Properties

Label 1008.2.df.b.689.1
Level $1008$
Weight $2$
Character 1008.689
Analytic conductor $8.049$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(689,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.689"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.df (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,0,0,0,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{6})\)
Coefficient field: 10.0.288778218147.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 7x^{8} - 4x^{7} + 34x^{6} - 19x^{5} + 64x^{4} - x^{3} + 64x^{2} - 21x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 689.1
Root \(1.07065 + 1.85442i\) of defining polynomial
Character \(\chi\) \(=\) 1008.689
Dual form 1008.2.df.b.929.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.61958 - 0.613974i) q^{3} +1.25299 q^{5} +(0.648211 + 2.56512i) q^{7} +(2.24607 + 1.98876i) q^{9} -0.616756i q^{11} +(-1.06343 - 0.613974i) q^{13} +(-2.02931 - 0.769301i) q^{15} +(-2.21501 + 3.83652i) q^{17} +(1.64679 - 0.950775i) q^{19} +(0.525087 - 4.55239i) q^{21} +4.74890i q^{23} -3.43003 q^{25} +(-2.41664 - 4.59998i) q^{27} +(-5.07629 + 2.93080i) q^{29} +(2.14851 - 1.24044i) q^{31} +(-0.378672 + 0.998884i) q^{33} +(0.812198 + 3.21405i) q^{35} +(1.33217 + 2.30738i) q^{37} +(1.34535 + 1.64730i) q^{39} +(2.09966 - 3.63671i) q^{41} +(2.24637 + 3.89083i) q^{43} +(2.81429 + 2.49189i) q^{45} +(-3.80738 + 6.59458i) q^{47} +(-6.15965 + 3.32547i) q^{49} +(5.94291 - 4.85358i) q^{51} +(2.67782 + 1.54604i) q^{53} -0.772786i q^{55} +(-3.25086 + 0.528768i) q^{57} +(-1.78229 - 3.08702i) q^{59} +(12.5136 + 7.22473i) q^{61} +(-3.64547 + 7.05057i) q^{63} +(-1.33247 - 0.769301i) q^{65} +(6.80644 + 11.7891i) q^{67} +(2.91570 - 7.69121i) q^{69} +10.4095i q^{71} +(9.95016 + 5.74473i) q^{73} +(5.55520 + 2.10595i) q^{75} +(1.58205 - 0.399788i) q^{77} +(-2.01592 + 3.49168i) q^{79} +(1.08967 + 8.93379i) q^{81} +(-4.36775 - 7.56516i) q^{83} +(-2.77538 + 4.80710i) q^{85} +(10.0209 - 1.62995i) q^{87} +(-0.811226 - 1.40508i) q^{89} +(0.885586 - 3.12582i) q^{91} +(-4.24128 + 0.689866i) q^{93} +(2.06341 - 1.19131i) q^{95} +(-8.76527 + 5.06063i) q^{97} +(1.22658 - 1.38528i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 3 q^{7} + 6 q^{13} + 3 q^{15} - 12 q^{17} - 3 q^{19} + 18 q^{21} - 14 q^{25} - 27 q^{27} - 15 q^{29} + 9 q^{31} - 9 q^{33} + 15 q^{35} + 6 q^{37} - 12 q^{39} - 9 q^{41} - 3 q^{43} + 15 q^{45} - 15 q^{47}+ \cdots - 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{6}\right)\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.61958 0.613974i −0.935064 0.354478i
\(4\) 0 0
\(5\) 1.25299 0.560352 0.280176 0.959949i \(-0.409607\pi\)
0.280176 + 0.959949i \(0.409607\pi\)
\(6\) 0 0
\(7\) 0.648211 + 2.56512i 0.245001 + 0.969523i
\(8\) 0 0
\(9\) 2.24607 + 1.98876i 0.748690 + 0.662920i
\(10\) 0 0
\(11\) 0.616756i 0.185959i −0.995668 0.0929794i \(-0.970361\pi\)
0.995668 0.0929794i \(-0.0296391\pi\)
\(12\) 0 0
\(13\) −1.06343 0.613974i −0.294944 0.170286i 0.345226 0.938520i \(-0.387802\pi\)
−0.640169 + 0.768234i \(0.721136\pi\)
\(14\) 0 0
\(15\) −2.02931 0.769301i −0.523965 0.198633i
\(16\) 0 0
\(17\) −2.21501 + 3.83652i −0.537220 + 0.930492i 0.461833 + 0.886967i \(0.347192\pi\)
−0.999052 + 0.0435249i \(0.986141\pi\)
\(18\) 0 0
\(19\) 1.64679 0.950775i 0.377800 0.218123i −0.299061 0.954234i \(-0.596673\pi\)
0.676861 + 0.736111i \(0.263340\pi\)
\(20\) 0 0
\(21\) 0.525087 4.55239i 0.114583 0.993414i
\(22\) 0 0
\(23\) 4.74890i 0.990213i 0.868832 + 0.495107i \(0.164871\pi\)
−0.868832 + 0.495107i \(0.835129\pi\)
\(24\) 0 0
\(25\) −3.43003 −0.686006
\(26\) 0 0
\(27\) −2.41664 4.59998i −0.465083 0.885267i
\(28\) 0 0
\(29\) −5.07629 + 2.93080i −0.942643 + 0.544235i −0.890788 0.454419i \(-0.849847\pi\)
−0.0518553 + 0.998655i \(0.516513\pi\)
\(30\) 0 0
\(31\) 2.14851 1.24044i 0.385884 0.222790i −0.294491 0.955654i \(-0.595150\pi\)
0.680375 + 0.732864i \(0.261817\pi\)
\(32\) 0 0
\(33\) −0.378672 + 0.998884i −0.0659183 + 0.173883i
\(34\) 0 0
\(35\) 0.812198 + 3.21405i 0.137287 + 0.543274i
\(36\) 0 0
\(37\) 1.33217 + 2.30738i 0.219007 + 0.379331i 0.954505 0.298196i \(-0.0963849\pi\)
−0.735498 + 0.677527i \(0.763052\pi\)
\(38\) 0 0
\(39\) 1.34535 + 1.64730i 0.215429 + 0.263779i
\(40\) 0 0
\(41\) 2.09966 3.63671i 0.327911 0.567959i −0.654186 0.756334i \(-0.726989\pi\)
0.982097 + 0.188375i \(0.0603220\pi\)
\(42\) 0 0
\(43\) 2.24637 + 3.89083i 0.342568 + 0.593346i 0.984909 0.173073i \(-0.0553698\pi\)
−0.642340 + 0.766419i \(0.722036\pi\)
\(44\) 0 0
\(45\) 2.81429 + 2.49189i 0.419530 + 0.371468i
\(46\) 0 0
\(47\) −3.80738 + 6.59458i −0.555364 + 0.961918i 0.442512 + 0.896763i \(0.354088\pi\)
−0.997875 + 0.0651551i \(0.979246\pi\)
\(48\) 0 0
\(49\) −6.15965 + 3.32547i −0.879949 + 0.475067i
\(50\) 0 0
\(51\) 5.94291 4.85358i 0.832174 0.679637i
\(52\) 0 0
\(53\) 2.67782 + 1.54604i 0.367827 + 0.212365i 0.672509 0.740089i \(-0.265217\pi\)
−0.304682 + 0.952454i \(0.598550\pi\)
\(54\) 0 0
\(55\) 0.772786i 0.104202i
\(56\) 0 0
\(57\) −3.25086 + 0.528768i −0.430587 + 0.0700371i
\(58\) 0 0
\(59\) −1.78229 3.08702i −0.232035 0.401896i 0.726372 0.687302i \(-0.241205\pi\)
−0.958407 + 0.285406i \(0.907872\pi\)
\(60\) 0 0
\(61\) 12.5136 + 7.22473i 1.60220 + 0.925032i 0.991046 + 0.133521i \(0.0426284\pi\)
0.611156 + 0.791510i \(0.290705\pi\)
\(62\) 0 0
\(63\) −3.64547 + 7.05057i −0.459286 + 0.888288i
\(64\) 0 0
\(65\) −1.33247 0.769301i −0.165272 0.0954200i
\(66\) 0 0
\(67\) 6.80644 + 11.7891i 0.831539 + 1.44027i 0.896818 + 0.442400i \(0.145873\pi\)
−0.0652791 + 0.997867i \(0.520794\pi\)
\(68\) 0 0
\(69\) 2.91570 7.69121i 0.351009 0.925913i
\(70\) 0 0
\(71\) 10.4095i 1.23538i 0.786420 + 0.617692i \(0.211932\pi\)
−0.786420 + 0.617692i \(0.788068\pi\)
\(72\) 0 0
\(73\) 9.95016 + 5.74473i 1.16458 + 0.672369i 0.952397 0.304861i \(-0.0986100\pi\)
0.212181 + 0.977230i \(0.431943\pi\)
\(74\) 0 0
\(75\) 5.55520 + 2.10595i 0.641459 + 0.243174i
\(76\) 0 0
\(77\) 1.58205 0.399788i 0.180291 0.0455600i
\(78\) 0 0
\(79\) −2.01592 + 3.49168i −0.226809 + 0.392845i −0.956861 0.290547i \(-0.906163\pi\)
0.730052 + 0.683392i \(0.239496\pi\)
\(80\) 0 0
\(81\) 1.08967 + 8.93379i 0.121075 + 0.992643i
\(82\) 0 0
\(83\) −4.36775 7.56516i −0.479422 0.830384i 0.520299 0.853984i \(-0.325820\pi\)
−0.999721 + 0.0236001i \(0.992487\pi\)
\(84\) 0 0
\(85\) −2.77538 + 4.80710i −0.301032 + 0.521403i
\(86\) 0 0
\(87\) 10.0209 1.62995i 1.07435 0.174749i
\(88\) 0 0
\(89\) −0.811226 1.40508i −0.0859897 0.148939i 0.819823 0.572617i \(-0.194072\pi\)
−0.905813 + 0.423679i \(0.860739\pi\)
\(90\) 0 0
\(91\) 0.885586 3.12582i 0.0928346 0.327675i
\(92\) 0 0
\(93\) −4.24128 + 0.689866i −0.439801 + 0.0715357i
\(94\) 0 0
\(95\) 2.06341 1.19131i 0.211701 0.122226i
\(96\) 0 0
\(97\) −8.76527 + 5.06063i −0.889979 + 0.513829i −0.873936 0.486042i \(-0.838440\pi\)
−0.0160431 + 0.999871i \(0.505107\pi\)
\(98\) 0 0
\(99\) 1.22658 1.38528i 0.123276 0.139226i
\(100\) 0 0
\(101\) −1.71322 −0.170472 −0.0852360 0.996361i \(-0.527164\pi\)
−0.0852360 + 0.996361i \(0.527164\pi\)
\(102\) 0 0
\(103\) 7.40526i 0.729662i −0.931074 0.364831i \(-0.881127\pi\)
0.931074 0.364831i \(-0.118873\pi\)
\(104\) 0 0
\(105\) 0.657926 5.70408i 0.0642070 0.556661i
\(106\) 0 0
\(107\) 0.131657 0.0760123i 0.0127278 0.00734839i −0.493623 0.869676i \(-0.664328\pi\)
0.506350 + 0.862328i \(0.330994\pi\)
\(108\) 0 0
\(109\) 2.70051 4.67742i 0.258662 0.448016i −0.707222 0.706992i \(-0.750052\pi\)
0.965884 + 0.258976i \(0.0833851\pi\)
\(110\) 0 0
\(111\) −0.740877 4.55490i −0.0703210 0.432332i
\(112\) 0 0
\(113\) −5.60391 3.23542i −0.527171 0.304362i 0.212693 0.977119i \(-0.431777\pi\)
−0.739864 + 0.672757i \(0.765110\pi\)
\(114\) 0 0
\(115\) 5.95030i 0.554868i
\(116\) 0 0
\(117\) −1.16750 3.49394i −0.107936 0.323015i
\(118\) 0 0
\(119\) −11.2769 3.19490i −1.03375 0.292876i
\(120\) 0 0
\(121\) 10.6196 0.965419
\(122\) 0 0
\(123\) −5.63341 + 4.60081i −0.507947 + 0.414841i
\(124\) 0 0
\(125\) −10.5627 −0.944757
\(126\) 0 0
\(127\) 2.93175 0.260151 0.130075 0.991504i \(-0.458478\pi\)
0.130075 + 0.991504i \(0.458478\pi\)
\(128\) 0 0
\(129\) −1.24931 7.68072i −0.109995 0.676250i
\(130\) 0 0
\(131\) −16.2276 −1.41782 −0.708908 0.705301i \(-0.750812\pi\)
−0.708908 + 0.705301i \(0.750812\pi\)
\(132\) 0 0
\(133\) 3.50632 + 3.60791i 0.304036 + 0.312845i
\(134\) 0 0
\(135\) −3.02802 5.76371i −0.260610 0.496061i
\(136\) 0 0
\(137\) 17.4026i 1.48680i 0.668845 + 0.743402i \(0.266789\pi\)
−0.668845 + 0.743402i \(0.733211\pi\)
\(138\) 0 0
\(139\) −5.45273 3.14813i −0.462494 0.267021i 0.250598 0.968091i \(-0.419373\pi\)
−0.713092 + 0.701070i \(0.752706\pi\)
\(140\) 0 0
\(141\) 10.2153 8.34280i 0.860279 0.702591i
\(142\) 0 0
\(143\) −0.378672 + 0.655879i −0.0316661 + 0.0548474i
\(144\) 0 0
\(145\) −6.36052 + 3.67225i −0.528212 + 0.304963i
\(146\) 0 0
\(147\) 12.0178 1.60400i 0.991210 0.132296i
\(148\) 0 0
\(149\) 10.6269i 0.870592i −0.900287 0.435296i \(-0.856644\pi\)
0.900287 0.435296i \(-0.143356\pi\)
\(150\) 0 0
\(151\) −9.48930 −0.772229 −0.386114 0.922451i \(-0.626183\pi\)
−0.386114 + 0.922451i \(0.626183\pi\)
\(152\) 0 0
\(153\) −12.6050 + 4.21196i −1.01905 + 0.340517i
\(154\) 0 0
\(155\) 2.69205 1.55426i 0.216231 0.124841i
\(156\) 0 0
\(157\) 20.6214 11.9058i 1.64577 0.950185i 0.667040 0.745022i \(-0.267561\pi\)
0.978728 0.205163i \(-0.0657723\pi\)
\(158\) 0 0
\(159\) −3.38771 4.14805i −0.268663 0.328961i
\(160\) 0 0
\(161\) −12.1815 + 3.07829i −0.960035 + 0.242603i
\(162\) 0 0
\(163\) 4.41101 + 7.64009i 0.345497 + 0.598418i 0.985444 0.170001i \(-0.0543771\pi\)
−0.639947 + 0.768419i \(0.721044\pi\)
\(164\) 0 0
\(165\) −0.474470 + 1.25159i −0.0369375 + 0.0974360i
\(166\) 0 0
\(167\) 11.0335 19.1106i 0.853800 1.47883i −0.0239535 0.999713i \(-0.507625\pi\)
0.877754 0.479112i \(-0.159041\pi\)
\(168\) 0 0
\(169\) −5.74607 9.95249i −0.442005 0.765576i
\(170\) 0 0
\(171\) 5.58967 + 1.13956i 0.427453 + 0.0871445i
\(172\) 0 0
\(173\) 2.03375 3.52256i 0.154623 0.267815i −0.778299 0.627894i \(-0.783917\pi\)
0.932922 + 0.360079i \(0.117250\pi\)
\(174\) 0 0
\(175\) −2.22338 8.79842i −0.168072 0.665098i
\(176\) 0 0
\(177\) 0.991213 + 6.09396i 0.0745041 + 0.458050i
\(178\) 0 0
\(179\) −7.20787 4.16146i −0.538741 0.311042i 0.205827 0.978588i \(-0.434011\pi\)
−0.744569 + 0.667546i \(0.767345\pi\)
\(180\) 0 0
\(181\) 12.6701i 0.941763i −0.882196 0.470881i \(-0.843936\pi\)
0.882196 0.470881i \(-0.156064\pi\)
\(182\) 0 0
\(183\) −15.8310 19.3840i −1.17026 1.43291i
\(184\) 0 0
\(185\) 1.66919 + 2.89111i 0.122721 + 0.212559i
\(186\) 0 0
\(187\) 2.36619 + 1.36612i 0.173033 + 0.0999008i
\(188\) 0 0
\(189\) 10.2330 9.18073i 0.744341 0.667800i
\(190\) 0 0
\(191\) 3.29133 + 1.90025i 0.238152 + 0.137497i 0.614327 0.789051i \(-0.289427\pi\)
−0.376175 + 0.926549i \(0.622761\pi\)
\(192\) 0 0
\(193\) −3.39448 5.87942i −0.244340 0.423210i 0.717606 0.696450i \(-0.245238\pi\)
−0.961946 + 0.273240i \(0.911905\pi\)
\(194\) 0 0
\(195\) 1.68571 + 2.06404i 0.120716 + 0.147809i
\(196\) 0 0
\(197\) 6.41453i 0.457017i 0.973542 + 0.228508i \(0.0733848\pi\)
−0.973542 + 0.228508i \(0.926615\pi\)
\(198\) 0 0
\(199\) 13.8921 + 8.02063i 0.984788 + 0.568568i 0.903712 0.428140i \(-0.140831\pi\)
0.0810756 + 0.996708i \(0.474164\pi\)
\(200\) 0 0
\(201\) −3.78536 23.2723i −0.266999 1.64150i
\(202\) 0 0
\(203\) −10.8083 11.1215i −0.758597 0.780576i
\(204\) 0 0
\(205\) 2.63084 4.55675i 0.183746 0.318257i
\(206\) 0 0
\(207\) −9.44441 + 10.6664i −0.656432 + 0.741363i
\(208\) 0 0
\(209\) −0.586396 1.01567i −0.0405619 0.0702552i
\(210\) 0 0
\(211\) 4.06070 7.03333i 0.279550 0.484194i −0.691723 0.722163i \(-0.743148\pi\)
0.971273 + 0.237968i \(0.0764815\pi\)
\(212\) 0 0
\(213\) 6.39118 16.8590i 0.437916 1.15516i
\(214\) 0 0
\(215\) 2.81467 + 4.87515i 0.191959 + 0.332483i
\(216\) 0 0
\(217\) 4.57457 + 4.70711i 0.310542 + 0.319540i
\(218\) 0 0
\(219\) −12.5880 15.4132i −0.850615 1.04153i
\(220\) 0 0
\(221\) 4.71104 2.71992i 0.316899 0.182962i
\(222\) 0 0
\(223\) 6.96205 4.01954i 0.466213 0.269168i −0.248440 0.968647i \(-0.579918\pi\)
0.714653 + 0.699479i \(0.246585\pi\)
\(224\) 0 0
\(225\) −7.70409 6.82150i −0.513606 0.454767i
\(226\) 0 0
\(227\) 20.8234 1.38210 0.691048 0.722809i \(-0.257149\pi\)
0.691048 + 0.722809i \(0.257149\pi\)
\(228\) 0 0
\(229\) 6.01918i 0.397759i −0.980024 0.198879i \(-0.936270\pi\)
0.980024 0.198879i \(-0.0637302\pi\)
\(230\) 0 0
\(231\) −2.80771 0.323850i −0.184734 0.0213078i
\(232\) 0 0
\(233\) −18.2156 + 10.5168i −1.19335 + 0.688978i −0.959064 0.283191i \(-0.908607\pi\)
−0.234282 + 0.972169i \(0.575274\pi\)
\(234\) 0 0
\(235\) −4.77059 + 8.26291i −0.311199 + 0.539013i
\(236\) 0 0
\(237\) 5.40875 4.41733i 0.351336 0.286936i
\(238\) 0 0
\(239\) 7.51079 + 4.33636i 0.485832 + 0.280496i 0.722844 0.691011i \(-0.242835\pi\)
−0.237011 + 0.971507i \(0.576168\pi\)
\(240\) 0 0
\(241\) 8.47315i 0.545804i 0.962042 + 0.272902i \(0.0879834\pi\)
−0.962042 + 0.272902i \(0.912017\pi\)
\(242\) 0 0
\(243\) 3.72030 15.1380i 0.238658 0.971104i
\(244\) 0 0
\(245\) −7.71795 + 4.16677i −0.493081 + 0.266205i
\(246\) 0 0
\(247\) −2.33501 −0.148573
\(248\) 0 0
\(249\) 2.42910 + 14.9341i 0.153938 + 0.946407i
\(250\) 0 0
\(251\) −23.4435 −1.47974 −0.739871 0.672749i \(-0.765113\pi\)
−0.739871 + 0.672749i \(0.765113\pi\)
\(252\) 0 0
\(253\) 2.92891 0.184139
\(254\) 0 0
\(255\) 7.44638 6.08146i 0.466310 0.380836i
\(256\) 0 0
\(257\) −24.5170 −1.52933 −0.764665 0.644428i \(-0.777096\pi\)
−0.764665 + 0.644428i \(0.777096\pi\)
\(258\) 0 0
\(259\) −5.05518 + 4.91283i −0.314113 + 0.305269i
\(260\) 0 0
\(261\) −17.2304 3.51274i −1.06653 0.217433i
\(262\) 0 0
\(263\) 10.5544i 0.650811i 0.945575 + 0.325406i \(0.105501\pi\)
−0.945575 + 0.325406i \(0.894499\pi\)
\(264\) 0 0
\(265\) 3.35527 + 1.93716i 0.206112 + 0.118999i
\(266\) 0 0
\(267\) 0.451159 + 2.77372i 0.0276105 + 0.169749i
\(268\) 0 0
\(269\) 1.14451 1.98235i 0.0697821 0.120866i −0.829023 0.559214i \(-0.811103\pi\)
0.898805 + 0.438348i \(0.144436\pi\)
\(270\) 0 0
\(271\) 20.9239 12.0804i 1.27103 0.733831i 0.295851 0.955234i \(-0.404397\pi\)
0.975182 + 0.221403i \(0.0710635\pi\)
\(272\) 0 0
\(273\) −3.35345 + 4.51878i −0.202960 + 0.273489i
\(274\) 0 0
\(275\) 2.11549i 0.127569i
\(276\) 0 0
\(277\) −11.3710 −0.683219 −0.341609 0.939842i \(-0.610972\pi\)
−0.341609 + 0.939842i \(0.610972\pi\)
\(278\) 0 0
\(279\) 7.29265 + 1.48675i 0.436600 + 0.0890092i
\(280\) 0 0
\(281\) 17.6382 10.1834i 1.05221 0.607492i 0.128941 0.991652i \(-0.458842\pi\)
0.923267 + 0.384160i \(0.125509\pi\)
\(282\) 0 0
\(283\) −10.5318 + 6.08055i −0.626052 + 0.361451i −0.779222 0.626749i \(-0.784385\pi\)
0.153169 + 0.988200i \(0.451052\pi\)
\(284\) 0 0
\(285\) −4.07328 + 0.662539i −0.241280 + 0.0392454i
\(286\) 0 0
\(287\) 10.6896 + 3.02851i 0.630988 + 0.178767i
\(288\) 0 0
\(289\) −1.31257 2.27345i −0.0772103 0.133732i
\(290\) 0 0
\(291\) 17.3031 2.81444i 1.01433 0.164986i
\(292\) 0 0
\(293\) 13.4674 23.3262i 0.786773 1.36273i −0.141161 0.989987i \(-0.545083\pi\)
0.927934 0.372745i \(-0.121583\pi\)
\(294\) 0 0
\(295\) −2.23319 3.86799i −0.130021 0.225203i
\(296\) 0 0
\(297\) −2.83707 + 1.49048i −0.164623 + 0.0864863i
\(298\) 0 0
\(299\) 2.91570 5.05014i 0.168619 0.292057i
\(300\) 0 0
\(301\) −8.52431 + 8.28428i −0.491333 + 0.477498i
\(302\) 0 0
\(303\) 2.77470 + 1.05187i 0.159402 + 0.0604286i
\(304\) 0 0
\(305\) 15.6793 + 9.05248i 0.897797 + 0.518343i
\(306\) 0 0
\(307\) 21.3700i 1.21965i 0.792536 + 0.609825i \(0.208760\pi\)
−0.792536 + 0.609825i \(0.791240\pi\)
\(308\) 0 0
\(309\) −4.54664 + 11.9934i −0.258649 + 0.682281i
\(310\) 0 0
\(311\) −8.11558 14.0566i −0.460192 0.797076i 0.538778 0.842448i \(-0.318886\pi\)
−0.998970 + 0.0453714i \(0.985553\pi\)
\(312\) 0 0
\(313\) 12.1941 + 7.04027i 0.689252 + 0.397940i 0.803332 0.595532i \(-0.203059\pi\)
−0.114080 + 0.993472i \(0.536392\pi\)
\(314\) 0 0
\(315\) −4.56772 + 8.83426i −0.257362 + 0.497754i
\(316\) 0 0
\(317\) 17.5776 + 10.1484i 0.987254 + 0.569991i 0.904452 0.426575i \(-0.140280\pi\)
0.0828017 + 0.996566i \(0.473613\pi\)
\(318\) 0 0
\(319\) 1.80759 + 3.13083i 0.101205 + 0.175293i
\(320\) 0 0
\(321\) −0.259899 + 0.0422738i −0.0145061 + 0.00235950i
\(322\) 0 0
\(323\) 8.42392i 0.468720i
\(324\) 0 0
\(325\) 3.64761 + 2.10595i 0.202333 + 0.116817i
\(326\) 0 0
\(327\) −7.24550 + 5.91741i −0.400677 + 0.327233i
\(328\) 0 0
\(329\) −19.3838 5.49170i −1.06867 0.302767i
\(330\) 0 0
\(331\) 13.2341 22.9221i 0.727411 1.25991i −0.230563 0.973057i \(-0.574057\pi\)
0.957974 0.286856i \(-0.0926100\pi\)
\(332\) 0 0
\(333\) −1.59668 + 7.83190i −0.0874977 + 0.429186i
\(334\) 0 0
\(335\) 8.52836 + 14.7716i 0.465954 + 0.807057i
\(336\) 0 0
\(337\) −1.73659 + 3.00785i −0.0945979 + 0.163848i −0.909441 0.415834i \(-0.863490\pi\)
0.814843 + 0.579682i \(0.196823\pi\)
\(338\) 0 0
\(339\) 7.08951 + 8.68067i 0.385049 + 0.471469i
\(340\) 0 0
\(341\) −0.765051 1.32511i −0.0414298 0.0717585i
\(342\) 0 0
\(343\) −12.5230 13.6446i −0.676177 0.736739i
\(344\) 0 0
\(345\) 3.65333 9.63698i 0.196689 0.518837i
\(346\) 0 0
\(347\) −8.14765 + 4.70405i −0.437389 + 0.252527i −0.702489 0.711694i \(-0.747928\pi\)
0.265101 + 0.964221i \(0.414595\pi\)
\(348\) 0 0
\(349\) −12.3253 + 7.11603i −0.659759 + 0.380912i −0.792185 0.610281i \(-0.791057\pi\)
0.132426 + 0.991193i \(0.457723\pi\)
\(350\) 0 0
\(351\) −0.254329 + 6.37554i −0.0135751 + 0.340301i
\(352\) 0 0
\(353\) 17.1652 0.913614 0.456807 0.889566i \(-0.348993\pi\)
0.456807 + 0.889566i \(0.348993\pi\)
\(354\) 0 0
\(355\) 13.0430i 0.692250i
\(356\) 0 0
\(357\) 16.3023 + 12.0981i 0.862807 + 0.640300i
\(358\) 0 0
\(359\) −24.4705 + 14.1281i −1.29150 + 0.745650i −0.978921 0.204241i \(-0.934528\pi\)
−0.312583 + 0.949890i \(0.601194\pi\)
\(360\) 0 0
\(361\) −7.69205 + 13.3230i −0.404845 + 0.701212i
\(362\) 0 0
\(363\) −17.1993 6.52017i −0.902729 0.342220i
\(364\) 0 0
\(365\) 12.4674 + 7.19806i 0.652574 + 0.376764i
\(366\) 0 0
\(367\) 23.0704i 1.20427i −0.798396 0.602133i \(-0.794318\pi\)
0.798396 0.602133i \(-0.205682\pi\)
\(368\) 0 0
\(369\) 11.9485 3.99260i 0.622015 0.207847i
\(370\) 0 0
\(371\) −2.22998 + 7.87108i −0.115775 + 0.408646i
\(372\) 0 0
\(373\) −13.8727 −0.718301 −0.359150 0.933280i \(-0.616933\pi\)
−0.359150 + 0.933280i \(0.616933\pi\)
\(374\) 0 0
\(375\) 17.1071 + 6.48523i 0.883408 + 0.334896i
\(376\) 0 0
\(377\) 7.19773 0.370702
\(378\) 0 0
\(379\) −22.7814 −1.17020 −0.585101 0.810961i \(-0.698945\pi\)
−0.585101 + 0.810961i \(0.698945\pi\)
\(380\) 0 0
\(381\) −4.74820 1.80002i −0.243257 0.0922177i
\(382\) 0 0
\(383\) 15.2320 0.778317 0.389158 0.921171i \(-0.372766\pi\)
0.389158 + 0.921171i \(0.372766\pi\)
\(384\) 0 0
\(385\) 1.98229 0.500928i 0.101027 0.0255297i
\(386\) 0 0
\(387\) −2.69241 + 13.2066i −0.136863 + 0.671328i
\(388\) 0 0
\(389\) 14.1479i 0.717328i −0.933467 0.358664i \(-0.883232\pi\)
0.933467 0.358664i \(-0.116768\pi\)
\(390\) 0 0
\(391\) −18.2192 10.5189i −0.921386 0.531962i
\(392\) 0 0
\(393\) 26.2819 + 9.96335i 1.32575 + 0.502584i
\(394\) 0 0
\(395\) −2.52592 + 4.37503i −0.127093 + 0.220131i
\(396\) 0 0
\(397\) 8.40688 4.85371i 0.421929 0.243601i −0.273973 0.961737i \(-0.588338\pi\)
0.695902 + 0.718136i \(0.255005\pi\)
\(398\) 0 0
\(399\) −3.46359 7.99608i −0.173397 0.400305i
\(400\) 0 0
\(401\) 8.73133i 0.436022i −0.975946 0.218011i \(-0.930043\pi\)
0.975946 0.218011i \(-0.0699569\pi\)
\(402\) 0 0
\(403\) −3.04640 −0.151752
\(404\) 0 0
\(405\) 1.36535 + 11.1939i 0.0678446 + 0.556230i
\(406\) 0 0
\(407\) 1.42309 0.821622i 0.0705400 0.0407263i
\(408\) 0 0
\(409\) −12.8967 + 7.44591i −0.637700 + 0.368176i −0.783728 0.621104i \(-0.786684\pi\)
0.146028 + 0.989280i \(0.453351\pi\)
\(410\) 0 0
\(411\) 10.6847 28.1849i 0.527039 1.39026i
\(412\) 0 0
\(413\) 6.76327 6.57283i 0.332799 0.323428i
\(414\) 0 0
\(415\) −5.47272 9.47903i −0.268645 0.465307i
\(416\) 0 0
\(417\) 6.89825 + 8.44648i 0.337809 + 0.413626i
\(418\) 0 0
\(419\) 2.13859 3.70414i 0.104477 0.180959i −0.809048 0.587743i \(-0.800017\pi\)
0.913524 + 0.406784i \(0.133350\pi\)
\(420\) 0 0
\(421\) 5.76681 + 9.98841i 0.281057 + 0.486805i 0.971645 0.236443i \(-0.0759816\pi\)
−0.690588 + 0.723248i \(0.742648\pi\)
\(422\) 0 0
\(423\) −21.6667 + 7.23993i −1.05347 + 0.352017i
\(424\) 0 0
\(425\) 7.59756 13.1594i 0.368536 0.638323i
\(426\) 0 0
\(427\) −10.4208 + 36.7820i −0.504299 + 1.78000i
\(428\) 0 0
\(429\) 1.01598 0.829753i 0.0490521 0.0400609i
\(430\) 0 0
\(431\) 14.4497 + 8.34254i 0.696018 + 0.401846i 0.805863 0.592103i \(-0.201702\pi\)
−0.109845 + 0.993949i \(0.535035\pi\)
\(432\) 0 0
\(433\) 12.3503i 0.593516i −0.954953 0.296758i \(-0.904094\pi\)
0.954953 0.296758i \(-0.0959055\pi\)
\(434\) 0 0
\(435\) 12.5560 2.04230i 0.602015 0.0979207i
\(436\) 0 0
\(437\) 4.51513 + 7.82044i 0.215988 + 0.374102i
\(438\) 0 0
\(439\) 19.1691 + 11.0673i 0.914892 + 0.528213i 0.882002 0.471246i \(-0.156195\pi\)
0.0328902 + 0.999459i \(0.489529\pi\)
\(440\) 0 0
\(441\) −20.4486 4.78081i −0.973741 0.227657i
\(442\) 0 0
\(443\) 4.22906 + 2.44165i 0.200929 + 0.116006i 0.597089 0.802175i \(-0.296324\pi\)
−0.396160 + 0.918182i \(0.629657\pi\)
\(444\) 0 0
\(445\) −1.01645 1.76055i −0.0481845 0.0834580i
\(446\) 0 0
\(447\) −6.52466 + 17.2111i −0.308606 + 0.814059i
\(448\) 0 0
\(449\) 12.4409i 0.587121i −0.955941 0.293560i \(-0.905160\pi\)
0.955941 0.293560i \(-0.0948401\pi\)
\(450\) 0 0
\(451\) −2.24296 1.29498i −0.105617 0.0609780i
\(452\) 0 0
\(453\) 15.3687 + 5.82619i 0.722083 + 0.273738i
\(454\) 0 0
\(455\) 1.10963 3.91660i 0.0520201 0.183613i
\(456\) 0 0
\(457\) 5.38774 9.33185i 0.252028 0.436525i −0.712056 0.702123i \(-0.752236\pi\)
0.964084 + 0.265597i \(0.0855691\pi\)
\(458\) 0 0
\(459\) 23.0008 + 0.917533i 1.07359 + 0.0428268i
\(460\) 0 0
\(461\) −0.333303 0.577297i −0.0155235 0.0268874i 0.858159 0.513383i \(-0.171608\pi\)
−0.873683 + 0.486496i \(0.838275\pi\)
\(462\) 0 0
\(463\) 20.7892 36.0079i 0.966155 1.67343i 0.259677 0.965696i \(-0.416384\pi\)
0.706479 0.707734i \(-0.250283\pi\)
\(464\) 0 0
\(465\) −5.31426 + 0.864391i −0.246443 + 0.0400852i
\(466\) 0 0
\(467\) −19.6568 34.0465i −0.909606 1.57548i −0.814612 0.580006i \(-0.803050\pi\)
−0.0949943 0.995478i \(-0.530283\pi\)
\(468\) 0 0
\(469\) −25.8284 + 25.1011i −1.19264 + 1.15906i
\(470\) 0 0
\(471\) −40.7078 + 6.62133i −1.87572 + 0.305095i
\(472\) 0 0
\(473\) 2.39969 1.38546i 0.110338 0.0637036i
\(474\) 0 0
\(475\) −5.64854 + 3.26119i −0.259173 + 0.149633i
\(476\) 0 0
\(477\) 2.93987 + 8.79805i 0.134608 + 0.402835i
\(478\) 0 0
\(479\) 38.1153 1.74153 0.870767 0.491696i \(-0.163623\pi\)
0.870767 + 0.491696i \(0.163623\pi\)
\(480\) 0 0
\(481\) 3.27167i 0.149175i
\(482\) 0 0
\(483\) 21.6188 + 2.49358i 0.983691 + 0.113462i
\(484\) 0 0
\(485\) −10.9828 + 6.34090i −0.498701 + 0.287925i
\(486\) 0 0
\(487\) 3.80277 6.58659i 0.172320 0.298467i −0.766911 0.641754i \(-0.778207\pi\)
0.939231 + 0.343287i \(0.111540\pi\)
\(488\) 0 0
\(489\) −2.45316 15.0820i −0.110936 0.682030i
\(490\) 0 0
\(491\) −3.33297 1.92429i −0.150415 0.0868420i 0.422904 0.906175i \(-0.361011\pi\)
−0.573318 + 0.819333i \(0.694344\pi\)
\(492\) 0 0
\(493\) 25.9670i 1.16950i
\(494\) 0 0
\(495\) 1.53688 1.73573i 0.0690778 0.0780154i
\(496\) 0 0
\(497\) −26.7016 + 6.74757i −1.19773 + 0.302670i
\(498\) 0 0
\(499\) 32.1588 1.43962 0.719812 0.694169i \(-0.244228\pi\)
0.719812 + 0.694169i \(0.244228\pi\)
\(500\) 0 0
\(501\) −29.6031 + 24.1769i −1.32257 + 1.08014i
\(502\) 0 0
\(503\) 0.425693 0.0189807 0.00949035 0.999955i \(-0.496979\pi\)
0.00949035 + 0.999955i \(0.496979\pi\)
\(504\) 0 0
\(505\) −2.14664 −0.0955243
\(506\) 0 0
\(507\) 3.19565 + 19.6468i 0.141924 + 0.872544i
\(508\) 0 0
\(509\) −25.7926 −1.14323 −0.571617 0.820520i \(-0.693684\pi\)
−0.571617 + 0.820520i \(0.693684\pi\)
\(510\) 0 0
\(511\) −8.28610 + 29.2471i −0.366555 + 1.29382i
\(512\) 0 0
\(513\) −8.35326 5.27753i −0.368805 0.233008i
\(514\) 0 0
\(515\) 9.27868i 0.408868i
\(516\) 0 0
\(517\) 4.06724 + 2.34822i 0.178877 + 0.103275i
\(518\) 0 0
\(519\) −5.45658 + 4.45639i −0.239517 + 0.195614i
\(520\) 0 0
\(521\) −9.07174 + 15.7127i −0.397440 + 0.688386i −0.993409 0.114621i \(-0.963435\pi\)
0.595969 + 0.803007i \(0.296768\pi\)
\(522\) 0 0
\(523\) −12.0723 + 6.96997i −0.527887 + 0.304776i −0.740155 0.672436i \(-0.765248\pi\)
0.212269 + 0.977211i \(0.431915\pi\)
\(524\) 0 0
\(525\) −1.80106 + 15.6148i −0.0786048 + 0.681487i
\(526\) 0 0
\(527\) 10.9904i 0.478749i
\(528\) 0 0
\(529\) 0.447980 0.0194774
\(530\) 0 0
\(531\) 2.13619 10.4782i 0.0927026 0.454716i
\(532\) 0 0
\(533\) −4.46569 + 2.57827i −0.193431 + 0.111677i
\(534\) 0 0
\(535\) 0.164965 0.0952423i 0.00713204 0.00411769i
\(536\) 0 0
\(537\) 9.11868 + 11.1653i 0.393500 + 0.481817i
\(538\) 0 0
\(539\) 2.05100 + 3.79900i 0.0883430 + 0.163634i
\(540\) 0 0
\(541\) −14.8576 25.7341i −0.638779 1.10640i −0.985701 0.168503i \(-0.946107\pi\)
0.346922 0.937894i \(-0.387227\pi\)
\(542\) 0 0
\(543\) −7.77913 + 20.5203i −0.333834 + 0.880609i
\(544\) 0 0
\(545\) 3.38370 5.86074i 0.144942 0.251046i
\(546\) 0 0
\(547\) 9.13516 + 15.8226i 0.390591 + 0.676524i 0.992528 0.122020i \(-0.0389373\pi\)
−0.601937 + 0.798544i \(0.705604\pi\)
\(548\) 0 0
\(549\) 13.7382 + 41.1138i 0.586331 + 1.75469i
\(550\) 0 0
\(551\) −5.57306 + 9.65282i −0.237420 + 0.411224i
\(552\) 0 0
\(553\) −10.2633 2.90773i −0.436440 0.123649i
\(554\) 0 0
\(555\) −0.928308 5.70723i −0.0394045 0.242258i
\(556\) 0 0
\(557\) −0.359456 0.207532i −0.0152307 0.00879343i 0.492365 0.870389i \(-0.336132\pi\)
−0.507596 + 0.861595i \(0.669466\pi\)
\(558\) 0 0
\(559\) 5.51686i 0.233338i
\(560\) 0 0
\(561\) −2.99347 3.66532i −0.126385 0.154750i
\(562\) 0 0
\(563\) −1.82962 3.16900i −0.0771095 0.133558i 0.824892 0.565290i \(-0.191236\pi\)
−0.902002 + 0.431733i \(0.857902\pi\)
\(564\) 0 0
\(565\) −7.02161 4.05393i −0.295401 0.170550i
\(566\) 0 0
\(567\) −22.2099 + 8.58612i −0.932727 + 0.360583i
\(568\) 0 0
\(569\) 30.4692 + 17.5914i 1.27733 + 0.737470i 0.976358 0.216162i \(-0.0693538\pi\)
0.300977 + 0.953631i \(0.402687\pi\)
\(570\) 0 0
\(571\) −5.02680 8.70667i −0.210365 0.364363i 0.741464 0.670993i \(-0.234132\pi\)
−0.951829 + 0.306630i \(0.900799\pi\)
\(572\) 0 0
\(573\) −4.16387 5.09840i −0.173948 0.212989i
\(574\) 0 0
\(575\) 16.2888i 0.679292i
\(576\) 0 0
\(577\) 0.0597672 + 0.0345066i 0.00248814 + 0.00143653i 0.501244 0.865306i \(-0.332876\pi\)
−0.498755 + 0.866743i \(0.666209\pi\)
\(578\) 0 0
\(579\) 1.88782 + 11.6063i 0.0784552 + 0.482342i
\(580\) 0 0
\(581\) 16.5743 16.1076i 0.687618 0.668256i
\(582\) 0 0
\(583\) 0.953529 1.65156i 0.0394911 0.0684006i
\(584\) 0 0
\(585\) −1.46286 4.37786i −0.0604820 0.181002i
\(586\) 0 0
\(587\) 11.4799 + 19.8838i 0.473827 + 0.820693i 0.999551 0.0299626i \(-0.00953881\pi\)
−0.525724 + 0.850655i \(0.676205\pi\)
\(588\) 0 0
\(589\) 2.35877 4.08550i 0.0971913 0.168340i
\(590\) 0 0
\(591\) 3.93836 10.3888i 0.162002 0.427340i
\(592\) 0 0
\(593\) 14.3970 + 24.9363i 0.591213 + 1.02401i 0.994069 + 0.108748i \(0.0346843\pi\)
−0.402856 + 0.915263i \(0.631982\pi\)
\(594\) 0 0
\(595\) −14.1298 4.00316i −0.579265 0.164114i
\(596\) 0 0
\(597\) −17.5750 21.5195i −0.719295 0.880733i
\(598\) 0 0
\(599\) 33.1588 19.1442i 1.35483 0.782212i 0.365910 0.930650i \(-0.380758\pi\)
0.988922 + 0.148438i \(0.0474246\pi\)
\(600\) 0 0
\(601\) 26.7618 15.4509i 1.09164 0.630257i 0.157625 0.987499i \(-0.449616\pi\)
0.934012 + 0.357242i \(0.116283\pi\)
\(602\) 0 0
\(603\) −8.15793 + 40.0155i −0.332216 + 1.62956i
\(604\) 0 0
\(605\) 13.3062 0.540975
\(606\) 0 0
\(607\) 33.1791i 1.34670i 0.739325 + 0.673349i \(0.235145\pi\)
−0.739325 + 0.673349i \(0.764855\pi\)
\(608\) 0 0
\(609\) 10.6766 + 24.6482i 0.432640 + 0.998795i
\(610\) 0 0
\(611\) 8.09780 4.67527i 0.327602 0.189141i
\(612\) 0 0
\(613\) −2.01164 + 3.48426i −0.0812492 + 0.140728i −0.903787 0.427983i \(-0.859224\pi\)
0.822538 + 0.568711i \(0.192558\pi\)
\(614\) 0 0
\(615\) −7.05857 + 5.76474i −0.284629 + 0.232457i
\(616\) 0 0
\(617\) 27.1191 + 15.6572i 1.09177 + 0.630336i 0.934048 0.357147i \(-0.116251\pi\)
0.157726 + 0.987483i \(0.449584\pi\)
\(618\) 0 0
\(619\) 13.9310i 0.559934i −0.960010 0.279967i \(-0.909676\pi\)
0.960010 0.279967i \(-0.0903235\pi\)
\(620\) 0 0
\(621\) 21.8448 11.4764i 0.876603 0.460532i
\(622\) 0 0
\(623\) 3.07836 2.99168i 0.123332 0.119859i
\(624\) 0 0
\(625\) 3.91523 0.156609
\(626\) 0 0
\(627\) 0.326121 + 2.00499i 0.0130240 + 0.0800714i
\(628\) 0 0
\(629\) −11.8031 −0.470620
\(630\) 0 0
\(631\) 4.61815 0.183846 0.0919229 0.995766i \(-0.470699\pi\)
0.0919229 + 0.995766i \(0.470699\pi\)
\(632\) 0 0
\(633\) −10.8949 + 8.89787i −0.433033 + 0.353659i
\(634\) 0 0
\(635\) 3.67344 0.145776
\(636\) 0 0
\(637\) 8.59213 + 0.245442i 0.340433 + 0.00972478i
\(638\) 0 0
\(639\) −20.7020 + 23.3805i −0.818960 + 0.924920i
\(640\) 0 0
\(641\) 42.4724i 1.67756i −0.544473 0.838779i \(-0.683270\pi\)
0.544473 0.838779i \(-0.316730\pi\)
\(642\) 0 0
\(643\) 3.13514 + 1.81008i 0.123638 + 0.0713825i 0.560544 0.828125i \(-0.310592\pi\)
−0.436905 + 0.899507i \(0.643926\pi\)
\(644\) 0 0
\(645\) −1.56536 9.62383i −0.0616361 0.378938i
\(646\) 0 0
\(647\) −6.00617 + 10.4030i −0.236127 + 0.408984i −0.959600 0.281369i \(-0.909211\pi\)
0.723473 + 0.690353i \(0.242545\pi\)
\(648\) 0 0
\(649\) −1.90394 + 1.09924i −0.0747361 + 0.0431489i
\(650\) 0 0
\(651\) −4.51883 10.4322i −0.177107 0.408870i
\(652\) 0 0
\(653\) 46.1822i 1.80725i 0.428324 + 0.903625i \(0.359104\pi\)
−0.428324 + 0.903625i \(0.640896\pi\)
\(654\) 0 0
\(655\) −20.3330 −0.794476
\(656\) 0 0
\(657\) 10.9239 + 32.6915i 0.426182 + 1.27542i
\(658\) 0 0
\(659\) 16.3479 9.43847i 0.636824 0.367671i −0.146566 0.989201i \(-0.546822\pi\)
0.783390 + 0.621530i \(0.213489\pi\)
\(660\) 0 0
\(661\) 2.88202 1.66393i 0.112097 0.0647195i −0.442903 0.896570i \(-0.646051\pi\)
0.555000 + 0.831850i \(0.312718\pi\)
\(662\) 0 0
\(663\) −9.29987 + 1.51267i −0.361177 + 0.0587472i
\(664\) 0 0
\(665\) 4.39336 + 4.52066i 0.170367 + 0.175304i
\(666\) 0 0
\(667\) −13.9181 24.1068i −0.538909 0.933418i
\(668\) 0 0
\(669\) −13.7435 + 2.23544i −0.531353 + 0.0864273i
\(670\) 0 0
\(671\) 4.45589 7.71783i 0.172018 0.297944i
\(672\) 0 0
\(673\) −16.3678 28.3499i −0.630934 1.09281i −0.987361 0.158487i \(-0.949339\pi\)
0.356427 0.934323i \(-0.383995\pi\)
\(674\) 0 0
\(675\) 8.28915 + 15.7781i 0.319050 + 0.607298i
\(676\) 0 0
\(677\) −16.9228 + 29.3111i −0.650396 + 1.12652i 0.332631 + 0.943057i \(0.392063\pi\)
−0.983027 + 0.183461i \(0.941270\pi\)
\(678\) 0 0
\(679\) −18.6629 19.2036i −0.716215 0.736966i
\(680\) 0 0
\(681\) −33.7251 12.7850i −1.29235 0.489923i
\(682\) 0 0
\(683\) −4.79617 2.76907i −0.183520 0.105956i 0.405425 0.914128i \(-0.367123\pi\)
−0.588946 + 0.808173i \(0.700457\pi\)
\(684\) 0 0
\(685\) 21.8052i 0.833133i
\(686\) 0 0
\(687\) −3.69562 + 9.74854i −0.140997 + 0.371930i
\(688\) 0 0
\(689\) −1.89846 3.28822i −0.0723254 0.125271i
\(690\) 0 0
\(691\) −12.3417 7.12550i −0.469502 0.271067i 0.246530 0.969135i \(-0.420710\pi\)
−0.716031 + 0.698068i \(0.754043\pi\)
\(692\) 0 0
\(693\) 4.34848 + 2.24837i 0.165185 + 0.0854083i
\(694\) 0 0
\(695\) −6.83219 3.94456i −0.259160 0.149626i
\(696\) 0 0
\(697\) 9.30154 + 16.1107i 0.352321 + 0.610238i
\(698\) 0 0
\(699\) 35.9587 5.84886i 1.36008 0.221224i
\(700\) 0 0
\(701\) 18.6105i 0.702908i −0.936205 0.351454i \(-0.885687\pi\)
0.936205 0.351454i \(-0.114313\pi\)
\(702\) 0 0
\(703\) 4.38760 + 2.53318i 0.165482 + 0.0955408i
\(704\) 0 0
\(705\) 12.7996 10.4534i 0.482059 0.393698i
\(706\) 0 0
\(707\) −1.11053 4.39462i −0.0417657 0.165277i
\(708\) 0 0
\(709\) 6.74733 11.6867i 0.253401 0.438904i −0.711059 0.703133i \(-0.751784\pi\)
0.964460 + 0.264229i \(0.0851174\pi\)
\(710\) 0 0
\(711\) −11.4720 + 3.83338i −0.430234 + 0.143763i
\(712\) 0 0
\(713\) 5.89074 + 10.2031i 0.220610 + 0.382107i
\(714\) 0 0
\(715\) −0.474470 + 0.821807i −0.0177442 + 0.0307338i
\(716\) 0 0
\(717\) −9.50190 11.6345i −0.354855 0.434498i
\(718\) 0 0
\(719\) 18.8692 + 32.6824i 0.703702 + 1.21885i 0.967158 + 0.254176i \(0.0818042\pi\)
−0.263456 + 0.964671i \(0.584863\pi\)
\(720\) 0 0
\(721\) 18.9954 4.80017i 0.707424 0.178768i
\(722\) 0 0
\(723\) 5.20230 13.7229i 0.193476 0.510362i
\(724\) 0 0
\(725\) 17.4118 10.0527i 0.646659 0.373348i
\(726\) 0 0
\(727\) −1.98480 + 1.14592i −0.0736121 + 0.0424999i −0.536354 0.843993i \(-0.680199\pi\)
0.462742 + 0.886493i \(0.346866\pi\)
\(728\) 0 0
\(729\) −15.3197 + 22.2330i −0.567395 + 0.823446i
\(730\) 0 0
\(731\) −19.9030 −0.736138
\(732\) 0 0
\(733\) 24.7888i 0.915596i 0.889056 + 0.457798i \(0.151362\pi\)
−0.889056 + 0.457798i \(0.848638\pi\)
\(734\) 0 0
\(735\) 15.0581 2.00979i 0.555427 0.0741322i
\(736\) 0 0
\(737\) 7.27099 4.19791i 0.267830 0.154632i
\(738\) 0 0
\(739\) −8.10081 + 14.0310i −0.297993 + 0.516139i −0.975677 0.219214i \(-0.929651\pi\)
0.677684 + 0.735354i \(0.262984\pi\)
\(740\) 0 0
\(741\) 3.78173 + 1.43363i 0.138925 + 0.0526658i
\(742\) 0 0
\(743\) 18.8312 + 10.8722i 0.690848 + 0.398862i 0.803930 0.594724i \(-0.202739\pi\)
−0.113081 + 0.993586i \(0.536072\pi\)
\(744\) 0 0
\(745\) 13.3154i 0.487838i
\(746\) 0 0
\(747\) 5.23501 25.6783i 0.191539 0.939519i
\(748\) 0 0
\(749\) 0.280322 + 0.288444i 0.0102427 + 0.0105395i
\(750\) 0 0
\(751\) 7.57995 0.276596 0.138298 0.990391i \(-0.455837\pi\)
0.138298 + 0.990391i \(0.455837\pi\)
\(752\) 0 0
\(753\) 37.9686 + 14.3937i 1.38365 + 0.524536i
\(754\) 0 0
\(755\) −11.8900 −0.432720
\(756\) 0 0
\(757\) 10.3436 0.375944 0.187972 0.982174i \(-0.439809\pi\)
0.187972 + 0.982174i \(0.439809\pi\)
\(758\) 0 0
\(759\) −4.74360 1.79827i −0.172182 0.0652732i
\(760\) 0 0
\(761\) −34.4339 −1.24823 −0.624114 0.781333i \(-0.714540\pi\)
−0.624114 + 0.781333i \(0.714540\pi\)
\(762\) 0 0
\(763\) 13.7486 + 3.89517i 0.497734 + 0.141015i
\(764\) 0 0
\(765\) −15.7939 + 5.27753i −0.571028 + 0.190809i
\(766\) 0 0
\(767\) 4.37713i 0.158049i
\(768\) 0 0
\(769\) −12.9344 7.46765i −0.466425 0.269290i 0.248317 0.968679i \(-0.420123\pi\)
−0.714742 + 0.699388i \(0.753456\pi\)
\(770\) 0 0
\(771\) 39.7073 + 15.0528i 1.43002 + 0.542114i
\(772\) 0 0
\(773\) 19.9924 34.6278i 0.719076 1.24548i −0.242290 0.970204i \(-0.577899\pi\)
0.961366 0.275272i \(-0.0887680\pi\)
\(774\) 0 0
\(775\) −7.36945 + 4.25476i −0.264719 + 0.152835i
\(776\) 0 0
\(777\) 11.2036 4.85297i 0.401927 0.174099i
\(778\) 0 0
\(779\) 7.98521i 0.286100i
\(780\) 0 0
\(781\) 6.42013 0.229730
\(782\) 0 0
\(783\) 25.7492 + 16.2681i 0.920201 + 0.581376i
\(784\) 0 0
\(785\) 25.8383 14.9178i 0.922209 0.532438i
\(786\) 0 0
\(787\) 1.94091 1.12059i 0.0691860 0.0399446i −0.465008 0.885307i \(-0.653949\pi\)
0.534194 + 0.845362i \(0.320615\pi\)
\(788\) 0 0
\(789\) 6.48012 17.0937i 0.230698 0.608550i
\(790\) 0 0
\(791\) 4.66671 16.4719i 0.165929 0.585674i
\(792\) 0 0
\(793\) −8.87159 15.3660i −0.315039 0.545664i
\(794\) 0 0
\(795\) −4.24475 5.19744i −0.150546 0.184334i
\(796\) 0 0
\(797\) −22.1077 + 38.2916i −0.783094 + 1.35636i 0.147037 + 0.989131i \(0.453026\pi\)
−0.930131 + 0.367227i \(0.880307\pi\)
\(798\) 0 0
\(799\) −16.8668 29.2142i −0.596705 1.03352i
\(800\) 0 0
\(801\) 0.972303 4.76925i 0.0343546 0.168513i
\(802\) 0 0
\(803\) 3.54309 6.13682i 0.125033 0.216564i
\(804\) 0 0
\(805\) −15.2632 + 3.85705i −0.537957 + 0.135943i
\(806\) 0 0
\(807\) −3.07074 + 2.50788i −0.108095 + 0.0882814i
\(808\) 0 0
\(809\) 4.31478 + 2.49114i 0.151699 + 0.0875837i 0.573928 0.818906i \(-0.305419\pi\)
−0.422229 + 0.906489i \(0.638752\pi\)
\(810\) 0 0
\(811\) 36.5749i 1.28432i −0.766571 0.642160i \(-0.778039\pi\)
0.766571 0.642160i \(-0.221961\pi\)
\(812\) 0 0
\(813\) −41.3049 + 6.71844i −1.44863 + 0.235626i
\(814\) 0 0
\(815\) 5.52693 + 9.57292i 0.193600 + 0.335325i
\(816\) 0 0
\(817\) 7.39861 + 4.27159i 0.258845 + 0.149444i
\(818\) 0 0
\(819\) 8.20559 5.25959i 0.286726 0.183785i
\(820\) 0 0
\(821\) 34.8397 + 20.1147i 1.21591 + 0.702008i 0.964041 0.265753i \(-0.0856205\pi\)
0.251872 + 0.967761i \(0.418954\pi\)
\(822\) 0 0
\(823\) −17.9016 31.0065i −0.624011 1.08082i −0.988731 0.149701i \(-0.952169\pi\)
0.364720 0.931117i \(-0.381165\pi\)
\(824\) 0 0
\(825\) 1.29886 3.42620i 0.0452204 0.119285i
\(826\) 0 0
\(827\) 32.0733i 1.11530i −0.830077 0.557648i \(-0.811704\pi\)
0.830077 0.557648i \(-0.188296\pi\)
\(828\) 0 0
\(829\) −14.0640 8.11986i −0.488463 0.282014i 0.235474 0.971881i \(-0.424336\pi\)
−0.723937 + 0.689866i \(0.757669\pi\)
\(830\) 0 0
\(831\) 18.4163 + 6.98152i 0.638854 + 0.242186i
\(832\) 0 0
\(833\) 0.885474 30.9976i 0.0306799 1.07400i
\(834\) 0 0
\(835\) 13.8248 23.9453i 0.478429 0.828663i
\(836\) 0 0
\(837\) −10.8982 6.88540i −0.376697 0.237994i
\(838\) 0 0
\(839\) 1.35145 + 2.34077i 0.0466571 + 0.0808125i 0.888411 0.459049i \(-0.151810\pi\)
−0.841754 + 0.539862i \(0.818477\pi\)
\(840\) 0 0
\(841\) 2.67914 4.64041i 0.0923842 0.160014i
\(842\) 0 0
\(843\) −34.8188 + 5.66346i −1.19922 + 0.195060i
\(844\) 0 0
\(845\) −7.19974 12.4703i −0.247679 0.428992i
\(846\) 0 0
\(847\) 6.88375 + 27.2405i 0.236528 + 0.935996i
\(848\) 0 0
\(849\) 20.7904 3.38167i 0.713526 0.116058i
\(850\) 0 0
\(851\) −10.9575 + 6.32632i −0.375619 + 0.216864i
\(852\) 0 0
\(853\) −41.3187 + 23.8554i −1.41473 + 0.816793i −0.995829 0.0912411i \(-0.970917\pi\)
−0.418897 + 0.908034i \(0.637583\pi\)
\(854\) 0 0
\(855\) 7.00378 + 1.42785i 0.239524 + 0.0488316i
\(856\) 0 0
\(857\) 17.8795 0.610751 0.305375 0.952232i \(-0.401218\pi\)
0.305375 + 0.952232i \(0.401218\pi\)
\(858\) 0 0
\(859\) 33.7058i 1.15003i 0.818144 + 0.575014i \(0.195003\pi\)
−0.818144 + 0.575014i \(0.804997\pi\)
\(860\) 0 0
\(861\) −15.4532 11.4681i −0.526645 0.390830i
\(862\) 0 0
\(863\) 16.4318 9.48693i 0.559347 0.322939i −0.193537 0.981093i \(-0.561996\pi\)
0.752883 + 0.658154i \(0.228662\pi\)
\(864\) 0 0
\(865\) 2.54826 4.41371i 0.0866434 0.150071i
\(866\) 0 0
\(867\) 0.729981 + 4.48791i 0.0247915 + 0.152417i
\(868\) 0 0
\(869\) 2.15351 + 1.24333i 0.0730530 + 0.0421772i
\(870\) 0 0
\(871\) 16.7159i 0.566397i
\(872\) 0 0
\(873\) −29.7518 6.06547i −1.00695 0.205285i
\(874\) 0 0
\(875\) −6.84685 27.0946i −0.231466 0.915963i
\(876\) 0 0
\(877\) 37.2376 1.25742 0.628712 0.777638i \(-0.283582\pi\)
0.628712 + 0.777638i \(0.283582\pi\)
\(878\) 0 0
\(879\) −36.1332 + 29.5100i −1.21874 + 0.995347i
\(880\) 0 0
\(881\) −4.71527 −0.158862 −0.0794308 0.996840i \(-0.525310\pi\)
−0.0794308 + 0.996840i \(0.525310\pi\)
\(882\) 0 0
\(883\) −30.1766 −1.01552 −0.507762 0.861497i \(-0.669527\pi\)
−0.507762 + 0.861497i \(0.669527\pi\)
\(884\) 0 0
\(885\) 1.24197 + 7.63564i 0.0417485 + 0.256669i
\(886\) 0 0
\(887\) −38.4434 −1.29080 −0.645402 0.763843i \(-0.723310\pi\)
−0.645402 + 0.763843i \(0.723310\pi\)
\(888\) 0 0
\(889\) 1.90039 + 7.52027i 0.0637370 + 0.252222i
\(890\) 0 0
\(891\) 5.50997 0.672063i 0.184591 0.0225149i
\(892\) 0 0
\(893\) 14.4799i 0.484550i
\(894\) 0 0
\(895\) −9.03135 5.21425i −0.301885 0.174293i
\(896\) 0 0
\(897\) −7.82286 + 6.38894i −0.261198 + 0.213320i
\(898\) 0 0
\(899\) −7.27098 + 12.5937i −0.242501 + 0.420023i
\(900\) 0 0
\(901\) −11.8628 + 6.84900i −0.395208 + 0.228173i
\(902\) 0 0
\(903\) 18.8921 8.18334i 0.628691 0.272325i
\(904\) 0 0
\(905\) 15.8755i 0.527719i
\(906\) 0 0
\(907\) −43.5902 −1.44739 −0.723695 0.690120i \(-0.757558\pi\)
−0.723695 + 0.690120i \(0.757558\pi\)
\(908\) 0 0
\(909\) −3.84802 3.40719i −0.127631 0.113009i
\(910\) 0 0
\(911\) 1.67736 0.968423i 0.0555734 0.0320853i −0.471956 0.881622i \(-0.656452\pi\)
0.527529 + 0.849537i \(0.323119\pi\)
\(912\) 0 0
\(913\) −4.66585 + 2.69383i −0.154417 + 0.0891528i
\(914\) 0 0
\(915\) −19.8360 24.2879i −0.655756 0.802934i
\(916\) 0 0
\(917\) −10.5189 41.6258i −0.347366 1.37460i
\(918\) 0 0
\(919\) −4.61421 7.99205i −0.152209 0.263634i 0.779830 0.625991i \(-0.215305\pi\)
−0.932039 + 0.362357i \(0.881972\pi\)
\(920\) 0 0
\(921\) 13.1206 34.6104i 0.432339 1.14045i
\(922\) 0 0
\(923\) 6.39118 11.0698i 0.210368 0.364368i
\(924\) 0 0
\(925\) −4.56937 7.91438i −0.150240 0.260223i
\(926\) 0 0
\(927\) 14.7273 16.6327i 0.483707 0.546291i
\(928\) 0 0
\(929\) 26.6849 46.2197i 0.875504 1.51642i 0.0192794 0.999814i \(-0.493863\pi\)
0.856225 0.516603i \(-0.172804\pi\)
\(930\) 0 0
\(931\) −6.98187 + 11.3328i −0.228822 + 0.371417i
\(932\) 0 0
\(933\) 4.51343 + 27.7485i 0.147763 + 0.908446i
\(934\) 0 0
\(935\) 2.96481 + 1.71173i 0.0969595 + 0.0559796i
\(936\) 0 0
\(937\) 28.6378i 0.935555i −0.883846 0.467778i \(-0.845055\pi\)
0.883846 0.467778i \(-0.154945\pi\)
\(938\) 0 0
\(939\) −15.4268 18.8891i −0.503434 0.616424i
\(940\) 0 0
\(941\) −0.688308 1.19218i −0.0224382 0.0388641i 0.854588 0.519306i \(-0.173810\pi\)
−0.877026 + 0.480442i \(0.840476\pi\)
\(942\) 0 0
\(943\) 17.2704 + 9.97105i 0.562401 + 0.324702i
\(944\) 0 0
\(945\) 12.8218 11.5033i 0.417093 0.374203i
\(946\) 0 0
\(947\) 47.0080 + 27.1401i 1.52755 + 0.881933i 0.999464 + 0.0327450i \(0.0104249\pi\)
0.528090 + 0.849188i \(0.322908\pi\)
\(948\) 0 0
\(949\) −7.05423 12.2183i −0.228990 0.396622i
\(950\) 0 0
\(951\) −22.2374 27.2283i −0.721097 0.882939i
\(952\) 0 0
\(953\) 11.2998i 0.366036i −0.983110 0.183018i \(-0.941413\pi\)
0.983110 0.183018i \(-0.0585867\pi\)
\(954\) 0 0
\(955\) 4.12399 + 2.38099i 0.133449 + 0.0770469i
\(956\) 0 0
\(957\) −1.00528 6.18044i −0.0324960 0.199785i
\(958\) 0 0
\(959\) −44.6397 + 11.2805i −1.44149 + 0.364268i
\(960\) 0 0
\(961\) −12.4226 + 21.5166i −0.400729 + 0.694083i
\(962\) 0 0
\(963\) 0.446882 + 0.0911054i 0.0144006 + 0.00293583i
\(964\) 0 0
\(965\) −4.25324 7.36682i −0.136917 0.237146i
\(966\) 0 0
\(967\) −5.93412 + 10.2782i −0.190829 + 0.330525i −0.945525 0.325549i \(-0.894451\pi\)
0.754696 + 0.656074i \(0.227784\pi\)
\(968\) 0 0
\(969\) 5.17207 13.6432i 0.166151 0.438283i
\(970\) 0 0
\(971\) −28.0837 48.6424i −0.901249 1.56101i −0.825875 0.563853i \(-0.809318\pi\)
−0.0753736 0.997155i \(-0.524015\pi\)
\(972\) 0 0
\(973\) 4.54081 16.0275i 0.145572 0.513819i
\(974\) 0 0
\(975\) −4.61459 5.65029i −0.147785 0.180954i
\(976\) 0 0
\(977\) 18.7626 10.8326i 0.600268 0.346565i −0.168879 0.985637i \(-0.554015\pi\)
0.769147 + 0.639072i \(0.220681\pi\)
\(978\) 0 0
\(979\) −0.866594 + 0.500328i −0.0276964 + 0.0159906i
\(980\) 0 0
\(981\) 15.3678 5.13516i 0.490656 0.163953i
\(982\) 0 0
\(983\) 19.4001 0.618768 0.309384 0.950937i \(-0.399877\pi\)
0.309384 + 0.950937i \(0.399877\pi\)
\(984\) 0 0
\(985\) 8.03731i 0.256090i
\(986\) 0 0
\(987\) 28.0219 + 20.7954i 0.891947 + 0.661926i
\(988\) 0 0
\(989\) −18.4771 + 10.6678i −0.587539 + 0.339216i
\(990\) 0 0
\(991\) 12.6630 21.9330i 0.402254 0.696725i −0.591743 0.806126i \(-0.701560\pi\)
0.993998 + 0.109402i \(0.0348934\pi\)
\(992\) 0 0
\(993\) −35.5072 + 28.9988i −1.12679 + 0.920248i
\(994\) 0 0
\(995\) 17.4066 + 10.0497i 0.551828 + 0.318598i
\(996\) 0 0
\(997\) 5.56584i 0.176272i 0.996108 + 0.0881360i \(0.0280910\pi\)
−0.996108 + 0.0881360i \(0.971909\pi\)
\(998\) 0 0
\(999\) 7.39454 11.7041i 0.233953 0.370300i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.df.b.689.1 10
3.2 odd 2 3024.2.df.b.17.2 10
4.3 odd 2 63.2.s.b.59.1 yes 10
7.5 odd 6 1008.2.ca.b.257.1 10
9.2 odd 6 1008.2.ca.b.353.1 10
9.7 even 3 3024.2.ca.b.2033.2 10
12.11 even 2 189.2.s.b.17.5 10
21.5 even 6 3024.2.ca.b.2609.2 10
28.3 even 6 441.2.o.d.293.5 10
28.11 odd 6 441.2.o.c.293.5 10
28.19 even 6 63.2.i.b.5.5 10
28.23 odd 6 441.2.i.b.68.5 10
28.27 even 2 441.2.s.b.374.1 10
36.7 odd 6 189.2.i.b.143.5 10
36.11 even 6 63.2.i.b.38.1 yes 10
36.23 even 6 567.2.p.d.80.1 10
36.31 odd 6 567.2.p.c.80.5 10
63.47 even 6 inner 1008.2.df.b.929.1 10
63.61 odd 6 3024.2.df.b.1601.2 10
84.11 even 6 1323.2.o.d.881.1 10
84.23 even 6 1323.2.i.b.1097.1 10
84.47 odd 6 189.2.i.b.152.1 10
84.59 odd 6 1323.2.o.c.881.1 10
84.83 odd 2 1323.2.s.b.962.5 10
252.11 even 6 441.2.o.d.146.5 10
252.47 odd 6 63.2.s.b.47.1 yes 10
252.79 odd 6 1323.2.s.b.656.5 10
252.83 odd 6 441.2.i.b.227.1 10
252.103 even 6 567.2.p.d.404.1 10
252.115 even 6 1323.2.o.d.440.1 10
252.131 odd 6 567.2.p.c.404.5 10
252.151 odd 6 1323.2.o.c.440.1 10
252.187 even 6 189.2.s.b.89.5 10
252.191 even 6 441.2.s.b.362.1 10
252.223 even 6 1323.2.i.b.521.5 10
252.227 odd 6 441.2.o.c.146.5 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.i.b.5.5 10 28.19 even 6
63.2.i.b.38.1 yes 10 36.11 even 6
63.2.s.b.47.1 yes 10 252.47 odd 6
63.2.s.b.59.1 yes 10 4.3 odd 2
189.2.i.b.143.5 10 36.7 odd 6
189.2.i.b.152.1 10 84.47 odd 6
189.2.s.b.17.5 10 12.11 even 2
189.2.s.b.89.5 10 252.187 even 6
441.2.i.b.68.5 10 28.23 odd 6
441.2.i.b.227.1 10 252.83 odd 6
441.2.o.c.146.5 10 252.227 odd 6
441.2.o.c.293.5 10 28.11 odd 6
441.2.o.d.146.5 10 252.11 even 6
441.2.o.d.293.5 10 28.3 even 6
441.2.s.b.362.1 10 252.191 even 6
441.2.s.b.374.1 10 28.27 even 2
567.2.p.c.80.5 10 36.31 odd 6
567.2.p.c.404.5 10 252.131 odd 6
567.2.p.d.80.1 10 36.23 even 6
567.2.p.d.404.1 10 252.103 even 6
1008.2.ca.b.257.1 10 7.5 odd 6
1008.2.ca.b.353.1 10 9.2 odd 6
1008.2.df.b.689.1 10 1.1 even 1 trivial
1008.2.df.b.929.1 10 63.47 even 6 inner
1323.2.i.b.521.5 10 252.223 even 6
1323.2.i.b.1097.1 10 84.23 even 6
1323.2.o.c.440.1 10 252.151 odd 6
1323.2.o.c.881.1 10 84.59 odd 6
1323.2.o.d.440.1 10 252.115 even 6
1323.2.o.d.881.1 10 84.11 even 6
1323.2.s.b.656.5 10 252.79 odd 6
1323.2.s.b.962.5 10 84.83 odd 2
3024.2.ca.b.2033.2 10 9.7 even 3
3024.2.ca.b.2609.2 10 21.5 even 6
3024.2.df.b.17.2 10 3.2 odd 2
3024.2.df.b.1601.2 10 63.61 odd 6