Defining parameters
| Level: | \( N \) | \(=\) | \( 1014 = 2 \cdot 3 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1014.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 15 \) | ||
| Sturm bound: | \(364\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1014))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 210 | 27 | 183 |
| Cusp forms | 155 | 27 | 128 |
| Eisenstein series | 55 | 0 | 55 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(2\) | \(3\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | |||||||
| \(+\) | \(+\) | \(+\) | \(+\) | \(21\) | \(1\) | \(20\) | \(15\) | \(1\) | \(14\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(+\) | \(-\) | \(-\) | \(31\) | \(5\) | \(26\) | \(24\) | \(5\) | \(19\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(-\) | \(+\) | \(-\) | \(28\) | \(4\) | \(24\) | \(21\) | \(4\) | \(17\) | \(7\) | \(0\) | \(7\) | |||
| \(+\) | \(-\) | \(-\) | \(+\) | \(25\) | \(3\) | \(22\) | \(18\) | \(3\) | \(15\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(+\) | \(+\) | \(-\) | \(28\) | \(5\) | \(23\) | \(21\) | \(5\) | \(16\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(+\) | \(-\) | \(+\) | \(24\) | \(2\) | \(22\) | \(17\) | \(2\) | \(15\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(-\) | \(+\) | \(+\) | \(28\) | \(1\) | \(27\) | \(21\) | \(1\) | \(20\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(-\) | \(-\) | \(-\) | \(25\) | \(6\) | \(19\) | \(18\) | \(6\) | \(12\) | \(7\) | \(0\) | \(7\) | |||
| Plus space | \(+\) | \(98\) | \(7\) | \(91\) | \(71\) | \(7\) | \(64\) | \(27\) | \(0\) | \(27\) | |||||
| Minus space | \(-\) | \(112\) | \(20\) | \(92\) | \(84\) | \(20\) | \(64\) | \(28\) | \(0\) | \(28\) | |||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1014))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1014))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1014)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(338))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(507))\)\(^{\oplus 2}\)