# Properties

 Label 1014.2.a.b Level $1014$ Weight $2$ Character orbit 1014.a Self dual yes Analytic conductor $8.097$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1014 = 2 \cdot 3 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1014.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$8.09683076496$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 78) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} - 2 q^{7} - q^{8} + q^{9}+O(q^{10})$$ q - q^2 + q^3 + q^4 - 2 * q^5 - q^6 - 2 * q^7 - q^8 + q^9 $$q - q^{2} + q^{3} + q^{4} - 2 q^{5} - q^{6} - 2 q^{7} - q^{8} + q^{9} + 2 q^{10} + q^{12} + 2 q^{14} - 2 q^{15} + q^{16} + 2 q^{17} - q^{18} + 6 q^{19} - 2 q^{20} - 2 q^{21} - 4 q^{23} - q^{24} - q^{25} + q^{27} - 2 q^{28} - 10 q^{29} + 2 q^{30} - 10 q^{31} - q^{32} - 2 q^{34} + 4 q^{35} + q^{36} + 8 q^{37} - 6 q^{38} + 2 q^{40} - 10 q^{41} + 2 q^{42} - 4 q^{43} - 2 q^{45} + 4 q^{46} - 12 q^{47} + q^{48} - 3 q^{49} + q^{50} + 2 q^{51} - 6 q^{53} - q^{54} + 2 q^{56} + 6 q^{57} + 10 q^{58} + 4 q^{59} - 2 q^{60} + 2 q^{61} + 10 q^{62} - 2 q^{63} + q^{64} + 2 q^{67} + 2 q^{68} - 4 q^{69} - 4 q^{70} - q^{72} - 4 q^{73} - 8 q^{74} - q^{75} + 6 q^{76} - 2 q^{80} + q^{81} + 10 q^{82} + 4 q^{83} - 2 q^{84} - 4 q^{85} + 4 q^{86} - 10 q^{87} - 6 q^{89} + 2 q^{90} - 4 q^{92} - 10 q^{93} + 12 q^{94} - 12 q^{95} - q^{96} + 12 q^{97} + 3 q^{98}+O(q^{100})$$ q - q^2 + q^3 + q^4 - 2 * q^5 - q^6 - 2 * q^7 - q^8 + q^9 + 2 * q^10 + q^12 + 2 * q^14 - 2 * q^15 + q^16 + 2 * q^17 - q^18 + 6 * q^19 - 2 * q^20 - 2 * q^21 - 4 * q^23 - q^24 - q^25 + q^27 - 2 * q^28 - 10 * q^29 + 2 * q^30 - 10 * q^31 - q^32 - 2 * q^34 + 4 * q^35 + q^36 + 8 * q^37 - 6 * q^38 + 2 * q^40 - 10 * q^41 + 2 * q^42 - 4 * q^43 - 2 * q^45 + 4 * q^46 - 12 * q^47 + q^48 - 3 * q^49 + q^50 + 2 * q^51 - 6 * q^53 - q^54 + 2 * q^56 + 6 * q^57 + 10 * q^58 + 4 * q^59 - 2 * q^60 + 2 * q^61 + 10 * q^62 - 2 * q^63 + q^64 + 2 * q^67 + 2 * q^68 - 4 * q^69 - 4 * q^70 - q^72 - 4 * q^73 - 8 * q^74 - q^75 + 6 * q^76 - 2 * q^80 + q^81 + 10 * q^82 + 4 * q^83 - 2 * q^84 - 4 * q^85 + 4 * q^86 - 10 * q^87 - 6 * q^89 + 2 * q^90 - 4 * q^92 - 10 * q^93 + 12 * q^94 - 12 * q^95 - q^96 + 12 * q^97 + 3 * q^98

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
−1.00000 1.00000 1.00000 −2.00000 −1.00000 −2.00000 −1.00000 1.00000 2.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$1$$
$$3$$ $$-1$$
$$13$$ $$-1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1014.2.a.b 1
3.b odd 2 1 3042.2.a.n 1
4.b odd 2 1 8112.2.a.g 1
13.b even 2 1 1014.2.a.g 1
13.c even 3 2 1014.2.e.e 2
13.d odd 4 2 78.2.b.a 2
13.e even 6 2 1014.2.e.b 2
13.f odd 12 4 1014.2.i.c 4
39.d odd 2 1 3042.2.a.c 1
39.f even 4 2 234.2.b.a 2
52.b odd 2 1 8112.2.a.j 1
52.f even 4 2 624.2.c.a 2
65.f even 4 2 1950.2.f.g 2
65.g odd 4 2 1950.2.b.c 2
65.k even 4 2 1950.2.f.d 2
91.i even 4 2 3822.2.c.d 2
104.j odd 4 2 2496.2.c.f 2
104.m even 4 2 2496.2.c.m 2
156.l odd 4 2 1872.2.c.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.2.b.a 2 13.d odd 4 2
234.2.b.a 2 39.f even 4 2
624.2.c.a 2 52.f even 4 2
1014.2.a.b 1 1.a even 1 1 trivial
1014.2.a.g 1 13.b even 2 1
1014.2.e.b 2 13.e even 6 2
1014.2.e.e 2 13.c even 3 2
1014.2.i.c 4 13.f odd 12 4
1872.2.c.b 2 156.l odd 4 2
1950.2.b.c 2 65.g odd 4 2
1950.2.f.d 2 65.k even 4 2
1950.2.f.g 2 65.f even 4 2
2496.2.c.f 2 104.j odd 4 2
2496.2.c.m 2 104.m even 4 2
3042.2.a.c 1 39.d odd 2 1
3042.2.a.n 1 3.b odd 2 1
3822.2.c.d 2 91.i even 4 2
8112.2.a.g 1 4.b odd 2 1
8112.2.a.j 1 52.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1014))$$:

 $$T_{5} + 2$$ T5 + 2 $$T_{7} + 2$$ T7 + 2

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T + 1$$
$3$ $$T - 1$$
$5$ $$T + 2$$
$7$ $$T + 2$$
$11$ $$T$$
$13$ $$T$$
$17$ $$T - 2$$
$19$ $$T - 6$$
$23$ $$T + 4$$
$29$ $$T + 10$$
$31$ $$T + 10$$
$37$ $$T - 8$$
$41$ $$T + 10$$
$43$ $$T + 4$$
$47$ $$T + 12$$
$53$ $$T + 6$$
$59$ $$T - 4$$
$61$ $$T - 2$$
$67$ $$T - 2$$
$71$ $$T$$
$73$ $$T + 4$$
$79$ $$T$$
$83$ $$T - 4$$
$89$ $$T + 6$$
$97$ $$T - 12$$