.745922 0.666034i 0.232009π-0.232009\pi
0.745922 + 0.666034i 0.232009π0.232009\pi
978978 0 0
979979 2.34183 0.0748452
980980 47.4301 1.51510
981981 0 0
982982 1.39911 0.0446473
983983 55.6883 1.77618 0.888090 0.459669i 0.152032π-0.152032\pi
0.888090 + 0.459669i 0.152032π0.152032\pi
984984 0 0
985985 −58.9347 −1.87782
986986 4.76809 0.151847
987987 0 0
988988 0 0
989989 −12.7922 −0.406770
990990 0 0
991991 −9.32172 −0.296114 −0.148057 0.988979i 0.547302π-0.547302\pi
−0.148057 + 0.988979i 0.547302π0.547302\pi
992992 6.23490 0.197958
993993 0 0
994994 −0.459042 −0.0145599
995995 24.2045 0.767334
996996 0 0
997997 46.0253 1.45764 0.728819 0.684707i 0.240070π-0.240070\pi
0.728819 + 0.684707i 0.240070π0.240070\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3042.2.a.bh.1.3 3
3.2 odd 2 1014.2.a.l.1.1 3
12.11 even 2 8112.2.a.cj.1.1 3
13.5 odd 4 3042.2.b.o.1351.1 6
13.8 odd 4 3042.2.b.o.1351.6 6
13.12 even 2 3042.2.a.ba.1.1 3
39.2 even 12 1014.2.i.h.823.3 12
39.5 even 4 1014.2.b.f.337.6 6
39.8 even 4 1014.2.b.f.337.1 6
39.11 even 12 1014.2.i.h.823.4 12
39.17 odd 6 1014.2.e.l.991.3 6
39.20 even 12 1014.2.i.h.361.1 12
39.23 odd 6 1014.2.e.l.529.3 6
39.29 odd 6 1014.2.e.n.529.1 6
39.32 even 12 1014.2.i.h.361.6 12
39.35 odd 6 1014.2.e.n.991.1 6
39.38 odd 2 1014.2.a.n.1.3 yes 3
156.155 even 2 8112.2.a.cm.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1014.2.a.l.1.1 3 3.2 odd 2
1014.2.a.n.1.3 yes 3 39.38 odd 2
1014.2.b.f.337.1 6 39.8 even 4
1014.2.b.f.337.6 6 39.5 even 4
1014.2.e.l.529.3 6 39.23 odd 6
1014.2.e.l.991.3 6 39.17 odd 6
1014.2.e.n.529.1 6 39.29 odd 6
1014.2.e.n.991.1 6 39.35 odd 6
1014.2.i.h.361.1 12 39.20 even 12
1014.2.i.h.361.6 12 39.32 even 12
1014.2.i.h.823.3 12 39.2 even 12
1014.2.i.h.823.4 12 39.11 even 12
3042.2.a.ba.1.1 3 13.12 even 2
3042.2.a.bh.1.3 3 1.1 even 1 trivial
3042.2.b.o.1351.1 6 13.5 odd 4
3042.2.b.o.1351.6 6 13.8 odd 4
8112.2.a.cj.1.1 3 12.11 even 2
8112.2.a.cm.1.3 3 156.155 even 2