Properties

Label 1014.2.a.b.1.1
Level $1014$
Weight $2$
Character 1014.1
Self dual yes
Analytic conductor $8.097$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1014,2,Mod(1,1014)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1014, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1014.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1014 = 2 \cdot 3 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1014.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.09683076496\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 78)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1014.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -2.00000 q^{5} -1.00000 q^{6} -2.00000 q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.00000 q^{10} +1.00000 q^{12} +2.00000 q^{14} -2.00000 q^{15} +1.00000 q^{16} +2.00000 q^{17} -1.00000 q^{18} +6.00000 q^{19} -2.00000 q^{20} -2.00000 q^{21} -4.00000 q^{23} -1.00000 q^{24} -1.00000 q^{25} +1.00000 q^{27} -2.00000 q^{28} -10.0000 q^{29} +2.00000 q^{30} -10.0000 q^{31} -1.00000 q^{32} -2.00000 q^{34} +4.00000 q^{35} +1.00000 q^{36} +8.00000 q^{37} -6.00000 q^{38} +2.00000 q^{40} -10.0000 q^{41} +2.00000 q^{42} -4.00000 q^{43} -2.00000 q^{45} +4.00000 q^{46} -12.0000 q^{47} +1.00000 q^{48} -3.00000 q^{49} +1.00000 q^{50} +2.00000 q^{51} -6.00000 q^{53} -1.00000 q^{54} +2.00000 q^{56} +6.00000 q^{57} +10.0000 q^{58} +4.00000 q^{59} -2.00000 q^{60} +2.00000 q^{61} +10.0000 q^{62} -2.00000 q^{63} +1.00000 q^{64} +2.00000 q^{67} +2.00000 q^{68} -4.00000 q^{69} -4.00000 q^{70} -1.00000 q^{72} -4.00000 q^{73} -8.00000 q^{74} -1.00000 q^{75} +6.00000 q^{76} -2.00000 q^{80} +1.00000 q^{81} +10.0000 q^{82} +4.00000 q^{83} -2.00000 q^{84} -4.00000 q^{85} +4.00000 q^{86} -10.0000 q^{87} -6.00000 q^{89} +2.00000 q^{90} -4.00000 q^{92} -10.0000 q^{93} +12.0000 q^{94} -12.0000 q^{95} -1.00000 q^{96} +12.0000 q^{97} +3.00000 q^{98} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −2.00000 −0.894427 −0.447214 0.894427i \(-0.647584\pi\)
−0.447214 + 0.894427i \(0.647584\pi\)
\(6\) −1.00000 −0.408248
\(7\) −2.00000 −0.755929 −0.377964 0.925820i \(-0.623376\pi\)
−0.377964 + 0.925820i \(0.623376\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 2.00000 0.632456
\(11\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0
\(14\) 2.00000 0.534522
\(15\) −2.00000 −0.516398
\(16\) 1.00000 0.250000
\(17\) 2.00000 0.485071 0.242536 0.970143i \(-0.422021\pi\)
0.242536 + 0.970143i \(0.422021\pi\)
\(18\) −1.00000 −0.235702
\(19\) 6.00000 1.37649 0.688247 0.725476i \(-0.258380\pi\)
0.688247 + 0.725476i \(0.258380\pi\)
\(20\) −2.00000 −0.447214
\(21\) −2.00000 −0.436436
\(22\) 0 0
\(23\) −4.00000 −0.834058 −0.417029 0.908893i \(-0.636929\pi\)
−0.417029 + 0.908893i \(0.636929\pi\)
\(24\) −1.00000 −0.204124
\(25\) −1.00000 −0.200000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −2.00000 −0.377964
\(29\) −10.0000 −1.85695 −0.928477 0.371391i \(-0.878881\pi\)
−0.928477 + 0.371391i \(0.878881\pi\)
\(30\) 2.00000 0.365148
\(31\) −10.0000 −1.79605 −0.898027 0.439941i \(-0.854999\pi\)
−0.898027 + 0.439941i \(0.854999\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) −2.00000 −0.342997
\(35\) 4.00000 0.676123
\(36\) 1.00000 0.166667
\(37\) 8.00000 1.31519 0.657596 0.753371i \(-0.271573\pi\)
0.657596 + 0.753371i \(0.271573\pi\)
\(38\) −6.00000 −0.973329
\(39\) 0 0
\(40\) 2.00000 0.316228
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 2.00000 0.308607
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −2.00000 −0.298142
\(46\) 4.00000 0.589768
\(47\) −12.0000 −1.75038 −0.875190 0.483779i \(-0.839264\pi\)
−0.875190 + 0.483779i \(0.839264\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.00000 −0.428571
\(50\) 1.00000 0.141421
\(51\) 2.00000 0.280056
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) 6.00000 0.794719
\(58\) 10.0000 1.31306
\(59\) 4.00000 0.520756 0.260378 0.965507i \(-0.416153\pi\)
0.260378 + 0.965507i \(0.416153\pi\)
\(60\) −2.00000 −0.258199
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 10.0000 1.27000
\(63\) −2.00000 −0.251976
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) 0 0
\(67\) 2.00000 0.244339 0.122169 0.992509i \(-0.461015\pi\)
0.122169 + 0.992509i \(0.461015\pi\)
\(68\) 2.00000 0.242536
\(69\) −4.00000 −0.481543
\(70\) −4.00000 −0.478091
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) −1.00000 −0.117851
\(73\) −4.00000 −0.468165 −0.234082 0.972217i \(-0.575209\pi\)
−0.234082 + 0.972217i \(0.575209\pi\)
\(74\) −8.00000 −0.929981
\(75\) −1.00000 −0.115470
\(76\) 6.00000 0.688247
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −2.00000 −0.223607
\(81\) 1.00000 0.111111
\(82\) 10.0000 1.10432
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) −2.00000 −0.218218
\(85\) −4.00000 −0.433861
\(86\) 4.00000 0.431331
\(87\) −10.0000 −1.07211
\(88\) 0 0
\(89\) −6.00000 −0.635999 −0.317999 0.948091i \(-0.603011\pi\)
−0.317999 + 0.948091i \(0.603011\pi\)
\(90\) 2.00000 0.210819
\(91\) 0 0
\(92\) −4.00000 −0.417029
\(93\) −10.0000 −1.03695
\(94\) 12.0000 1.23771
\(95\) −12.0000 −1.23117
\(96\) −1.00000 −0.102062
\(97\) 12.0000 1.21842 0.609208 0.793011i \(-0.291488\pi\)
0.609208 + 0.793011i \(0.291488\pi\)
\(98\) 3.00000 0.303046
\(99\) 0 0
\(100\) −1.00000 −0.100000
\(101\) −2.00000 −0.199007 −0.0995037 0.995037i \(-0.531726\pi\)
−0.0995037 + 0.995037i \(0.531726\pi\)
\(102\) −2.00000 −0.198030
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 4.00000 0.390360
\(106\) 6.00000 0.582772
\(107\) 8.00000 0.773389 0.386695 0.922208i \(-0.373617\pi\)
0.386695 + 0.922208i \(0.373617\pi\)
\(108\) 1.00000 0.0962250
\(109\) −4.00000 −0.383131 −0.191565 0.981480i \(-0.561356\pi\)
−0.191565 + 0.981480i \(0.561356\pi\)
\(110\) 0 0
\(111\) 8.00000 0.759326
\(112\) −2.00000 −0.188982
\(113\) 14.0000 1.31701 0.658505 0.752577i \(-0.271189\pi\)
0.658505 + 0.752577i \(0.271189\pi\)
\(114\) −6.00000 −0.561951
\(115\) 8.00000 0.746004
\(116\) −10.0000 −0.928477
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) −4.00000 −0.366679
\(120\) 2.00000 0.182574
\(121\) −11.0000 −1.00000
\(122\) −2.00000 −0.181071
\(123\) −10.0000 −0.901670
\(124\) −10.0000 −0.898027
\(125\) 12.0000 1.07331
\(126\) 2.00000 0.178174
\(127\) −8.00000 −0.709885 −0.354943 0.934888i \(-0.615500\pi\)
−0.354943 + 0.934888i \(0.615500\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −4.00000 −0.352180
\(130\) 0 0
\(131\) −8.00000 −0.698963 −0.349482 0.936943i \(-0.613642\pi\)
−0.349482 + 0.936943i \(0.613642\pi\)
\(132\) 0 0
\(133\) −12.0000 −1.04053
\(134\) −2.00000 −0.172774
\(135\) −2.00000 −0.172133
\(136\) −2.00000 −0.171499
\(137\) −2.00000 −0.170872 −0.0854358 0.996344i \(-0.527228\pi\)
−0.0854358 + 0.996344i \(0.527228\pi\)
\(138\) 4.00000 0.340503
\(139\) −20.0000 −1.69638 −0.848189 0.529694i \(-0.822307\pi\)
−0.848189 + 0.529694i \(0.822307\pi\)
\(140\) 4.00000 0.338062
\(141\) −12.0000 −1.01058
\(142\) 0 0
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 20.0000 1.66091
\(146\) 4.00000 0.331042
\(147\) −3.00000 −0.247436
\(148\) 8.00000 0.657596
\(149\) −14.0000 −1.14692 −0.573462 0.819232i \(-0.694400\pi\)
−0.573462 + 0.819232i \(0.694400\pi\)
\(150\) 1.00000 0.0816497
\(151\) 10.0000 0.813788 0.406894 0.913475i \(-0.366612\pi\)
0.406894 + 0.913475i \(0.366612\pi\)
\(152\) −6.00000 −0.486664
\(153\) 2.00000 0.161690
\(154\) 0 0
\(155\) 20.0000 1.60644
\(156\) 0 0
\(157\) −2.00000 −0.159617 −0.0798087 0.996810i \(-0.525431\pi\)
−0.0798087 + 0.996810i \(0.525431\pi\)
\(158\) 0 0
\(159\) −6.00000 −0.475831
\(160\) 2.00000 0.158114
\(161\) 8.00000 0.630488
\(162\) −1.00000 −0.0785674
\(163\) −14.0000 −1.09656 −0.548282 0.836293i \(-0.684718\pi\)
−0.548282 + 0.836293i \(0.684718\pi\)
\(164\) −10.0000 −0.780869
\(165\) 0 0
\(166\) −4.00000 −0.310460
\(167\) −12.0000 −0.928588 −0.464294 0.885681i \(-0.653692\pi\)
−0.464294 + 0.885681i \(0.653692\pi\)
\(168\) 2.00000 0.154303
\(169\) 0 0
\(170\) 4.00000 0.306786
\(171\) 6.00000 0.458831
\(172\) −4.00000 −0.304997
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 10.0000 0.758098
\(175\) 2.00000 0.151186
\(176\) 0 0
\(177\) 4.00000 0.300658
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −2.00000 −0.149071
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 2.00000 0.147844
\(184\) 4.00000 0.294884
\(185\) −16.0000 −1.17634
\(186\) 10.0000 0.733236
\(187\) 0 0
\(188\) −12.0000 −0.875190
\(189\) −2.00000 −0.145479
\(190\) 12.0000 0.870572
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 1.00000 0.0721688
\(193\) 16.0000 1.15171 0.575853 0.817554i \(-0.304670\pi\)
0.575853 + 0.817554i \(0.304670\pi\)
\(194\) −12.0000 −0.861550
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 22.0000 1.56744 0.783718 0.621117i \(-0.213321\pi\)
0.783718 + 0.621117i \(0.213321\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 1.00000 0.0707107
\(201\) 2.00000 0.141069
\(202\) 2.00000 0.140720
\(203\) 20.0000 1.40372
\(204\) 2.00000 0.140028
\(205\) 20.0000 1.39686
\(206\) −16.0000 −1.11477
\(207\) −4.00000 −0.278019
\(208\) 0 0
\(209\) 0 0
\(210\) −4.00000 −0.276026
\(211\) 12.0000 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(212\) −6.00000 −0.412082
\(213\) 0 0
\(214\) −8.00000 −0.546869
\(215\) 8.00000 0.545595
\(216\) −1.00000 −0.0680414
\(217\) 20.0000 1.35769
\(218\) 4.00000 0.270914
\(219\) −4.00000 −0.270295
\(220\) 0 0
\(221\) 0 0
\(222\) −8.00000 −0.536925
\(223\) 14.0000 0.937509 0.468755 0.883328i \(-0.344703\pi\)
0.468755 + 0.883328i \(0.344703\pi\)
\(224\) 2.00000 0.133631
\(225\) −1.00000 −0.0666667
\(226\) −14.0000 −0.931266
\(227\) −8.00000 −0.530979 −0.265489 0.964114i \(-0.585534\pi\)
−0.265489 + 0.964114i \(0.585534\pi\)
\(228\) 6.00000 0.397360
\(229\) 4.00000 0.264327 0.132164 0.991228i \(-0.457808\pi\)
0.132164 + 0.991228i \(0.457808\pi\)
\(230\) −8.00000 −0.527504
\(231\) 0 0
\(232\) 10.0000 0.656532
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 24.0000 1.56559
\(236\) 4.00000 0.260378
\(237\) 0 0
\(238\) 4.00000 0.259281
\(239\) 16.0000 1.03495 0.517477 0.855697i \(-0.326871\pi\)
0.517477 + 0.855697i \(0.326871\pi\)
\(240\) −2.00000 −0.129099
\(241\) 20.0000 1.28831 0.644157 0.764894i \(-0.277208\pi\)
0.644157 + 0.764894i \(0.277208\pi\)
\(242\) 11.0000 0.707107
\(243\) 1.00000 0.0641500
\(244\) 2.00000 0.128037
\(245\) 6.00000 0.383326
\(246\) 10.0000 0.637577
\(247\) 0 0
\(248\) 10.0000 0.635001
\(249\) 4.00000 0.253490
\(250\) −12.0000 −0.758947
\(251\) 28.0000 1.76734 0.883672 0.468106i \(-0.155064\pi\)
0.883672 + 0.468106i \(0.155064\pi\)
\(252\) −2.00000 −0.125988
\(253\) 0 0
\(254\) 8.00000 0.501965
\(255\) −4.00000 −0.250490
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) 4.00000 0.249029
\(259\) −16.0000 −0.994192
\(260\) 0 0
\(261\) −10.0000 −0.618984
\(262\) 8.00000 0.494242
\(263\) 24.0000 1.47990 0.739952 0.672660i \(-0.234848\pi\)
0.739952 + 0.672660i \(0.234848\pi\)
\(264\) 0 0
\(265\) 12.0000 0.737154
\(266\) 12.0000 0.735767
\(267\) −6.00000 −0.367194
\(268\) 2.00000 0.122169
\(269\) −10.0000 −0.609711 −0.304855 0.952399i \(-0.598608\pi\)
−0.304855 + 0.952399i \(0.598608\pi\)
\(270\) 2.00000 0.121716
\(271\) −10.0000 −0.607457 −0.303728 0.952759i \(-0.598232\pi\)
−0.303728 + 0.952759i \(0.598232\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 2.00000 0.120824
\(275\) 0 0
\(276\) −4.00000 −0.240772
\(277\) 2.00000 0.120168 0.0600842 0.998193i \(-0.480863\pi\)
0.0600842 + 0.998193i \(0.480863\pi\)
\(278\) 20.0000 1.19952
\(279\) −10.0000 −0.598684
\(280\) −4.00000 −0.239046
\(281\) −10.0000 −0.596550 −0.298275 0.954480i \(-0.596411\pi\)
−0.298275 + 0.954480i \(0.596411\pi\)
\(282\) 12.0000 0.714590
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) 0 0
\(285\) −12.0000 −0.710819
\(286\) 0 0
\(287\) 20.0000 1.18056
\(288\) −1.00000 −0.0589256
\(289\) −13.0000 −0.764706
\(290\) −20.0000 −1.17444
\(291\) 12.0000 0.703452
\(292\) −4.00000 −0.234082
\(293\) −14.0000 −0.817889 −0.408944 0.912559i \(-0.634103\pi\)
−0.408944 + 0.912559i \(0.634103\pi\)
\(294\) 3.00000 0.174964
\(295\) −8.00000 −0.465778
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 14.0000 0.810998
\(299\) 0 0
\(300\) −1.00000 −0.0577350
\(301\) 8.00000 0.461112
\(302\) −10.0000 −0.575435
\(303\) −2.00000 −0.114897
\(304\) 6.00000 0.344124
\(305\) −4.00000 −0.229039
\(306\) −2.00000 −0.114332
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) 0 0
\(309\) 16.0000 0.910208
\(310\) −20.0000 −1.13592
\(311\) 28.0000 1.58773 0.793867 0.608091i \(-0.208065\pi\)
0.793867 + 0.608091i \(0.208065\pi\)
\(312\) 0 0
\(313\) −26.0000 −1.46961 −0.734803 0.678280i \(-0.762726\pi\)
−0.734803 + 0.678280i \(0.762726\pi\)
\(314\) 2.00000 0.112867
\(315\) 4.00000 0.225374
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 6.00000 0.336463
\(319\) 0 0
\(320\) −2.00000 −0.111803
\(321\) 8.00000 0.446516
\(322\) −8.00000 −0.445823
\(323\) 12.0000 0.667698
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) 14.0000 0.775388
\(327\) −4.00000 −0.221201
\(328\) 10.0000 0.552158
\(329\) 24.0000 1.32316
\(330\) 0 0
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 4.00000 0.219529
\(333\) 8.00000 0.438397
\(334\) 12.0000 0.656611
\(335\) −4.00000 −0.218543
\(336\) −2.00000 −0.109109
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 14.0000 0.760376
\(340\) −4.00000 −0.216930
\(341\) 0 0
\(342\) −6.00000 −0.324443
\(343\) 20.0000 1.07990
\(344\) 4.00000 0.215666
\(345\) 8.00000 0.430706
\(346\) −6.00000 −0.322562
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) −10.0000 −0.536056
\(349\) −16.0000 −0.856460 −0.428230 0.903670i \(-0.640863\pi\)
−0.428230 + 0.903670i \(0.640863\pi\)
\(350\) −2.00000 −0.106904
\(351\) 0 0
\(352\) 0 0
\(353\) −26.0000 −1.38384 −0.691920 0.721974i \(-0.743235\pi\)
−0.691920 + 0.721974i \(0.743235\pi\)
\(354\) −4.00000 −0.212598
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) −4.00000 −0.211702
\(358\) 0 0
\(359\) 4.00000 0.211112 0.105556 0.994413i \(-0.466338\pi\)
0.105556 + 0.994413i \(0.466338\pi\)
\(360\) 2.00000 0.105409
\(361\) 17.0000 0.894737
\(362\) 22.0000 1.15629
\(363\) −11.0000 −0.577350
\(364\) 0 0
\(365\) 8.00000 0.418739
\(366\) −2.00000 −0.104542
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) −4.00000 −0.208514
\(369\) −10.0000 −0.520579
\(370\) 16.0000 0.831800
\(371\) 12.0000 0.623009
\(372\) −10.0000 −0.518476
\(373\) −6.00000 −0.310668 −0.155334 0.987862i \(-0.549645\pi\)
−0.155334 + 0.987862i \(0.549645\pi\)
\(374\) 0 0
\(375\) 12.0000 0.619677
\(376\) 12.0000 0.618853
\(377\) 0 0
\(378\) 2.00000 0.102869
\(379\) −34.0000 −1.74646 −0.873231 0.487306i \(-0.837980\pi\)
−0.873231 + 0.487306i \(0.837980\pi\)
\(380\) −12.0000 −0.615587
\(381\) −8.00000 −0.409852
\(382\) −12.0000 −0.613973
\(383\) 4.00000 0.204390 0.102195 0.994764i \(-0.467413\pi\)
0.102195 + 0.994764i \(0.467413\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −16.0000 −0.814379
\(387\) −4.00000 −0.203331
\(388\) 12.0000 0.609208
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −8.00000 −0.404577
\(392\) 3.00000 0.151523
\(393\) −8.00000 −0.403547
\(394\) −22.0000 −1.10834
\(395\) 0 0
\(396\) 0 0
\(397\) 8.00000 0.401508 0.200754 0.979642i \(-0.435661\pi\)
0.200754 + 0.979642i \(0.435661\pi\)
\(398\) 0 0
\(399\) −12.0000 −0.600751
\(400\) −1.00000 −0.0500000
\(401\) −30.0000 −1.49813 −0.749064 0.662497i \(-0.769497\pi\)
−0.749064 + 0.662497i \(0.769497\pi\)
\(402\) −2.00000 −0.0997509
\(403\) 0 0
\(404\) −2.00000 −0.0995037
\(405\) −2.00000 −0.0993808
\(406\) −20.0000 −0.992583
\(407\) 0 0
\(408\) −2.00000 −0.0990148
\(409\) −4.00000 −0.197787 −0.0988936 0.995098i \(-0.531530\pi\)
−0.0988936 + 0.995098i \(0.531530\pi\)
\(410\) −20.0000 −0.987730
\(411\) −2.00000 −0.0986527
\(412\) 16.0000 0.788263
\(413\) −8.00000 −0.393654
\(414\) 4.00000 0.196589
\(415\) −8.00000 −0.392705
\(416\) 0 0
\(417\) −20.0000 −0.979404
\(418\) 0 0
\(419\) 40.0000 1.95413 0.977064 0.212946i \(-0.0683059\pi\)
0.977064 + 0.212946i \(0.0683059\pi\)
\(420\) 4.00000 0.195180
\(421\) −20.0000 −0.974740 −0.487370 0.873195i \(-0.662044\pi\)
−0.487370 + 0.873195i \(0.662044\pi\)
\(422\) −12.0000 −0.584151
\(423\) −12.0000 −0.583460
\(424\) 6.00000 0.291386
\(425\) −2.00000 −0.0970143
\(426\) 0 0
\(427\) −4.00000 −0.193574
\(428\) 8.00000 0.386695
\(429\) 0 0
\(430\) −8.00000 −0.385794
\(431\) 20.0000 0.963366 0.481683 0.876346i \(-0.340026\pi\)
0.481683 + 0.876346i \(0.340026\pi\)
\(432\) 1.00000 0.0481125
\(433\) 26.0000 1.24948 0.624740 0.780833i \(-0.285205\pi\)
0.624740 + 0.780833i \(0.285205\pi\)
\(434\) −20.0000 −0.960031
\(435\) 20.0000 0.958927
\(436\) −4.00000 −0.191565
\(437\) −24.0000 −1.14808
\(438\) 4.00000 0.191127
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) 0 0
\(443\) −16.0000 −0.760183 −0.380091 0.924949i \(-0.624107\pi\)
−0.380091 + 0.924949i \(0.624107\pi\)
\(444\) 8.00000 0.379663
\(445\) 12.0000 0.568855
\(446\) −14.0000 −0.662919
\(447\) −14.0000 −0.662177
\(448\) −2.00000 −0.0944911
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 1.00000 0.0471405
\(451\) 0 0
\(452\) 14.0000 0.658505
\(453\) 10.0000 0.469841
\(454\) 8.00000 0.375459
\(455\) 0 0
\(456\) −6.00000 −0.280976
\(457\) −28.0000 −1.30978 −0.654892 0.755722i \(-0.727286\pi\)
−0.654892 + 0.755722i \(0.727286\pi\)
\(458\) −4.00000 −0.186908
\(459\) 2.00000 0.0933520
\(460\) 8.00000 0.373002
\(461\) 30.0000 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(462\) 0 0
\(463\) 6.00000 0.278844 0.139422 0.990233i \(-0.455476\pi\)
0.139422 + 0.990233i \(0.455476\pi\)
\(464\) −10.0000 −0.464238
\(465\) 20.0000 0.927478
\(466\) −6.00000 −0.277945
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) −4.00000 −0.184703
\(470\) −24.0000 −1.10704
\(471\) −2.00000 −0.0921551
\(472\) −4.00000 −0.184115
\(473\) 0 0
\(474\) 0 0
\(475\) −6.00000 −0.275299
\(476\) −4.00000 −0.183340
\(477\) −6.00000 −0.274721
\(478\) −16.0000 −0.731823
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 2.00000 0.0912871
\(481\) 0 0
\(482\) −20.0000 −0.910975
\(483\) 8.00000 0.364013
\(484\) −11.0000 −0.500000
\(485\) −24.0000 −1.08978
\(486\) −1.00000 −0.0453609
\(487\) −18.0000 −0.815658 −0.407829 0.913058i \(-0.633714\pi\)
−0.407829 + 0.913058i \(0.633714\pi\)
\(488\) −2.00000 −0.0905357
\(489\) −14.0000 −0.633102
\(490\) −6.00000 −0.271052
\(491\) 28.0000 1.26362 0.631811 0.775122i \(-0.282312\pi\)
0.631811 + 0.775122i \(0.282312\pi\)
\(492\) −10.0000 −0.450835
\(493\) −20.0000 −0.900755
\(494\) 0 0
\(495\) 0 0
\(496\) −10.0000 −0.449013
\(497\) 0 0
\(498\) −4.00000 −0.179244
\(499\) −14.0000 −0.626726 −0.313363 0.949633i \(-0.601456\pi\)
−0.313363 + 0.949633i \(0.601456\pi\)
\(500\) 12.0000 0.536656
\(501\) −12.0000 −0.536120
\(502\) −28.0000 −1.24970
\(503\) 24.0000 1.07011 0.535054 0.844818i \(-0.320291\pi\)
0.535054 + 0.844818i \(0.320291\pi\)
\(504\) 2.00000 0.0890871
\(505\) 4.00000 0.177998
\(506\) 0 0
\(507\) 0 0
\(508\) −8.00000 −0.354943
\(509\) 6.00000 0.265945 0.132973 0.991120i \(-0.457548\pi\)
0.132973 + 0.991120i \(0.457548\pi\)
\(510\) 4.00000 0.177123
\(511\) 8.00000 0.353899
\(512\) −1.00000 −0.0441942
\(513\) 6.00000 0.264906
\(514\) 18.0000 0.793946
\(515\) −32.0000 −1.41009
\(516\) −4.00000 −0.176090
\(517\) 0 0
\(518\) 16.0000 0.703000
\(519\) 6.00000 0.263371
\(520\) 0 0
\(521\) −18.0000 −0.788594 −0.394297 0.918983i \(-0.629012\pi\)
−0.394297 + 0.918983i \(0.629012\pi\)
\(522\) 10.0000 0.437688
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) −8.00000 −0.349482
\(525\) 2.00000 0.0872872
\(526\) −24.0000 −1.04645
\(527\) −20.0000 −0.871214
\(528\) 0 0
\(529\) −7.00000 −0.304348
\(530\) −12.0000 −0.521247
\(531\) 4.00000 0.173585
\(532\) −12.0000 −0.520266
\(533\) 0 0
\(534\) 6.00000 0.259645
\(535\) −16.0000 −0.691740
\(536\) −2.00000 −0.0863868
\(537\) 0 0
\(538\) 10.0000 0.431131
\(539\) 0 0
\(540\) −2.00000 −0.0860663
\(541\) −20.0000 −0.859867 −0.429934 0.902861i \(-0.641463\pi\)
−0.429934 + 0.902861i \(0.641463\pi\)
\(542\) 10.0000 0.429537
\(543\) −22.0000 −0.944110
\(544\) −2.00000 −0.0857493
\(545\) 8.00000 0.342682
\(546\) 0 0
\(547\) 28.0000 1.19719 0.598597 0.801050i \(-0.295725\pi\)
0.598597 + 0.801050i \(0.295725\pi\)
\(548\) −2.00000 −0.0854358
\(549\) 2.00000 0.0853579
\(550\) 0 0
\(551\) −60.0000 −2.55609
\(552\) 4.00000 0.170251
\(553\) 0 0
\(554\) −2.00000 −0.0849719
\(555\) −16.0000 −0.679162
\(556\) −20.0000 −0.848189
\(557\) 18.0000 0.762684 0.381342 0.924434i \(-0.375462\pi\)
0.381342 + 0.924434i \(0.375462\pi\)
\(558\) 10.0000 0.423334
\(559\) 0 0
\(560\) 4.00000 0.169031
\(561\) 0 0
\(562\) 10.0000 0.421825
\(563\) 16.0000 0.674320 0.337160 0.941447i \(-0.390534\pi\)
0.337160 + 0.941447i \(0.390534\pi\)
\(564\) −12.0000 −0.505291
\(565\) −28.0000 −1.17797
\(566\) 4.00000 0.168133
\(567\) −2.00000 −0.0839921
\(568\) 0 0
\(569\) −10.0000 −0.419222 −0.209611 0.977785i \(-0.567220\pi\)
−0.209611 + 0.977785i \(0.567220\pi\)
\(570\) 12.0000 0.502625
\(571\) 28.0000 1.17176 0.585882 0.810397i \(-0.300748\pi\)
0.585882 + 0.810397i \(0.300748\pi\)
\(572\) 0 0
\(573\) 12.0000 0.501307
\(574\) −20.0000 −0.834784
\(575\) 4.00000 0.166812
\(576\) 1.00000 0.0416667
\(577\) −8.00000 −0.333044 −0.166522 0.986038i \(-0.553254\pi\)
−0.166522 + 0.986038i \(0.553254\pi\)
\(578\) 13.0000 0.540729
\(579\) 16.0000 0.664937
\(580\) 20.0000 0.830455
\(581\) −8.00000 −0.331896
\(582\) −12.0000 −0.497416
\(583\) 0 0
\(584\) 4.00000 0.165521
\(585\) 0 0
\(586\) 14.0000 0.578335
\(587\) −28.0000 −1.15568 −0.577842 0.816149i \(-0.696105\pi\)
−0.577842 + 0.816149i \(0.696105\pi\)
\(588\) −3.00000 −0.123718
\(589\) −60.0000 −2.47226
\(590\) 8.00000 0.329355
\(591\) 22.0000 0.904959
\(592\) 8.00000 0.328798
\(593\) 26.0000 1.06769 0.533846 0.845582i \(-0.320746\pi\)
0.533846 + 0.845582i \(0.320746\pi\)
\(594\) 0 0
\(595\) 8.00000 0.327968
\(596\) −14.0000 −0.573462
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 1.00000 0.0408248
\(601\) 22.0000 0.897399 0.448699 0.893683i \(-0.351887\pi\)
0.448699 + 0.893683i \(0.351887\pi\)
\(602\) −8.00000 −0.326056
\(603\) 2.00000 0.0814463
\(604\) 10.0000 0.406894
\(605\) 22.0000 0.894427
\(606\) 2.00000 0.0812444
\(607\) −32.0000 −1.29884 −0.649420 0.760430i \(-0.724988\pi\)
−0.649420 + 0.760430i \(0.724988\pi\)
\(608\) −6.00000 −0.243332
\(609\) 20.0000 0.810441
\(610\) 4.00000 0.161955
\(611\) 0 0
\(612\) 2.00000 0.0808452
\(613\) −16.0000 −0.646234 −0.323117 0.946359i \(-0.604731\pi\)
−0.323117 + 0.946359i \(0.604731\pi\)
\(614\) 2.00000 0.0807134
\(615\) 20.0000 0.806478
\(616\) 0 0
\(617\) 22.0000 0.885687 0.442843 0.896599i \(-0.353970\pi\)
0.442843 + 0.896599i \(0.353970\pi\)
\(618\) −16.0000 −0.643614
\(619\) −26.0000 −1.04503 −0.522514 0.852631i \(-0.675006\pi\)
−0.522514 + 0.852631i \(0.675006\pi\)
\(620\) 20.0000 0.803219
\(621\) −4.00000 −0.160514
\(622\) −28.0000 −1.12270
\(623\) 12.0000 0.480770
\(624\) 0 0
\(625\) −19.0000 −0.760000
\(626\) 26.0000 1.03917
\(627\) 0 0
\(628\) −2.00000 −0.0798087
\(629\) 16.0000 0.637962
\(630\) −4.00000 −0.159364
\(631\) 10.0000 0.398094 0.199047 0.979990i \(-0.436215\pi\)
0.199047 + 0.979990i \(0.436215\pi\)
\(632\) 0 0
\(633\) 12.0000 0.476957
\(634\) 18.0000 0.714871
\(635\) 16.0000 0.634941
\(636\) −6.00000 −0.237915
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 2.00000 0.0790569
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −8.00000 −0.315735
\(643\) −6.00000 −0.236617 −0.118308 0.992977i \(-0.537747\pi\)
−0.118308 + 0.992977i \(0.537747\pi\)
\(644\) 8.00000 0.315244
\(645\) 8.00000 0.315000
\(646\) −12.0000 −0.472134
\(647\) 32.0000 1.25805 0.629025 0.777385i \(-0.283454\pi\)
0.629025 + 0.777385i \(0.283454\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 0 0
\(650\) 0 0
\(651\) 20.0000 0.783862
\(652\) −14.0000 −0.548282
\(653\) −26.0000 −1.01746 −0.508729 0.860927i \(-0.669885\pi\)
−0.508729 + 0.860927i \(0.669885\pi\)
\(654\) 4.00000 0.156412
\(655\) 16.0000 0.625172
\(656\) −10.0000 −0.390434
\(657\) −4.00000 −0.156055
\(658\) −24.0000 −0.935617
\(659\) 20.0000 0.779089 0.389545 0.921008i \(-0.372632\pi\)
0.389545 + 0.921008i \(0.372632\pi\)
\(660\) 0 0
\(661\) −40.0000 −1.55582 −0.777910 0.628376i \(-0.783720\pi\)
−0.777910 + 0.628376i \(0.783720\pi\)
\(662\) −10.0000 −0.388661
\(663\) 0 0
\(664\) −4.00000 −0.155230
\(665\) 24.0000 0.930680
\(666\) −8.00000 −0.309994
\(667\) 40.0000 1.54881
\(668\) −12.0000 −0.464294
\(669\) 14.0000 0.541271
\(670\) 4.00000 0.154533
\(671\) 0 0
\(672\) 2.00000 0.0771517
\(673\) 6.00000 0.231283 0.115642 0.993291i \(-0.463108\pi\)
0.115642 + 0.993291i \(0.463108\pi\)
\(674\) −2.00000 −0.0770371
\(675\) −1.00000 −0.0384900
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) −14.0000 −0.537667
\(679\) −24.0000 −0.921035
\(680\) 4.00000 0.153393
\(681\) −8.00000 −0.306561
\(682\) 0 0
\(683\) −24.0000 −0.918334 −0.459167 0.888350i \(-0.651852\pi\)
−0.459167 + 0.888350i \(0.651852\pi\)
\(684\) 6.00000 0.229416
\(685\) 4.00000 0.152832
\(686\) −20.0000 −0.763604
\(687\) 4.00000 0.152610
\(688\) −4.00000 −0.152499
\(689\) 0 0
\(690\) −8.00000 −0.304555
\(691\) 10.0000 0.380418 0.190209 0.981744i \(-0.439083\pi\)
0.190209 + 0.981744i \(0.439083\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) 12.0000 0.455514
\(695\) 40.0000 1.51729
\(696\) 10.0000 0.379049
\(697\) −20.0000 −0.757554
\(698\) 16.0000 0.605609
\(699\) 6.00000 0.226941
\(700\) 2.00000 0.0755929
\(701\) −22.0000 −0.830929 −0.415464 0.909610i \(-0.636381\pi\)
−0.415464 + 0.909610i \(0.636381\pi\)
\(702\) 0 0
\(703\) 48.0000 1.81035
\(704\) 0 0
\(705\) 24.0000 0.903892
\(706\) 26.0000 0.978523
\(707\) 4.00000 0.150435
\(708\) 4.00000 0.150329
\(709\) −36.0000 −1.35201 −0.676004 0.736898i \(-0.736290\pi\)
−0.676004 + 0.736898i \(0.736290\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 6.00000 0.224860
\(713\) 40.0000 1.49801
\(714\) 4.00000 0.149696
\(715\) 0 0
\(716\) 0 0
\(717\) 16.0000 0.597531
\(718\) −4.00000 −0.149279
\(719\) −20.0000 −0.745874 −0.372937 0.927857i \(-0.621649\pi\)
−0.372937 + 0.927857i \(0.621649\pi\)
\(720\) −2.00000 −0.0745356
\(721\) −32.0000 −1.19174
\(722\) −17.0000 −0.632674
\(723\) 20.0000 0.743808
\(724\) −22.0000 −0.817624
\(725\) 10.0000 0.371391
\(726\) 11.0000 0.408248
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −8.00000 −0.296093
\(731\) −8.00000 −0.295891
\(732\) 2.00000 0.0739221
\(733\) 44.0000 1.62518 0.812589 0.582838i \(-0.198058\pi\)
0.812589 + 0.582838i \(0.198058\pi\)
\(734\) −8.00000 −0.295285
\(735\) 6.00000 0.221313
\(736\) 4.00000 0.147442
\(737\) 0 0
\(738\) 10.0000 0.368105
\(739\) −26.0000 −0.956425 −0.478213 0.878244i \(-0.658715\pi\)
−0.478213 + 0.878244i \(0.658715\pi\)
\(740\) −16.0000 −0.588172
\(741\) 0 0
\(742\) −12.0000 −0.440534
\(743\) −16.0000 −0.586983 −0.293492 0.955962i \(-0.594817\pi\)
−0.293492 + 0.955962i \(0.594817\pi\)
\(744\) 10.0000 0.366618
\(745\) 28.0000 1.02584
\(746\) 6.00000 0.219676
\(747\) 4.00000 0.146352
\(748\) 0 0
\(749\) −16.0000 −0.584627
\(750\) −12.0000 −0.438178
\(751\) −32.0000 −1.16770 −0.583848 0.811863i \(-0.698454\pi\)
−0.583848 + 0.811863i \(0.698454\pi\)
\(752\) −12.0000 −0.437595
\(753\) 28.0000 1.02038
\(754\) 0 0
\(755\) −20.0000 −0.727875
\(756\) −2.00000 −0.0727393
\(757\) −22.0000 −0.799604 −0.399802 0.916602i \(-0.630921\pi\)
−0.399802 + 0.916602i \(0.630921\pi\)
\(758\) 34.0000 1.23494
\(759\) 0 0
\(760\) 12.0000 0.435286
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 8.00000 0.289809
\(763\) 8.00000 0.289619
\(764\) 12.0000 0.434145
\(765\) −4.00000 −0.144620
\(766\) −4.00000 −0.144526
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) −24.0000 −0.865462 −0.432731 0.901523i \(-0.642450\pi\)
−0.432731 + 0.901523i \(0.642450\pi\)
\(770\) 0 0
\(771\) −18.0000 −0.648254
\(772\) 16.0000 0.575853
\(773\) −6.00000 −0.215805 −0.107903 0.994161i \(-0.534413\pi\)
−0.107903 + 0.994161i \(0.534413\pi\)
\(774\) 4.00000 0.143777
\(775\) 10.0000 0.359211
\(776\) −12.0000 −0.430775
\(777\) −16.0000 −0.573997
\(778\) 30.0000 1.07555
\(779\) −60.0000 −2.14972
\(780\) 0 0
\(781\) 0 0
\(782\) 8.00000 0.286079
\(783\) −10.0000 −0.357371
\(784\) −3.00000 −0.107143
\(785\) 4.00000 0.142766
\(786\) 8.00000 0.285351
\(787\) 38.0000 1.35455 0.677277 0.735728i \(-0.263160\pi\)
0.677277 + 0.735728i \(0.263160\pi\)
\(788\) 22.0000 0.783718
\(789\) 24.0000 0.854423
\(790\) 0 0
\(791\) −28.0000 −0.995565
\(792\) 0 0
\(793\) 0 0
\(794\) −8.00000 −0.283909
\(795\) 12.0000 0.425596
\(796\) 0 0
\(797\) 2.00000 0.0708436 0.0354218 0.999372i \(-0.488723\pi\)
0.0354218 + 0.999372i \(0.488723\pi\)
\(798\) 12.0000 0.424795
\(799\) −24.0000 −0.849059
\(800\) 1.00000 0.0353553
\(801\) −6.00000 −0.212000
\(802\) 30.0000 1.05934
\(803\) 0 0
\(804\) 2.00000 0.0705346
\(805\) −16.0000 −0.563926
\(806\) 0 0
\(807\) −10.0000 −0.352017
\(808\) 2.00000 0.0703598
\(809\) −50.0000 −1.75791 −0.878953 0.476908i \(-0.841757\pi\)
−0.878953 + 0.476908i \(0.841757\pi\)
\(810\) 2.00000 0.0702728
\(811\) −10.0000 −0.351147 −0.175574 0.984466i \(-0.556178\pi\)
−0.175574 + 0.984466i \(0.556178\pi\)
\(812\) 20.0000 0.701862
\(813\) −10.0000 −0.350715
\(814\) 0 0
\(815\) 28.0000 0.980797
\(816\) 2.00000 0.0700140
\(817\) −24.0000 −0.839654
\(818\) 4.00000 0.139857
\(819\) 0 0
\(820\) 20.0000 0.698430
\(821\) −30.0000 −1.04701 −0.523504 0.852023i \(-0.675375\pi\)
−0.523504 + 0.852023i \(0.675375\pi\)
\(822\) 2.00000 0.0697580
\(823\) −24.0000 −0.836587 −0.418294 0.908312i \(-0.637372\pi\)
−0.418294 + 0.908312i \(0.637372\pi\)
\(824\) −16.0000 −0.557386
\(825\) 0 0
\(826\) 8.00000 0.278356
\(827\) 48.0000 1.66912 0.834562 0.550914i \(-0.185721\pi\)
0.834562 + 0.550914i \(0.185721\pi\)
\(828\) −4.00000 −0.139010
\(829\) 30.0000 1.04194 0.520972 0.853574i \(-0.325570\pi\)
0.520972 + 0.853574i \(0.325570\pi\)
\(830\) 8.00000 0.277684
\(831\) 2.00000 0.0693792
\(832\) 0 0
\(833\) −6.00000 −0.207888
\(834\) 20.0000 0.692543
\(835\) 24.0000 0.830554
\(836\) 0 0
\(837\) −10.0000 −0.345651
\(838\) −40.0000 −1.38178
\(839\) −16.0000 −0.552381 −0.276191 0.961103i \(-0.589072\pi\)
−0.276191 + 0.961103i \(0.589072\pi\)
\(840\) −4.00000 −0.138013
\(841\) 71.0000 2.44828
\(842\) 20.0000 0.689246
\(843\) −10.0000 −0.344418
\(844\) 12.0000 0.413057
\(845\) 0 0
\(846\) 12.0000 0.412568
\(847\) 22.0000 0.755929
\(848\) −6.00000 −0.206041
\(849\) −4.00000 −0.137280
\(850\) 2.00000 0.0685994
\(851\) −32.0000 −1.09695
\(852\) 0 0
\(853\) 56.0000 1.91740 0.958702 0.284413i \(-0.0917988\pi\)
0.958702 + 0.284413i \(0.0917988\pi\)
\(854\) 4.00000 0.136877
\(855\) −12.0000 −0.410391
\(856\) −8.00000 −0.273434
\(857\) 22.0000 0.751506 0.375753 0.926720i \(-0.377384\pi\)
0.375753 + 0.926720i \(0.377384\pi\)
\(858\) 0 0
\(859\) −20.0000 −0.682391 −0.341196 0.939992i \(-0.610832\pi\)
−0.341196 + 0.939992i \(0.610832\pi\)
\(860\) 8.00000 0.272798
\(861\) 20.0000 0.681598
\(862\) −20.0000 −0.681203
\(863\) 44.0000 1.49778 0.748889 0.662696i \(-0.230588\pi\)
0.748889 + 0.662696i \(0.230588\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −12.0000 −0.408012
\(866\) −26.0000 −0.883516
\(867\) −13.0000 −0.441503
\(868\) 20.0000 0.678844
\(869\) 0 0
\(870\) −20.0000 −0.678064
\(871\) 0 0
\(872\) 4.00000 0.135457
\(873\) 12.0000 0.406138
\(874\) 24.0000 0.811812
\(875\) −24.0000 −0.811348
\(876\) −4.00000 −0.135147
\(877\) −8.00000 −0.270141 −0.135070 0.990836i \(-0.543126\pi\)
−0.135070 + 0.990836i \(0.543126\pi\)
\(878\) 0 0
\(879\) −14.0000 −0.472208
\(880\) 0 0
\(881\) −42.0000 −1.41502 −0.707508 0.706705i \(-0.750181\pi\)
−0.707508 + 0.706705i \(0.750181\pi\)
\(882\) 3.00000 0.101015
\(883\) 36.0000 1.21150 0.605748 0.795656i \(-0.292874\pi\)
0.605748 + 0.795656i \(0.292874\pi\)
\(884\) 0 0
\(885\) −8.00000 −0.268917
\(886\) 16.0000 0.537531
\(887\) −12.0000 −0.402921 −0.201460 0.979497i \(-0.564569\pi\)
−0.201460 + 0.979497i \(0.564569\pi\)
\(888\) −8.00000 −0.268462
\(889\) 16.0000 0.536623
\(890\) −12.0000 −0.402241
\(891\) 0 0
\(892\) 14.0000 0.468755
\(893\) −72.0000 −2.40939
\(894\) 14.0000 0.468230
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) 0 0
\(898\) 6.00000 0.200223
\(899\) 100.000 3.33519
\(900\) −1.00000 −0.0333333
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 8.00000 0.266223
\(904\) −14.0000 −0.465633
\(905\) 44.0000 1.46261
\(906\) −10.0000 −0.332228
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) −8.00000 −0.265489
\(909\) −2.00000 −0.0663358
\(910\) 0 0
\(911\) 12.0000 0.397578 0.198789 0.980042i \(-0.436299\pi\)
0.198789 + 0.980042i \(0.436299\pi\)
\(912\) 6.00000 0.198680
\(913\) 0 0
\(914\) 28.0000 0.926158
\(915\) −4.00000 −0.132236
\(916\) 4.00000 0.132164
\(917\) 16.0000 0.528367
\(918\) −2.00000 −0.0660098
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) −8.00000 −0.263752
\(921\) −2.00000 −0.0659022
\(922\) −30.0000 −0.987997
\(923\) 0 0
\(924\) 0 0
\(925\) −8.00000 −0.263038
\(926\) −6.00000 −0.197172
\(927\) 16.0000 0.525509
\(928\) 10.0000 0.328266
\(929\) 6.00000 0.196854 0.0984268 0.995144i \(-0.468619\pi\)
0.0984268 + 0.995144i \(0.468619\pi\)
\(930\) −20.0000 −0.655826
\(931\) −18.0000 −0.589926
\(932\) 6.00000 0.196537
\(933\) 28.0000 0.916679
\(934\) −12.0000 −0.392652
\(935\) 0 0
\(936\) 0 0
\(937\) −2.00000 −0.0653372 −0.0326686 0.999466i \(-0.510401\pi\)
−0.0326686 + 0.999466i \(0.510401\pi\)
\(938\) 4.00000 0.130605
\(939\) −26.0000 −0.848478
\(940\) 24.0000 0.782794
\(941\) 10.0000 0.325991 0.162995 0.986627i \(-0.447884\pi\)
0.162995 + 0.986627i \(0.447884\pi\)
\(942\) 2.00000 0.0651635
\(943\) 40.0000 1.30258
\(944\) 4.00000 0.130189
\(945\) 4.00000 0.130120
\(946\) 0 0
\(947\) −52.0000 −1.68977 −0.844886 0.534946i \(-0.820332\pi\)
−0.844886 + 0.534946i \(0.820332\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 6.00000 0.194666
\(951\) −18.0000 −0.583690
\(952\) 4.00000 0.129641
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 6.00000 0.194257
\(955\) −24.0000 −0.776622
\(956\) 16.0000 0.517477
\(957\) 0 0
\(958\) −24.0000 −0.775405
\(959\) 4.00000 0.129167
\(960\) −2.00000 −0.0645497
\(961\) 69.0000 2.22581
\(962\) 0 0
\(963\) 8.00000 0.257796
\(964\) 20.0000 0.644157
\(965\) −32.0000 −1.03012
\(966\) −8.00000 −0.257396
\(967\) 22.0000 0.707472 0.353736 0.935345i \(-0.384911\pi\)
0.353736 + 0.935345i \(0.384911\pi\)
\(968\) 11.0000 0.353553
\(969\) 12.0000 0.385496
\(970\) 24.0000 0.770594
\(971\) 12.0000 0.385098 0.192549 0.981287i \(-0.438325\pi\)
0.192549 + 0.981287i \(0.438325\pi\)
\(972\) 1.00000 0.0320750
\(973\) 40.0000 1.28234
\(974\) 18.0000 0.576757
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) 42.0000 1.34370 0.671850 0.740688i \(-0.265500\pi\)
0.671850 + 0.740688i \(0.265500\pi\)
\(978\) 14.0000 0.447671
\(979\) 0 0
\(980\) 6.00000 0.191663
\(981\) −4.00000 −0.127710
\(982\) −28.0000 −0.893516
\(983\) −24.0000 −0.765481 −0.382741 0.923856i \(-0.625020\pi\)
−0.382741 + 0.923856i \(0.625020\pi\)
\(984\) 10.0000 0.318788
\(985\) −44.0000 −1.40196
\(986\) 20.0000 0.636930
\(987\) 24.0000 0.763928
\(988\) 0 0
\(989\) 16.0000 0.508770
\(990\) 0 0
\(991\) −8.00000 −0.254128 −0.127064 0.991894i \(-0.540555\pi\)
−0.127064 + 0.991894i \(0.540555\pi\)
\(992\) 10.0000 0.317500
\(993\) 10.0000 0.317340
\(994\) 0 0
\(995\) 0 0
\(996\) 4.00000 0.126745
\(997\) −42.0000 −1.33015 −0.665077 0.746775i \(-0.731601\pi\)
−0.665077 + 0.746775i \(0.731601\pi\)
\(998\) 14.0000 0.443162
\(999\) 8.00000 0.253109
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1014.2.a.b.1.1 1
3.2 odd 2 3042.2.a.n.1.1 1
4.3 odd 2 8112.2.a.g.1.1 1
13.2 odd 12 1014.2.i.c.823.1 4
13.3 even 3 1014.2.e.e.529.1 2
13.4 even 6 1014.2.e.b.991.1 2
13.5 odd 4 78.2.b.a.25.2 yes 2
13.6 odd 12 1014.2.i.c.361.2 4
13.7 odd 12 1014.2.i.c.361.1 4
13.8 odd 4 78.2.b.a.25.1 2
13.9 even 3 1014.2.e.e.991.1 2
13.10 even 6 1014.2.e.b.529.1 2
13.11 odd 12 1014.2.i.c.823.2 4
13.12 even 2 1014.2.a.g.1.1 1
39.5 even 4 234.2.b.a.181.1 2
39.8 even 4 234.2.b.a.181.2 2
39.38 odd 2 3042.2.a.c.1.1 1
52.31 even 4 624.2.c.a.337.2 2
52.47 even 4 624.2.c.a.337.1 2
52.51 odd 2 8112.2.a.j.1.1 1
65.8 even 4 1950.2.f.d.649.2 2
65.18 even 4 1950.2.f.g.649.2 2
65.34 odd 4 1950.2.b.c.1351.2 2
65.44 odd 4 1950.2.b.c.1351.1 2
65.47 even 4 1950.2.f.g.649.1 2
65.57 even 4 1950.2.f.d.649.1 2
91.34 even 4 3822.2.c.d.883.1 2
91.83 even 4 3822.2.c.d.883.2 2
104.5 odd 4 2496.2.c.f.961.1 2
104.21 odd 4 2496.2.c.f.961.2 2
104.83 even 4 2496.2.c.m.961.1 2
104.99 even 4 2496.2.c.m.961.2 2
156.47 odd 4 1872.2.c.b.1585.2 2
156.83 odd 4 1872.2.c.b.1585.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.2.b.a.25.1 2 13.8 odd 4
78.2.b.a.25.2 yes 2 13.5 odd 4
234.2.b.a.181.1 2 39.5 even 4
234.2.b.a.181.2 2 39.8 even 4
624.2.c.a.337.1 2 52.47 even 4
624.2.c.a.337.2 2 52.31 even 4
1014.2.a.b.1.1 1 1.1 even 1 trivial
1014.2.a.g.1.1 1 13.12 even 2
1014.2.e.b.529.1 2 13.10 even 6
1014.2.e.b.991.1 2 13.4 even 6
1014.2.e.e.529.1 2 13.3 even 3
1014.2.e.e.991.1 2 13.9 even 3
1014.2.i.c.361.1 4 13.7 odd 12
1014.2.i.c.361.2 4 13.6 odd 12
1014.2.i.c.823.1 4 13.2 odd 12
1014.2.i.c.823.2 4 13.11 odd 12
1872.2.c.b.1585.1 2 156.83 odd 4
1872.2.c.b.1585.2 2 156.47 odd 4
1950.2.b.c.1351.1 2 65.44 odd 4
1950.2.b.c.1351.2 2 65.34 odd 4
1950.2.f.d.649.1 2 65.57 even 4
1950.2.f.d.649.2 2 65.8 even 4
1950.2.f.g.649.1 2 65.47 even 4
1950.2.f.g.649.2 2 65.18 even 4
2496.2.c.f.961.1 2 104.5 odd 4
2496.2.c.f.961.2 2 104.21 odd 4
2496.2.c.m.961.1 2 104.83 even 4
2496.2.c.m.961.2 2 104.99 even 4
3042.2.a.c.1.1 1 39.38 odd 2
3042.2.a.n.1.1 1 3.2 odd 2
3822.2.c.d.883.1 2 91.34 even 4
3822.2.c.d.883.2 2 91.83 even 4
8112.2.a.g.1.1 1 4.3 odd 2
8112.2.a.j.1.1 1 52.51 odd 2