Properties

Label 441.2.o.d.146.5
Level $441$
Weight $2$
Character 441.146
Analytic conductor $3.521$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [441,2,Mod(146,441)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(441, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([1, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("441.146"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 441 = 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 441.o (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.52140272914\)
Analytic rank: \(0\)
Dimension: \(10\)
Relative dimension: \(5\) over \(\Q(\zeta_{6})\)
Coefficient field: 10.0.288778218147.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - x^{9} + 7x^{8} - 4x^{7} + 34x^{6} - 19x^{5} + 64x^{4} - x^{3} + 64x^{2} - 21x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 63)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 146.5
Root \(1.07065 - 1.85442i\) of defining polynomial
Character \(\chi\) \(=\) 441.146
Dual form 441.2.o.d.293.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.24607 + 1.29677i) q^{2} +(0.278072 - 1.70958i) q^{3} +(2.36322 + 4.09323i) q^{4} +(0.626493 + 1.08512i) q^{5} +(2.84151 - 3.47925i) q^{6} +7.07116i q^{8} +(-2.84535 - 0.950775i) q^{9} +3.24967i q^{10} +(0.534126 + 0.308378i) q^{11} +(7.65486 - 2.90192i) q^{12} +(1.06343 - 0.613974i) q^{13} +(2.02931 - 0.769301i) q^{15} +(-4.44321 + 7.69587i) q^{16} -4.43003 q^{17} +(-5.15793 - 5.82528i) q^{18} -1.90155i q^{19} +(-2.96109 + 5.12875i) q^{20} +(0.799790 + 1.38528i) q^{22} +(4.11267 - 2.37445i) q^{23} +(12.0887 + 1.96629i) q^{24} +(1.71501 - 2.97049i) q^{25} +3.18473 q^{26} +(-2.41664 + 4.59998i) q^{27} +(-5.07629 - 2.93080i) q^{29} +(5.55558 + 0.903642i) q^{30} +(-2.14851 + 1.24044i) q^{31} +(-7.71195 + 4.45249i) q^{32} +(0.675723 - 0.827382i) q^{33} +(-9.95016 - 5.74473i) q^{34} +(-2.83247 - 13.8936i) q^{36} -2.66433 q^{37} +(2.46587 - 4.27102i) q^{38} +(-0.753929 - 1.98876i) q^{39} +(-7.67303 + 4.43003i) q^{40} +(-2.09966 - 3.63671i) q^{41} +(-2.24637 + 3.89083i) q^{43} +2.91506i q^{44} +(-0.750889 - 3.68319i) q^{45} +12.3165 q^{46} +(-3.80738 + 6.59458i) q^{47} +(11.9212 + 9.73605i) q^{48} +(7.70409 - 4.44796i) q^{50} +(-1.23187 + 7.57350i) q^{51} +(5.02627 + 2.90192i) q^{52} +3.09208i q^{53} +(-11.3931 + 7.19806i) q^{54} +0.772786i q^{55} +(-3.25086 - 0.528768i) q^{57} +(-7.60114 - 13.1656i) q^{58} +(-1.78229 - 3.08702i) q^{59} +(7.94463 + 6.48839i) q^{60} +(12.5136 + 7.22473i) q^{61} -6.43428 q^{62} -5.32259 q^{64} +(1.33247 + 0.769301i) q^{65} +(2.59065 - 0.982101i) q^{66} +(-6.80644 - 11.7891i) q^{67} +(-10.4692 - 18.1331i) q^{68} +(-2.91570 - 7.69121i) q^{69} +10.4095i q^{71} +(6.72308 - 20.1199i) q^{72} -11.4895i q^{73} +(-5.98429 - 3.45503i) q^{74} +(-4.60141 - 3.75797i) q^{75} +(7.78348 - 4.49379i) q^{76} +(0.885586 - 5.44457i) q^{78} +(2.01592 - 3.49168i) q^{79} -11.1346 q^{80} +(7.19205 + 5.41058i) q^{81} -10.8911i q^{82} +(-4.36775 + 7.56516i) q^{83} +(-2.77538 - 4.80710i) q^{85} +(-10.0910 + 5.82605i) q^{86} +(-6.42202 + 7.86337i) q^{87} +(-2.18059 + 3.77689i) q^{88} -1.62245 q^{89} +(3.08970 - 9.24645i) q^{90} +(19.4383 + 11.2227i) q^{92} +(1.52320 + 4.01799i) q^{93} +(-17.1033 + 9.87459i) q^{94} +(2.06341 - 1.19131i) q^{95} +(5.46743 + 14.4223i) q^{96} +(8.76527 + 5.06063i) q^{97} +(-1.22658 - 1.38528i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q + 3 q^{3} + 4 q^{4} + 12 q^{6} - 3 q^{9} + 12 q^{11} + 12 q^{12} - 6 q^{13} - 3 q^{15} - 6 q^{16} - 24 q^{17} - 6 q^{18} + 3 q^{20} + 5 q^{22} + 15 q^{23} + 27 q^{24} + 7 q^{25} + 6 q^{26} - 27 q^{27}+ \cdots + 21 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/441\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(344\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.24607 + 1.29677i 1.58821 + 0.916955i 0.993602 + 0.112941i \(0.0360271\pi\)
0.594611 + 0.804014i \(0.297306\pi\)
\(3\) 0.278072 1.70958i 0.160545 0.987029i
\(4\) 2.36322 + 4.09323i 1.18161 + 2.04661i
\(5\) 0.626493 + 1.08512i 0.280176 + 0.485279i 0.971428 0.237335i \(-0.0762738\pi\)
−0.691252 + 0.722614i \(0.742941\pi\)
\(6\) 2.84151 3.47925i 1.16004 1.42040i
\(7\) 0 0
\(8\) 7.07116i 2.50003i
\(9\) −2.84535 0.950775i −0.948451 0.316925i
\(10\) 3.24967i 1.02763i
\(11\) 0.534126 + 0.308378i 0.161045 + 0.0929794i 0.578357 0.815784i \(-0.303694\pi\)
−0.417311 + 0.908764i \(0.637028\pi\)
\(12\) 7.65486 2.90192i 2.20977 0.837712i
\(13\) 1.06343 0.613974i 0.294944 0.170286i −0.345226 0.938520i \(-0.612198\pi\)
0.640169 + 0.768234i \(0.278864\pi\)
\(14\) 0 0
\(15\) 2.02931 0.769301i 0.523965 0.198633i
\(16\) −4.44321 + 7.69587i −1.11080 + 1.92397i
\(17\) −4.43003 −1.07444 −0.537220 0.843442i \(-0.680525\pi\)
−0.537220 + 0.843442i \(0.680525\pi\)
\(18\) −5.15793 5.82528i −1.21573 1.37303i
\(19\) 1.90155i 0.436246i −0.975921 0.218123i \(-0.930007\pi\)
0.975921 0.218123i \(-0.0699933\pi\)
\(20\) −2.96109 + 5.12875i −0.662119 + 1.14682i
\(21\) 0 0
\(22\) 0.799790 + 1.38528i 0.170516 + 0.295342i
\(23\) 4.11267 2.37445i 0.857550 0.495107i −0.00564111 0.999984i \(-0.501796\pi\)
0.863191 + 0.504877i \(0.168462\pi\)
\(24\) 12.0887 + 1.96629i 2.46760 + 0.401368i
\(25\) 1.71501 2.97049i 0.343003 0.594098i
\(26\) 3.18473 0.624578
\(27\) −2.41664 + 4.59998i −0.465083 + 0.885267i
\(28\) 0 0
\(29\) −5.07629 2.93080i −0.942643 0.544235i −0.0518553 0.998655i \(-0.516513\pi\)
−0.890788 + 0.454419i \(0.849847\pi\)
\(30\) 5.55558 + 0.903642i 1.01431 + 0.164982i
\(31\) −2.14851 + 1.24044i −0.385884 + 0.222790i −0.680375 0.732864i \(-0.738183\pi\)
0.294491 + 0.955654i \(0.404850\pi\)
\(32\) −7.71195 + 4.45249i −1.36329 + 0.787097i
\(33\) 0.675723 0.827382i 0.117628 0.144029i
\(34\) −9.95016 5.74473i −1.70644 0.985213i
\(35\) 0 0
\(36\) −2.83247 13.8936i −0.472078 2.31559i
\(37\) −2.66433 −0.438014 −0.219007 0.975723i \(-0.570282\pi\)
−0.219007 + 0.975723i \(0.570282\pi\)
\(38\) 2.46587 4.27102i 0.400018 0.692851i
\(39\) −0.753929 1.98876i −0.120725 0.318456i
\(40\) −7.67303 + 4.43003i −1.21321 + 0.700449i
\(41\) −2.09966 3.63671i −0.327911 0.567959i 0.654186 0.756334i \(-0.273011\pi\)
−0.982097 + 0.188375i \(0.939678\pi\)
\(42\) 0 0
\(43\) −2.24637 + 3.89083i −0.342568 + 0.593346i −0.984909 0.173073i \(-0.944630\pi\)
0.642340 + 0.766419i \(0.277964\pi\)
\(44\) 2.91506i 0.439463i
\(45\) −0.750889 3.68319i −0.111936 0.549058i
\(46\) 12.3165 1.81596
\(47\) −3.80738 + 6.59458i −0.555364 + 0.961918i 0.442512 + 0.896763i \(0.354088\pi\)
−0.997875 + 0.0651551i \(0.979246\pi\)
\(48\) 11.9212 + 9.73605i 1.72068 + 1.40528i
\(49\) 0 0
\(50\) 7.70409 4.44796i 1.08952 0.629036i
\(51\) −1.23187 + 7.57350i −0.172496 + 1.06050i
\(52\) 5.02627 + 2.90192i 0.697018 + 0.402424i
\(53\) 3.09208i 0.424730i 0.977190 + 0.212365i \(0.0681165\pi\)
−0.977190 + 0.212365i \(0.931883\pi\)
\(54\) −11.3931 + 7.19806i −1.55040 + 0.979532i
\(55\) 0.772786i 0.104202i
\(56\) 0 0
\(57\) −3.25086 0.528768i −0.430587 0.0700371i
\(58\) −7.60114 13.1656i −0.998078 1.72872i
\(59\) −1.78229 3.08702i −0.232035 0.401896i 0.726372 0.687302i \(-0.241205\pi\)
−0.958407 + 0.285406i \(0.907872\pi\)
\(60\) 7.94463 + 6.48839i 1.02565 + 0.837647i
\(61\) 12.5136 + 7.22473i 1.60220 + 0.925032i 0.991046 + 0.133521i \(0.0426284\pi\)
0.611156 + 0.791510i \(0.290705\pi\)
\(62\) −6.43428 −0.817154
\(63\) 0 0
\(64\) −5.32259 −0.665324
\(65\) 1.33247 + 0.769301i 0.165272 + 0.0954200i
\(66\) 2.59065 0.982101i 0.318887 0.120888i
\(67\) −6.80644 11.7891i −0.831539 1.44027i −0.896818 0.442400i \(-0.854127\pi\)
0.0652791 0.997867i \(-0.479206\pi\)
\(68\) −10.4692 18.1331i −1.26957 2.19896i
\(69\) −2.91570 7.69121i −0.351009 0.925913i
\(70\) 0 0
\(71\) 10.4095i 1.23538i 0.786420 + 0.617692i \(0.211932\pi\)
−0.786420 + 0.617692i \(0.788068\pi\)
\(72\) 6.72308 20.1199i 0.792323 2.37116i
\(73\) 11.4895i 1.34474i −0.740216 0.672369i \(-0.765277\pi\)
0.740216 0.672369i \(-0.234723\pi\)
\(74\) −5.98429 3.45503i −0.695659 0.401639i
\(75\) −4.60141 3.75797i −0.531325 0.433933i
\(76\) 7.78348 4.49379i 0.892826 0.515473i
\(77\) 0 0
\(78\) 0.885586 5.44457i 0.100273 0.616476i
\(79\) 2.01592 3.49168i 0.226809 0.392845i −0.730052 0.683392i \(-0.760504\pi\)
0.956861 + 0.290547i \(0.0938373\pi\)
\(80\) −11.1346 −1.24488
\(81\) 7.19205 + 5.41058i 0.799117 + 0.601176i
\(82\) 10.8911i 1.20272i
\(83\) −4.36775 + 7.56516i −0.479422 + 0.830384i −0.999721 0.0236001i \(-0.992487\pi\)
0.520299 + 0.853984i \(0.325820\pi\)
\(84\) 0 0
\(85\) −2.77538 4.80710i −0.301032 0.521403i
\(86\) −10.0910 + 5.82605i −1.08814 + 0.628240i
\(87\) −6.42202 + 7.86337i −0.688513 + 0.843041i
\(88\) −2.18059 + 3.77689i −0.232451 + 0.402618i
\(89\) −1.62245 −0.171979 −0.0859897 0.996296i \(-0.527405\pi\)
−0.0859897 + 0.996296i \(0.527405\pi\)
\(90\) 3.08970 9.24645i 0.325683 0.974661i
\(91\) 0 0
\(92\) 19.4383 + 11.2227i 2.02658 + 1.17005i
\(93\) 1.52320 + 4.01799i 0.157949 + 0.416646i
\(94\) −17.1033 + 9.87459i −1.76407 + 1.01849i
\(95\) 2.06341 1.19131i 0.211701 0.122226i
\(96\) 5.46743 + 14.4223i 0.558017 + 1.47197i
\(97\) 8.76527 + 5.06063i 0.889979 + 0.513829i 0.873936 0.486042i \(-0.161560\pi\)
0.0160431 + 0.999871i \(0.494893\pi\)
\(98\) 0 0
\(99\) −1.22658 1.38528i −0.123276 0.139226i
\(100\) 16.2119 1.62119
\(101\) −0.856611 + 1.48369i −0.0852360 + 0.147633i −0.905492 0.424364i \(-0.860498\pi\)
0.820256 + 0.571997i \(0.193831\pi\)
\(102\) −12.5880 + 15.4132i −1.24639 + 1.52613i
\(103\) 6.41315 3.70263i 0.631906 0.364831i −0.149584 0.988749i \(-0.547793\pi\)
0.781490 + 0.623918i \(0.214460\pi\)
\(104\) 4.34151 + 7.51971i 0.425720 + 0.737368i
\(105\) 0 0
\(106\) −4.00972 + 6.94503i −0.389458 + 0.674561i
\(107\) 0.152025i 0.0146968i 0.999973 + 0.00734839i \(0.00233909\pi\)
−0.999973 + 0.00734839i \(0.997661\pi\)
\(108\) −24.5398 + 0.978927i −2.36135 + 0.0941973i
\(109\) −5.40102 −0.517324 −0.258662 0.965968i \(-0.583282\pi\)
−0.258662 + 0.965968i \(0.583282\pi\)
\(110\) −1.00213 + 1.73573i −0.0955489 + 0.165496i
\(111\) −0.740877 + 4.55490i −0.0703210 + 0.432332i
\(112\) 0 0
\(113\) −5.60391 + 3.23542i −0.527171 + 0.304362i −0.739864 0.672757i \(-0.765110\pi\)
0.212693 + 0.977119i \(0.431777\pi\)
\(114\) −6.61597 5.40327i −0.619643 0.506063i
\(115\) 5.15311 + 2.97515i 0.480530 + 0.277434i
\(116\) 27.7045i 2.57230i
\(117\) −3.60960 + 0.735885i −0.333707 + 0.0680326i
\(118\) 9.24490i 0.851062i
\(119\) 0 0
\(120\) 5.43984 + 14.3496i 0.496588 + 1.30993i
\(121\) −5.30981 9.19685i −0.482710 0.836078i
\(122\) 18.7376 + 32.4545i 1.69642 + 2.93829i
\(123\) −6.80112 + 2.57827i −0.613236 + 0.232475i
\(124\) −10.1548 5.86289i −0.911930 0.526503i
\(125\) 10.5627 0.944757
\(126\) 0 0
\(127\) −2.93175 −0.260151 −0.130075 0.991504i \(-0.541522\pi\)
−0.130075 + 0.991504i \(0.541522\pi\)
\(128\) 3.46897 + 2.00281i 0.306617 + 0.177025i
\(129\) 6.02705 + 4.92229i 0.530652 + 0.433384i
\(130\) 1.99521 + 3.45581i 0.174992 + 0.303094i
\(131\) 8.11382 + 14.0535i 0.708908 + 1.22786i 0.965263 + 0.261281i \(0.0841450\pi\)
−0.256355 + 0.966583i \(0.582522\pi\)
\(132\) 4.98355 + 0.810598i 0.433762 + 0.0705535i
\(133\) 0 0
\(134\) 35.3055i 3.04993i
\(135\) −6.50553 + 0.259514i −0.559907 + 0.0223354i
\(136\) 31.3254i 2.68613i
\(137\) 15.0711 + 8.70129i 1.28761 + 0.743402i 0.978227 0.207536i \(-0.0665445\pi\)
0.309382 + 0.950938i \(0.399878\pi\)
\(138\) 3.42486 21.0560i 0.291544 1.79241i
\(139\) −5.45273 + 3.14813i −0.462494 + 0.267021i −0.713092 0.701070i \(-0.752706\pi\)
0.250598 + 0.968091i \(0.419373\pi\)
\(140\) 0 0
\(141\) 10.2153 + 8.34280i 0.860279 + 0.702591i
\(142\) −13.4988 + 23.3805i −1.13279 + 1.96205i
\(143\) 0.757344 0.0633323
\(144\) 19.9595 17.6730i 1.66330 1.47275i
\(145\) 7.34449i 0.609927i
\(146\) 14.8992 25.8061i 1.23306 2.13573i
\(147\) 0 0
\(148\) −6.29642 10.9057i −0.517563 0.896445i
\(149\) 9.20319 5.31346i 0.753954 0.435296i −0.0731665 0.997320i \(-0.523310\pi\)
0.827121 + 0.562024i \(0.189977\pi\)
\(150\) −5.46186 14.4076i −0.445959 1.17638i
\(151\) −4.74465 + 8.21798i −0.386114 + 0.668770i −0.991923 0.126841i \(-0.959516\pi\)
0.605809 + 0.795610i \(0.292850\pi\)
\(152\) 13.4462 1.09063
\(153\) 12.6050 + 4.21196i 1.01905 + 0.340517i
\(154\) 0 0
\(155\) −2.69205 1.55426i −0.216231 0.124841i
\(156\) 6.35874 7.78588i 0.509106 0.623370i
\(157\) 20.6214 11.9058i 1.64577 0.950185i 0.667040 0.745022i \(-0.267561\pi\)
0.978728 0.205163i \(-0.0657723\pi\)
\(158\) 9.05582 5.22838i 0.720442 0.415947i
\(159\) 5.28617 + 0.859821i 0.419220 + 0.0681883i
\(160\) −9.66295 5.57891i −0.763924 0.441051i
\(161\) 0 0
\(162\) 9.13759 + 21.4790i 0.717916 + 1.68755i
\(163\) 8.82201 0.690993 0.345497 0.938420i \(-0.387710\pi\)
0.345497 + 0.938420i \(0.387710\pi\)
\(164\) 9.92392 17.1887i 0.774928 1.34221i
\(165\) 1.32114 + 0.214890i 0.102851 + 0.0167292i
\(166\) −19.6205 + 11.3279i −1.52285 + 0.879217i
\(167\) 11.0335 + 19.1106i 0.853800 + 1.47883i 0.877754 + 0.479112i \(0.159041\pi\)
−0.0239535 + 0.999713i \(0.507625\pi\)
\(168\) 0 0
\(169\) −5.74607 + 9.95249i −0.442005 + 0.765576i
\(170\) 14.3961i 1.10413i
\(171\) −1.80795 + 5.41058i −0.138257 + 0.413757i
\(172\) −21.2347 −1.61913
\(173\) −2.03375 + 3.52256i −0.154623 + 0.267815i −0.932922 0.360079i \(-0.882750\pi\)
0.778299 + 0.627894i \(0.216083\pi\)
\(174\) −24.6213 + 9.33381i −1.86653 + 0.707594i
\(175\) 0 0
\(176\) −4.74647 + 2.74038i −0.357779 + 0.206564i
\(177\) −5.77313 + 2.18856i −0.433935 + 0.164503i
\(178\) −3.64414 2.10395i −0.273140 0.157697i
\(179\) 8.32293i 0.622085i 0.950396 + 0.311042i \(0.100678\pi\)
−0.950396 + 0.311042i \(0.899322\pi\)
\(180\) 13.3016 11.7778i 0.991444 0.877863i
\(181\) 12.6701i 0.941763i −0.882196 0.470881i \(-0.843936\pi\)
0.882196 0.470881i \(-0.156064\pi\)
\(182\) 0 0
\(183\) 15.8310 19.3840i 1.17026 1.43291i
\(184\) 16.7901 + 29.0813i 1.23778 + 2.14390i
\(185\) −1.66919 2.89111i −0.122721 0.212559i
\(186\) −1.78919 + 10.9999i −0.131190 + 0.806555i
\(187\) −2.36619 1.36612i −0.173033 0.0999008i
\(188\) −35.9908 −2.62490
\(189\) 0 0
\(190\) 6.17941 0.448301
\(191\) 3.29133 + 1.90025i 0.238152 + 0.137497i 0.614327 0.789051i \(-0.289427\pi\)
−0.376175 + 0.926549i \(0.622761\pi\)
\(192\) −1.48006 + 9.09941i −0.106814 + 0.656694i
\(193\) −3.39448 5.87942i −0.244340 0.423210i 0.717606 0.696450i \(-0.245238\pi\)
−0.961946 + 0.273240i \(0.911905\pi\)
\(194\) 13.1250 + 22.7331i 0.942317 + 1.63214i
\(195\) 1.68571 2.06404i 0.120716 0.147809i
\(196\) 0 0
\(197\) 6.41453i 0.457017i −0.973542 0.228508i \(-0.926615\pi\)
0.973542 0.228508i \(-0.0733848\pi\)
\(198\) −0.958597 4.70202i −0.0681245 0.334158i
\(199\) 16.0413i 1.13714i 0.822637 + 0.568568i \(0.192502\pi\)
−0.822637 + 0.568568i \(0.807498\pi\)
\(200\) 21.0048 + 12.1271i 1.48526 + 0.857518i
\(201\) −22.0471 + 8.35795i −1.55508 + 0.589525i
\(202\) −3.84802 + 2.22166i −0.270746 + 0.156315i
\(203\) 0 0
\(204\) −33.9112 + 12.8556i −2.37426 + 0.900070i
\(205\) 2.63084 4.55675i 0.183746 0.318257i
\(206\) 19.2058 1.33813
\(207\) −13.9595 + 2.84592i −0.970255 + 0.197805i
\(208\) 10.9121i 0.756616i
\(209\) 0.586396 1.01567i 0.0405619 0.0702552i
\(210\) 0 0
\(211\) −4.06070 7.03333i −0.279550 0.484194i 0.691723 0.722163i \(-0.256852\pi\)
−0.971273 + 0.237968i \(0.923519\pi\)
\(212\) −12.6566 + 7.30728i −0.869257 + 0.501866i
\(213\) 17.7960 + 2.89460i 1.21936 + 0.198335i
\(214\) −0.197141 + 0.341458i −0.0134763 + 0.0233416i
\(215\) −5.62934 −0.383918
\(216\) −32.5272 17.0885i −2.21319 1.16272i
\(217\) 0 0
\(218\) −12.1311 7.00388i −0.821620 0.474363i
\(219\) −19.6422 3.19490i −1.32730 0.215891i
\(220\) −3.16319 + 1.82627i −0.213262 + 0.123127i
\(221\) −4.71104 + 2.71992i −0.316899 + 0.182962i
\(222\) −7.57072 + 9.26989i −0.508114 + 0.622154i
\(223\) 6.96205 + 4.01954i 0.466213 + 0.269168i 0.714653 0.699479i \(-0.246585\pi\)
−0.248440 + 0.968647i \(0.579918\pi\)
\(224\) 0 0
\(225\) −7.70409 + 6.82150i −0.513606 + 0.454767i
\(226\) −16.7824 −1.11635
\(227\) −10.4117 + 18.0336i −0.691048 + 1.19693i 0.280447 + 0.959870i \(0.409517\pi\)
−0.971495 + 0.237061i \(0.923816\pi\)
\(228\) −5.51814 14.5561i −0.365448 0.964001i
\(229\) −5.21276 + 3.00959i −0.344469 + 0.198879i −0.662247 0.749286i \(-0.730397\pi\)
0.317777 + 0.948165i \(0.397064\pi\)
\(230\) 7.71617 + 13.3648i 0.508789 + 0.881248i
\(231\) 0 0
\(232\) 20.7241 35.8952i 1.36061 2.35664i
\(233\) 21.0336i 1.37796i 0.724782 + 0.688978i \(0.241940\pi\)
−0.724782 + 0.688978i \(0.758060\pi\)
\(234\) −9.06169 3.02797i −0.592381 0.197944i
\(235\) −9.54118 −0.622398
\(236\) 8.42392 14.5907i 0.548350 0.949771i
\(237\) −5.40875 4.41733i −0.351336 0.286936i
\(238\) 0 0
\(239\) −7.51079 + 4.33636i −0.485832 + 0.280496i −0.722844 0.691011i \(-0.757165\pi\)
0.237011 + 0.971507i \(0.423832\pi\)
\(240\) −3.09621 + 19.0355i −0.199860 + 1.22873i
\(241\) −7.33797 4.23658i −0.472680 0.272902i 0.244681 0.969604i \(-0.421317\pi\)
−0.717361 + 0.696702i \(0.754650\pi\)
\(242\) 27.5424i 1.77049i
\(243\) 11.2497 10.7909i 0.721672 0.692235i
\(244\) 68.2946i 4.37211i
\(245\) 0 0
\(246\) −18.6192 3.02851i −1.18712 0.193091i
\(247\) −1.16750 2.02217i −0.0742864 0.128668i
\(248\) −8.77137 15.1925i −0.556982 0.964722i
\(249\) 11.7187 + 9.57069i 0.742644 + 0.606518i
\(250\) 23.7246 + 13.6974i 1.50047 + 0.866299i
\(251\) −23.4435 −1.47974 −0.739871 0.672749i \(-0.765113\pi\)
−0.739871 + 0.672749i \(0.765113\pi\)
\(252\) 0 0
\(253\) 2.92891 0.184139
\(254\) −6.58492 3.80180i −0.413174 0.238546i
\(255\) −8.98989 + 3.40802i −0.562969 + 0.213419i
\(256\) 10.5170 + 18.2159i 0.657310 + 1.13849i
\(257\) −12.2585 21.2324i −0.764665 1.32444i −0.940423 0.340005i \(-0.889571\pi\)
0.175758 0.984433i \(-0.443762\pi\)
\(258\) 7.15409 + 18.8715i 0.445394 + 1.17489i
\(259\) 0 0
\(260\) 7.27212i 0.450998i
\(261\) 11.6573 + 13.1656i 0.721569 + 0.814928i
\(262\) 42.0870i 2.60014i
\(263\) −9.14036 5.27719i −0.563619 0.325406i 0.190978 0.981594i \(-0.438834\pi\)
−0.754597 + 0.656189i \(0.772167\pi\)
\(264\) 5.85055 + 4.77814i 0.360076 + 0.294074i
\(265\) −3.35527 + 1.93716i −0.206112 + 0.118999i
\(266\) 0 0
\(267\) −0.451159 + 2.77372i −0.0276105 + 0.169749i
\(268\) 32.1703 55.7206i 1.96511 3.40367i
\(269\) 2.28902 0.139564 0.0697821 0.997562i \(-0.477770\pi\)
0.0697821 + 0.997562i \(0.477770\pi\)
\(270\) −14.9484 7.85329i −0.909731 0.477936i
\(271\) 24.1608i 1.46766i −0.679332 0.733831i \(-0.737730\pi\)
0.679332 0.733831i \(-0.262270\pi\)
\(272\) 19.6836 34.0929i 1.19349 2.06719i
\(273\) 0 0
\(274\) 22.5672 + 39.0875i 1.36333 + 2.36136i
\(275\) 1.83207 1.05774i 0.110478 0.0637844i
\(276\) 24.5914 30.1107i 1.48023 1.81245i
\(277\) 5.68551 9.84760i 0.341609 0.591685i −0.643122 0.765763i \(-0.722361\pi\)
0.984732 + 0.174079i \(0.0556947\pi\)
\(278\) −16.3296 −0.979386
\(279\) 7.29265 1.48675i 0.436600 0.0890092i
\(280\) 0 0
\(281\) 17.6382 + 10.1834i 1.05221 + 0.607492i 0.923267 0.384160i \(-0.125509\pi\)
0.128941 + 0.991652i \(0.458842\pi\)
\(282\) 12.1255 + 31.9854i 0.722062 + 1.90470i
\(283\) 10.5318 6.08055i 0.626052 0.361451i −0.153169 0.988200i \(-0.548948\pi\)
0.779222 + 0.626749i \(0.215615\pi\)
\(284\) −42.6085 + 24.6000i −2.52835 + 1.45974i
\(285\) −1.46286 3.85883i −0.0866526 0.228578i
\(286\) 1.70105 + 0.982101i 0.100585 + 0.0580729i
\(287\) 0 0
\(288\) 26.1765 5.33658i 1.54247 0.314461i
\(289\) 2.62515 0.154421
\(290\) 9.52411 16.4962i 0.559275 0.968693i
\(291\) 11.0890 13.5777i 0.650046 0.795941i
\(292\) 47.0289 27.1522i 2.75216 1.58896i
\(293\) −13.4674 23.3262i −0.786773 1.36273i −0.927934 0.372745i \(-0.878417\pi\)
0.141161 0.989987i \(-0.454917\pi\)
\(294\) 0 0
\(295\) 2.23319 3.86799i 0.130021 0.225203i
\(296\) 18.8399i 1.09505i
\(297\) −2.70932 + 1.71173i −0.157211 + 0.0993247i
\(298\) 27.5614 1.59659
\(299\) 2.91570 5.05014i 0.168619 0.292057i
\(300\) 4.50807 27.7155i 0.260273 1.60016i
\(301\) 0 0
\(302\) −21.3137 + 12.3054i −1.22646 + 0.708099i
\(303\) 2.29830 + 1.87702i 0.132034 + 0.107832i
\(304\) 14.6341 + 8.44899i 0.839322 + 0.484583i
\(305\) 18.1050i 1.03669i
\(306\) 22.8498 + 25.8061i 1.30623 + 1.47524i
\(307\) 21.3700i 1.21965i −0.792536 0.609825i \(-0.791240\pi\)
0.792536 0.609825i \(-0.208760\pi\)
\(308\) 0 0
\(309\) −4.54664 11.9934i −0.258649 0.682281i
\(310\) −4.03103 6.98195i −0.228947 0.396548i
\(311\) −8.11558 14.0566i −0.460192 0.797076i 0.538778 0.842448i \(-0.318886\pi\)
−0.998970 + 0.0453714i \(0.985553\pi\)
\(312\) 14.0628 5.33115i 0.796151 0.301817i
\(313\) 12.1941 + 7.04027i 0.689252 + 0.397940i 0.803332 0.595532i \(-0.203059\pi\)
−0.114080 + 0.993472i \(0.536392\pi\)
\(314\) 61.7562 3.48511
\(315\) 0 0
\(316\) 19.0563 1.07200
\(317\) −17.5776 10.1484i −0.987254 0.569991i −0.0828017 0.996566i \(-0.526387\pi\)
−0.904452 + 0.426575i \(0.859720\pi\)
\(318\) 10.7581 + 8.78616i 0.603285 + 0.492704i
\(319\) −1.80759 3.13083i −0.101205 0.175293i
\(320\) −3.33456 5.77563i −0.186408 0.322868i
\(321\) 0.259899 + 0.0422738i 0.0145061 + 0.00235950i
\(322\) 0 0
\(323\) 8.42392i 0.468720i
\(324\) −5.15029 + 42.2251i −0.286127 + 2.34584i
\(325\) 4.21190i 0.233634i
\(326\) 19.8149 + 11.4401i 1.09744 + 0.633610i
\(327\) −1.50187 + 9.23349i −0.0830538 + 0.510613i
\(328\) 25.7158 14.8470i 1.41991 0.819788i
\(329\) 0 0
\(330\) 2.68872 + 2.19588i 0.148009 + 0.120879i
\(331\) −13.2341 + 22.9221i −0.727411 + 1.25991i 0.230563 + 0.973057i \(0.425943\pi\)
−0.957974 + 0.286856i \(0.907390\pi\)
\(332\) −41.2879 −2.26597
\(333\) 7.58097 + 2.53318i 0.415435 + 0.138818i
\(334\) 57.2318i 3.13158i
\(335\) 8.52836 14.7716i 0.465954 0.807057i
\(336\) 0 0
\(337\) −1.73659 3.00785i −0.0945979 0.163848i 0.814843 0.579682i \(-0.196823\pi\)
−0.909441 + 0.415834i \(0.863490\pi\)
\(338\) −25.8122 + 14.9027i −1.40400 + 0.810598i
\(339\) 3.97293 + 10.4800i 0.215780 + 0.569197i
\(340\) 13.1177 22.7205i 0.711407 1.23219i
\(341\) −1.53010 −0.0828596
\(342\) −11.0771 + 9.80806i −0.598979 + 0.530359i
\(343\) 0 0
\(344\) −27.5127 15.8844i −1.48338 0.856432i
\(345\) 6.51920 7.98236i 0.350982 0.429756i
\(346\) −9.13589 + 5.27461i −0.491149 + 0.283565i
\(347\) −8.14765 + 4.70405i −0.437389 + 0.252527i −0.702489 0.711694i \(-0.747928\pi\)
0.265101 + 0.964221i \(0.414595\pi\)
\(348\) −47.3632 7.70386i −2.53893 0.412970i
\(349\) 12.3253 + 7.11603i 0.659759 + 0.380912i 0.792185 0.610281i \(-0.208943\pi\)
−0.132426 + 0.991193i \(0.542277\pi\)
\(350\) 0 0
\(351\) 0.254329 + 6.37554i 0.0135751 + 0.340301i
\(352\) −5.49220 −0.292735
\(353\) 8.58262 14.8655i 0.456807 0.791213i −0.541983 0.840389i \(-0.682326\pi\)
0.998790 + 0.0491765i \(0.0156597\pi\)
\(354\) −15.8049 2.57075i −0.840022 0.136634i
\(355\) −11.2956 + 6.52149i −0.599506 + 0.346125i
\(356\) −3.83422 6.64106i −0.203213 0.351975i
\(357\) 0 0
\(358\) −10.7929 + 18.6939i −0.570424 + 0.988003i
\(359\) 28.2561i 1.49130i −0.666338 0.745650i \(-0.732139\pi\)
0.666338 0.745650i \(-0.267861\pi\)
\(360\) 26.0444 5.30965i 1.37266 0.279843i
\(361\) 15.3841 0.809690
\(362\) 16.4302 28.4580i 0.863554 1.49572i
\(363\) −17.1993 + 6.52017i −0.902729 + 0.342220i
\(364\) 0 0
\(365\) 12.4674 7.19806i 0.652574 0.376764i
\(366\) 60.6941 23.0088i 3.17253 1.20269i
\(367\) −19.9796 11.5352i −1.04293 0.602133i −0.122265 0.992498i \(-0.539016\pi\)
−0.920661 + 0.390364i \(0.872349\pi\)
\(368\) 42.2007i 2.19986i
\(369\) 2.51657 + 12.3440i 0.131007 + 0.642604i
\(370\) 8.65820i 0.450118i
\(371\) 0 0
\(372\) −12.8469 + 15.7302i −0.666080 + 0.815574i
\(373\) 6.93635 + 12.0141i 0.359150 + 0.622067i 0.987819 0.155607i \(-0.0497332\pi\)
−0.628669 + 0.777673i \(0.716400\pi\)
\(374\) −3.54309 6.13682i −0.183209 0.317327i
\(375\) 2.93719 18.0578i 0.151676 0.932502i
\(376\) −46.6313 26.9226i −2.40482 1.38843i
\(377\) −7.19773 −0.370702
\(378\) 0 0
\(379\) 22.7814 1.17020 0.585101 0.810961i \(-0.301055\pi\)
0.585101 + 0.810961i \(0.301055\pi\)
\(380\) 9.75258 + 5.63065i 0.500297 + 0.288846i
\(381\) −0.815238 + 5.01207i −0.0417659 + 0.256776i
\(382\) 4.92838 + 8.53620i 0.252158 + 0.436750i
\(383\) −7.61598 13.1913i −0.389158 0.674042i 0.603178 0.797606i \(-0.293901\pi\)
−0.992337 + 0.123564i \(0.960567\pi\)
\(384\) 4.38860 5.37357i 0.223955 0.274219i
\(385\) 0 0
\(386\) 17.6075i 0.896196i
\(387\) 10.0910 8.93498i 0.512956 0.454191i
\(388\) 47.8376i 2.42859i
\(389\) −12.2525 7.07396i −0.621224 0.358664i 0.156121 0.987738i \(-0.450101\pi\)
−0.777346 + 0.629074i \(0.783434\pi\)
\(390\) 6.46281 2.45002i 0.327257 0.124061i
\(391\) −18.2192 + 10.5189i −0.921386 + 0.531962i
\(392\) 0 0
\(393\) 26.2819 9.96335i 1.32575 0.502584i
\(394\) 8.31817 14.4075i 0.419063 0.725839i
\(395\) 5.05184 0.254186
\(396\) 2.77157 8.29438i 0.139277 0.416808i
\(397\) 9.70742i 0.487202i 0.969876 + 0.243601i \(0.0783287\pi\)
−0.969876 + 0.243601i \(0.921671\pi\)
\(398\) −20.8018 + 36.0298i −1.04270 + 1.80601i
\(399\) 0 0
\(400\) 15.2403 + 26.3970i 0.762017 + 1.31985i
\(401\) 7.56156 4.36567i 0.377606 0.218011i −0.299170 0.954200i \(-0.596710\pi\)
0.676776 + 0.736189i \(0.263376\pi\)
\(402\) −60.3578 9.81749i −3.01037 0.489652i
\(403\) −1.52320 + 2.63826i −0.0758760 + 0.131421i
\(404\) −8.09746 −0.402864
\(405\) −1.36535 + 11.1939i −0.0678446 + 0.556230i
\(406\) 0 0
\(407\) −1.42309 0.821622i −0.0705400 0.0407263i
\(408\) −53.5534 8.71073i −2.65129 0.431245i
\(409\) −12.8967 + 7.44591i −0.637700 + 0.368176i −0.783728 0.621104i \(-0.786684\pi\)
0.146028 + 0.989280i \(0.453351\pi\)
\(410\) 11.8181 6.82318i 0.583654 0.336973i
\(411\) 19.0664 23.3457i 0.940478 1.15156i
\(412\) 30.3114 + 17.5003i 1.49334 + 0.862178i
\(413\) 0 0
\(414\) −35.0446 11.7102i −1.72235 0.575524i
\(415\) −10.9454 −0.537291
\(416\) −5.46743 + 9.46987i −0.268063 + 0.464299i
\(417\) 3.86575 + 10.1973i 0.189306 + 0.499364i
\(418\) 2.63418 1.52084i 0.128842 0.0743868i
\(419\) 2.13859 + 3.70414i 0.104477 + 0.180959i 0.913524 0.406784i \(-0.133350\pi\)
−0.809048 + 0.587743i \(0.800017\pi\)
\(420\) 0 0
\(421\) 5.76681 9.98841i 0.281057 0.486805i −0.690588 0.723248i \(-0.742648\pi\)
0.971645 + 0.236443i \(0.0759816\pi\)
\(422\) 21.0632i 1.02534i
\(423\) 17.1033 15.1439i 0.831591 0.736323i
\(424\) −21.8646 −1.06184
\(425\) −7.59756 + 13.1594i −0.368536 + 0.638323i
\(426\) 36.2174 + 29.5787i 1.75474 + 1.43309i
\(427\) 0 0
\(428\) −0.622271 + 0.359268i −0.0300786 + 0.0173659i
\(429\) 0.210596 1.29474i 0.0101677 0.0625108i
\(430\) −12.6439 7.29996i −0.609743 0.352035i
\(431\) 16.6851i 0.803692i −0.915707 0.401846i \(-0.868369\pi\)
0.915707 0.401846i \(-0.131631\pi\)
\(432\) −24.6632 39.0369i −1.18661 1.87816i
\(433\) 12.3503i 0.593516i −0.954953 0.296758i \(-0.904094\pi\)
0.954953 0.296758i \(-0.0959055\pi\)
\(434\) 0 0
\(435\) −12.5560 2.04230i −0.602015 0.0979207i
\(436\) −12.7638 22.1076i −0.611276 1.05876i
\(437\) −4.51513 7.82044i −0.215988 0.374102i
\(438\) −39.9747 32.6474i −1.91006 1.55995i
\(439\) −19.1691 11.0673i −0.914892 0.528213i −0.0328902 0.999459i \(-0.510471\pi\)
−0.882002 + 0.471246i \(0.843805\pi\)
\(440\) −5.46449 −0.260509
\(441\) 0 0
\(442\) −14.1085 −0.671071
\(443\) 4.22906 + 2.44165i 0.200929 + 0.116006i 0.597089 0.802175i \(-0.296324\pi\)
−0.396160 + 0.918182i \(0.629657\pi\)
\(444\) −20.3951 + 7.73168i −0.967909 + 0.366929i
\(445\) −1.01645 1.76055i −0.0481845 0.0834580i
\(446\) 10.4248 + 18.0563i 0.493630 + 0.854993i
\(447\) −6.52466 17.2111i −0.308606 0.814059i
\(448\) 0 0
\(449\) 12.4409i 0.587121i 0.955941 + 0.293560i \(0.0948401\pi\)
−0.955941 + 0.293560i \(0.905160\pi\)
\(450\) −26.1498 + 5.33115i −1.23272 + 0.251313i
\(451\) 2.58995i 0.121956i
\(452\) −26.4866 15.2920i −1.24582 0.719277i
\(453\) 12.7300 + 10.3966i 0.598106 + 0.488473i
\(454\) −46.7708 + 27.0031i −2.19506 + 1.26732i
\(455\) 0 0
\(456\) 3.73900 22.9873i 0.175095 1.07648i
\(457\) 5.38774 9.33185i 0.252028 0.436525i −0.712056 0.702123i \(-0.752236\pi\)
0.964084 + 0.265597i \(0.0855691\pi\)
\(458\) −15.6110 −0.729454
\(459\) 10.7058 20.3781i 0.499704 0.951166i
\(460\) 28.1238i 1.31128i
\(461\) 0.333303 0.577297i 0.0155235 0.0268874i −0.858159 0.513383i \(-0.828392\pi\)
0.873683 + 0.486496i \(0.161725\pi\)
\(462\) 0 0
\(463\) −20.7892 36.0079i −0.966155 1.67343i −0.706479 0.707734i \(-0.749717\pi\)
−0.259677 0.965696i \(-0.583616\pi\)
\(464\) 45.1101 26.0443i 2.09418 1.20908i
\(465\) −3.40572 + 4.17009i −0.157936 + 0.193383i
\(466\) −27.2757 + 47.2429i −1.26352 + 2.18849i
\(467\) 39.3135 1.81921 0.909606 0.415471i \(-0.136383\pi\)
0.909606 + 0.415471i \(0.136383\pi\)
\(468\) −11.5424 13.0358i −0.533549 0.602581i
\(469\) 0 0
\(470\) −21.4302 12.3727i −0.988500 0.570711i
\(471\) −14.6197 38.5647i −0.673639 1.77697i
\(472\) 21.8288 12.6029i 1.00475 0.580094i
\(473\) −2.39969 + 1.38546i −0.110338 + 0.0637036i
\(474\) −6.42018 16.9355i −0.294889 0.777875i
\(475\) −5.64854 3.26119i −0.259173 0.149633i
\(476\) 0 0
\(477\) 2.93987 8.79805i 0.134608 0.402835i
\(478\) −22.4930 −1.02881
\(479\) −19.0577 + 33.0088i −0.870767 + 1.50821i −0.00956182 + 0.999954i \(0.503044\pi\)
−0.861205 + 0.508258i \(0.830290\pi\)
\(480\) −12.2246 + 14.9683i −0.557975 + 0.683206i
\(481\) −2.83335 + 1.63583i −0.129189 + 0.0745875i
\(482\) −10.9877 19.0313i −0.500477 0.866852i
\(483\) 0 0
\(484\) 25.0965 43.4685i 1.14075 1.97584i
\(485\) 12.6818i 0.575851i
\(486\) 39.2610 9.64876i 1.78092 0.437676i
\(487\) 7.60554 0.344640 0.172320 0.985041i \(-0.444874\pi\)
0.172320 + 0.985041i \(0.444874\pi\)
\(488\) −51.0872 + 88.4856i −2.31261 + 4.00555i
\(489\) 2.45316 15.0820i 0.110936 0.682030i
\(490\) 0 0
\(491\) 3.33297 1.92429i 0.150415 0.0868420i −0.422904 0.906175i \(-0.638989\pi\)
0.573318 + 0.819333i \(0.305656\pi\)
\(492\) −26.6260 21.7455i −1.20039 0.980362i
\(493\) 22.4881 + 12.9835i 1.01281 + 0.584748i
\(494\) 6.05593i 0.272469i
\(495\) 0.734746 2.19885i 0.0330244 0.0988308i
\(496\) 22.0462i 0.989904i
\(497\) 0 0
\(498\) 13.9101 + 36.6929i 0.623327 + 1.64425i
\(499\) 16.0794 + 27.8503i 0.719812 + 1.24675i 0.961074 + 0.276291i \(0.0891053\pi\)
−0.241262 + 0.970460i \(0.577561\pi\)
\(500\) 24.9620 + 43.2355i 1.11634 + 1.93355i
\(501\) 35.7393 13.5486i 1.59672 0.605307i
\(502\) −52.6558 30.4009i −2.35014 1.35686i
\(503\) 0.425693 0.0189807 0.00949035 0.999955i \(-0.496979\pi\)
0.00949035 + 0.999955i \(0.496979\pi\)
\(504\) 0 0
\(505\) −2.14664 −0.0955243
\(506\) 6.57854 + 3.79812i 0.292452 + 0.168847i
\(507\) 15.4168 + 12.5909i 0.684684 + 0.559181i
\(508\) −6.92838 12.0003i −0.307397 0.532427i
\(509\) −12.8963 22.3370i −0.571617 0.990071i −0.996400 0.0847751i \(-0.972983\pi\)
0.424783 0.905295i \(-0.360351\pi\)
\(510\) −24.6114 4.00316i −1.08981 0.177263i
\(511\) 0 0
\(512\) 46.5411i 2.05684i
\(513\) 8.74710 + 4.59537i 0.386194 + 0.202891i
\(514\) 63.5859i 2.80465i
\(515\) 8.03558 + 4.63934i 0.354090 + 0.204434i
\(516\) −5.90479 + 36.3025i −0.259944 + 1.59813i
\(517\) −4.06724 + 2.34822i −0.178877 + 0.103275i
\(518\) 0 0
\(519\) 5.45658 + 4.45639i 0.239517 + 0.195614i
\(520\) −5.43984 + 9.42209i −0.238553 + 0.413186i
\(521\) −18.1435 −0.794880 −0.397440 0.917628i \(-0.630101\pi\)
−0.397440 + 0.917628i \(0.630101\pi\)
\(522\) 9.11042 + 44.6876i 0.398752 + 1.95592i
\(523\) 13.9399i 0.609551i 0.952424 + 0.304776i \(0.0985814\pi\)
−0.952424 + 0.304776i \(0.901419\pi\)
\(524\) −38.3495 + 66.4234i −1.67531 + 2.90172i
\(525\) 0 0
\(526\) −13.6866 23.7059i −0.596764 1.03363i
\(527\) 9.51796 5.49520i 0.414609 0.239375i
\(528\) 3.36504 + 8.87651i 0.146445 + 0.386301i
\(529\) −0.223990 + 0.387962i −0.00973870 + 0.0168679i
\(530\) −10.0482 −0.436467
\(531\) 2.13619 + 10.4782i 0.0927026 + 0.454716i
\(532\) 0 0
\(533\) −4.46569 2.57827i −0.193431 0.111677i
\(534\) −4.61021 + 5.64491i −0.199503 + 0.244279i
\(535\) −0.164965 + 0.0952423i −0.00713204 + 0.00411769i
\(536\) 83.3625 48.1294i 3.60071 2.07887i
\(537\) 14.2287 + 2.31438i 0.614015 + 0.0998727i
\(538\) 5.14131 + 2.96834i 0.221658 + 0.127974i
\(539\) 0 0
\(540\) −16.4363 26.0153i −0.707305 1.11952i
\(541\) 29.7152 1.27756 0.638779 0.769390i \(-0.279440\pi\)
0.638779 + 0.769390i \(0.279440\pi\)
\(542\) 31.3310 54.2668i 1.34578 2.33096i
\(543\) −21.6606 3.52321i −0.929547 0.151195i
\(544\) 34.1641 19.7247i 1.46478 0.845688i
\(545\) −3.38370 5.86074i −0.144942 0.251046i
\(546\) 0 0
\(547\) −9.13516 + 15.8226i −0.390591 + 0.676524i −0.992528 0.122020i \(-0.961063\pi\)
0.601937 + 0.798544i \(0.294396\pi\)
\(548\) 82.2524i 3.51365i
\(549\) −28.7365 32.4545i −1.22644 1.38512i
\(550\) 5.48661 0.233950
\(551\) −5.57306 + 9.65282i −0.237420 + 0.411224i
\(552\) 54.3858 20.6174i 2.31481 0.877533i
\(553\) 0 0
\(554\) 25.5401 14.7456i 1.08510 0.626481i
\(555\) −5.40676 + 2.04967i −0.229504 + 0.0870038i
\(556\) −25.7720 14.8795i −1.09298 0.631031i
\(557\) 0.415065i 0.0175869i −0.999961 0.00879343i \(-0.997201\pi\)
0.999961 0.00879343i \(-0.00279907\pi\)
\(558\) 18.3078 + 6.11755i 0.775030 + 0.258977i
\(559\) 5.51686i 0.233338i
\(560\) 0 0
\(561\) −2.99347 + 3.66532i −0.126385 + 0.154750i
\(562\) 26.4111 + 45.7454i 1.11409 + 1.92965i
\(563\) −1.82962 3.16900i −0.0771095 0.133558i 0.824892 0.565290i \(-0.191236\pi\)
−0.902002 + 0.431733i \(0.857902\pi\)
\(564\) −10.0080 + 61.5292i −0.421414 + 2.59085i
\(565\) −7.02161 4.05393i −0.295401 0.170550i
\(566\) 31.5403 1.32574
\(567\) 0 0
\(568\) −73.6074 −3.08850
\(569\) −30.4692 17.5914i −1.27733 0.737470i −0.300977 0.953631i \(-0.597313\pi\)
−0.976358 + 0.216162i \(0.930646\pi\)
\(570\) 1.71832 10.5642i 0.0719726 0.442486i
\(571\) 5.02680 + 8.70667i 0.210365 + 0.364363i 0.951829 0.306630i \(-0.0992014\pi\)
−0.741464 + 0.670993i \(0.765868\pi\)
\(572\) 1.78977 + 3.09998i 0.0748342 + 0.129617i
\(573\) 4.16387 5.09840i 0.173948 0.212989i
\(574\) 0 0
\(575\) 16.2888i 0.679292i
\(576\) 15.1446 + 5.06059i 0.631027 + 0.210858i
\(577\) 0.0690132i 0.00287306i −0.999999 0.00143653i \(-0.999543\pi\)
0.999999 0.00143653i \(-0.000457261\pi\)
\(578\) 5.89627 + 3.40421i 0.245253 + 0.141597i
\(579\) −10.9953 + 4.16825i −0.456948 + 0.173227i
\(580\) 30.0627 17.3567i 1.24828 0.720697i
\(581\) 0 0
\(582\) 42.5138 16.1168i 1.76225 0.668061i
\(583\) −0.953529 + 1.65156i −0.0394911 + 0.0684006i
\(584\) 81.2437 3.36189
\(585\) −3.05991 3.45581i −0.126512 0.142880i
\(586\) 69.8564i 2.88574i
\(587\) 11.4799 19.8838i 0.473827 0.820693i −0.525724 0.850655i \(-0.676205\pi\)
0.999551 + 0.0299626i \(0.00953881\pi\)
\(588\) 0 0
\(589\) 2.35877 + 4.08550i 0.0971913 + 0.168340i
\(590\) 10.0318 5.79186i 0.413003 0.238447i
\(591\) −10.9662 1.78370i −0.451088 0.0733717i
\(592\) 11.8382 20.5044i 0.486547 0.842725i
\(593\) 28.7940 1.18243 0.591213 0.806515i \(-0.298649\pi\)
0.591213 + 0.806515i \(0.298649\pi\)
\(594\) −8.30506 + 0.331300i −0.340761 + 0.0135934i
\(595\) 0 0
\(596\) 43.4984 + 25.1138i 1.78176 + 1.02870i
\(597\) 27.4239 + 4.46063i 1.12238 + 0.182561i
\(598\) 13.0977 7.56198i 0.535606 0.309233i
\(599\) 33.1588 19.1442i 1.35483 0.782212i 0.365910 0.930650i \(-0.380758\pi\)
0.988922 + 0.148438i \(0.0474246\pi\)
\(600\) 26.5732 32.5373i 1.08485 1.32833i
\(601\) −26.7618 15.4509i −1.09164 0.630257i −0.157625 0.987499i \(-0.550384\pi\)
−0.934012 + 0.357242i \(0.883717\pi\)
\(602\) 0 0
\(603\) 8.15793 + 40.0155i 0.332216 + 1.62956i
\(604\) −44.8507 −1.82495
\(605\) 6.65311 11.5235i 0.270487 0.468498i
\(606\) 2.72808 + 7.19629i 0.110821 + 0.292329i
\(607\) −28.7339 + 16.5895i −1.16627 + 0.673349i −0.952800 0.303600i \(-0.901811\pi\)
−0.213475 + 0.976949i \(0.568478\pi\)
\(608\) 8.46664 + 14.6647i 0.343368 + 0.594730i
\(609\) 0 0
\(610\) −23.4780 + 40.6650i −0.950595 + 1.64648i
\(611\) 9.35053i 0.378282i
\(612\) 12.5479 + 61.5489i 0.507219 + 2.48797i
\(613\) 4.02327 0.162498 0.0812492 0.996694i \(-0.474109\pi\)
0.0812492 + 0.996694i \(0.474109\pi\)
\(614\) 27.7120 47.9985i 1.11836 1.93706i
\(615\) −7.05857 5.76474i −0.284629 0.232457i
\(616\) 0 0
\(617\) 27.1191 15.6572i 1.09177 0.630336i 0.157726 0.987483i \(-0.449584\pi\)
0.934048 + 0.357147i \(0.116251\pi\)
\(618\) 5.34061 32.8340i 0.214831 1.32078i
\(619\) −12.0646 6.96550i −0.484917 0.279967i 0.237546 0.971376i \(-0.423657\pi\)
−0.722463 + 0.691409i \(0.756990\pi\)
\(620\) 14.6922i 0.590054i
\(621\) 0.983576 + 24.6564i 0.0394695 + 0.989426i
\(622\) 42.0962i 1.68790i
\(623\) 0 0
\(624\) 18.6551 + 3.03434i 0.746802 + 0.121471i
\(625\) −1.95762 3.39069i −0.0783047 0.135628i
\(626\) 18.2592 + 31.6259i 0.729786 + 1.26403i
\(627\) −1.57331 1.28492i −0.0628319 0.0513148i
\(628\) 97.4661 + 56.2721i 3.88932 + 2.24550i
\(629\) 11.8031 0.470620
\(630\) 0 0
\(631\) −4.61815 −0.183846 −0.0919229 0.995766i \(-0.529301\pi\)
−0.0919229 + 0.995766i \(0.529301\pi\)
\(632\) 24.6902 + 14.2549i 0.982124 + 0.567030i
\(633\) −13.1532 + 4.98632i −0.522794 + 0.198189i
\(634\) −26.3203 45.5881i −1.04531 1.81053i
\(635\) −1.83672 3.18129i −0.0728879 0.126246i
\(636\) 8.97296 + 23.6694i 0.355801 + 0.938554i
\(637\) 0 0
\(638\) 9.37609i 0.371203i
\(639\) 9.89712 29.6188i 0.391524 1.17170i
\(640\) 5.01899i 0.198393i
\(641\) −36.7821 21.2362i −1.45281 0.838779i −0.454167 0.890917i \(-0.650063\pi\)
−0.998640 + 0.0521380i \(0.983396\pi\)
\(642\) 0.528932 + 0.431979i 0.0208753 + 0.0170489i
\(643\) 3.13514 1.81008i 0.123638 0.0713825i −0.436905 0.899507i \(-0.643926\pi\)
0.560544 + 0.828125i \(0.310592\pi\)
\(644\) 0 0
\(645\) −1.56536 + 9.62383i −0.0616361 + 0.378938i
\(646\) −10.9239 + 18.9207i −0.429795 + 0.744426i
\(647\) 12.0123 0.472254 0.236127 0.971722i \(-0.424122\pi\)
0.236127 + 0.971722i \(0.424122\pi\)
\(648\) −38.2591 + 50.8561i −1.50296 + 1.99782i
\(649\) 2.19848i 0.0862979i
\(650\) 5.46186 9.46022i 0.214232 0.371060i
\(651\) 0 0
\(652\) 20.8484 + 36.1105i 0.816486 + 1.41420i
\(653\) −39.9950 + 23.0911i −1.56512 + 0.903625i −0.568400 + 0.822752i \(0.692437\pi\)
−0.996724 + 0.0808728i \(0.974229\pi\)
\(654\) −15.3470 + 18.7915i −0.600117 + 0.734806i
\(655\) −10.1665 + 17.6089i −0.397238 + 0.688036i
\(656\) 37.3169 1.45698
\(657\) −10.9239 + 32.6915i −0.426182 + 1.27542i
\(658\) 0 0
\(659\) −16.3479 9.43847i −0.636824 0.367671i 0.146566 0.989201i \(-0.453178\pi\)
−0.783390 + 0.621530i \(0.786511\pi\)
\(660\) 2.24256 + 5.91556i 0.0872916 + 0.230263i
\(661\) 2.88202 1.66393i 0.112097 0.0647195i −0.442903 0.896570i \(-0.646051\pi\)
0.555000 + 0.831850i \(0.312718\pi\)
\(662\) −59.4494 + 34.3231i −2.31057 + 1.33401i
\(663\) 3.33992 + 8.81026i 0.129712 + 0.342162i
\(664\) −53.4944 30.8850i −2.07599 1.19857i
\(665\) 0 0
\(666\) 13.7424 + 15.5205i 0.532509 + 0.601407i
\(667\) −27.8361 −1.07782
\(668\) −52.1494 + 90.3254i −2.01772 + 3.49480i
\(669\) 8.80769 10.7845i 0.340525 0.416952i
\(670\) 38.3106 22.1187i 1.48007 0.854518i
\(671\) 4.45589 + 7.71783i 0.172018 + 0.297944i
\(672\) 0 0
\(673\) −16.3678 + 28.3499i −0.630934 + 1.09281i 0.356427 + 0.934323i \(0.383995\pi\)
−0.987361 + 0.158487i \(0.949339\pi\)
\(674\) 9.00781i 0.346968i
\(675\) 9.51963 + 15.0677i 0.366411 + 0.579954i
\(676\) −54.3170 −2.08912
\(677\) 16.9228 29.3111i 0.650396 1.12652i −0.332631 0.943057i \(-0.607937\pi\)
0.983027 0.183461i \(-0.0587302\pi\)
\(678\) −4.66671 + 28.6909i −0.179224 + 1.10187i
\(679\) 0 0
\(680\) 33.9917 19.6251i 1.30352 0.752590i
\(681\) 27.9347 + 22.8143i 1.07046 + 0.874245i
\(682\) −3.43672 1.98419i −0.131599 0.0759785i
\(683\) 5.53814i 0.211911i 0.994371 + 0.105956i \(0.0337901\pi\)
−0.994371 + 0.105956i \(0.966210\pi\)
\(684\) −26.4193 + 5.38608i −1.01017 + 0.205942i
\(685\) 21.8052i 0.833133i
\(686\) 0 0
\(687\) 3.69562 + 9.74854i 0.140997 + 0.371930i
\(688\) −19.9622 34.5756i −0.761052 1.31818i
\(689\) 1.89846 + 3.28822i 0.0723254 + 0.125271i
\(690\) 24.9939 9.47505i 0.951501 0.360709i
\(691\) 12.3417 + 7.12550i 0.469502 + 0.271067i 0.716031 0.698068i \(-0.245957\pi\)
−0.246530 + 0.969135i \(0.579290\pi\)
\(692\) −19.2248 −0.730818
\(693\) 0 0
\(694\) −24.4003 −0.926222
\(695\) −6.83219 3.94456i −0.259160 0.149626i
\(696\) −55.6031 45.4111i −2.10763 1.72130i
\(697\) 9.30154 + 16.1107i 0.352321 + 0.610238i
\(698\) 18.4557 + 31.9662i 0.698559 + 1.20994i
\(699\) 35.9587 + 5.84886i 1.36008 + 0.221224i
\(700\) 0 0
\(701\) 18.6105i 0.702908i 0.936205 + 0.351454i \(0.114313\pi\)
−0.936205 + 0.351454i \(0.885687\pi\)
\(702\) −7.69636 + 14.6497i −0.290481 + 0.552918i
\(703\) 5.06637i 0.191082i
\(704\) −2.84293 1.64137i −0.107147 0.0618614i
\(705\) −2.65314 + 16.3114i −0.0999230 + 0.614325i
\(706\) 38.5544 22.2594i 1.45101 0.837743i
\(707\) 0 0
\(708\) −22.6015 18.4587i −0.849416 0.693719i
\(709\) 6.74733 11.6867i 0.253401 0.438904i −0.711059 0.703133i \(-0.751784\pi\)
0.964460 + 0.264229i \(0.0851174\pi\)
\(710\) −33.8275 −1.26952
\(711\) −9.05582 + 8.01837i −0.339620 + 0.300712i
\(712\) 11.4726i 0.429954i
\(713\) −5.89074 + 10.2031i −0.220610 + 0.382107i
\(714\) 0 0
\(715\) 0.474470 + 0.821807i 0.0177442 + 0.0307338i
\(716\) −34.0676 + 19.6689i −1.27317 + 0.735063i
\(717\) 5.32482 + 14.0461i 0.198859 + 0.524563i
\(718\) 36.6417 63.4652i 1.36745 2.36850i
\(719\) −37.7384 −1.40740 −0.703702 0.710496i \(-0.748471\pi\)
−0.703702 + 0.710496i \(0.748471\pi\)
\(720\) 31.6817 + 10.5865i 1.18071 + 0.394534i
\(721\) 0 0
\(722\) 34.5538 + 19.9496i 1.28596 + 0.742449i
\(723\) −9.28327 + 11.3668i −0.345248 + 0.422736i
\(724\) 51.8617 29.9424i 1.92742 1.11280i
\(725\) −17.4118 + 10.0527i −0.646659 + 0.373348i
\(726\) −47.0860 7.65877i −1.74753 0.284244i
\(727\) −1.98480 1.14592i −0.0736121 0.0424999i 0.462742 0.886493i \(-0.346866\pi\)
−0.536354 + 0.843993i \(0.680199\pi\)
\(728\) 0 0
\(729\) −15.3197 22.2330i −0.567395 0.823446i
\(730\) 37.3369 1.38190
\(731\) 9.95149 17.2365i 0.368069 0.637514i
\(732\) 116.755 + 18.9908i 4.31540 + 0.701921i
\(733\) 21.4678 12.3944i 0.792930 0.457798i −0.0480633 0.998844i \(-0.515305\pi\)
0.840993 + 0.541046i \(0.181972\pi\)
\(734\) −29.9170 51.8178i −1.10426 1.91263i
\(735\) 0 0
\(736\) −21.1444 + 36.6232i −0.779394 + 1.34995i
\(737\) 8.39582i 0.309264i
\(738\) −10.3550 + 30.9890i −0.381172 + 1.14072i
\(739\) −16.2016 −0.595986 −0.297993 0.954568i \(-0.596317\pi\)
−0.297993 + 0.954568i \(0.596317\pi\)
\(740\) 7.88932 13.6647i 0.290017 0.502325i
\(741\) −3.78173 + 1.43363i −0.138925 + 0.0526658i
\(742\) 0 0
\(743\) −18.8312 + 10.8722i −0.690848 + 0.398862i −0.803930 0.594724i \(-0.797261\pi\)
0.113081 + 0.993586i \(0.463928\pi\)
\(744\) −28.4118 + 10.7708i −1.04163 + 0.394876i
\(745\) 11.5315 + 6.65769i 0.422480 + 0.243919i
\(746\) 35.9794i 1.31730i
\(747\) 19.6205 17.3728i 0.717878 0.635637i
\(748\) 12.9138i 0.472176i
\(749\) 0 0
\(750\) 30.0140 36.7503i 1.09596 1.34193i
\(751\) 3.78997 + 6.56443i 0.138298 + 0.239539i 0.926853 0.375426i \(-0.122503\pi\)
−0.788554 + 0.614965i \(0.789170\pi\)
\(752\) −33.8340 58.6022i −1.23380 2.13700i
\(753\) −6.51899 + 40.0787i −0.237565 + 1.46055i
\(754\) −16.1666 9.33381i −0.588754 0.339917i
\(755\) −11.8900 −0.432720
\(756\) 0 0
\(757\) 10.3436 0.375944 0.187972 0.982174i \(-0.439809\pi\)
0.187972 + 0.982174i \(0.439809\pi\)
\(758\) 51.1686 + 29.5422i 1.85853 + 1.07302i
\(759\) 0.814448 5.00721i 0.0295626 0.181750i
\(760\) 8.42392 + 14.5907i 0.305568 + 0.529259i
\(761\) −17.2169 29.8206i −0.624114 1.08100i −0.988711 0.149832i \(-0.952127\pi\)
0.364598 0.931165i \(-0.381207\pi\)
\(762\) −8.33058 + 10.2003i −0.301785 + 0.369517i
\(763\) 0 0
\(764\) 17.9629i 0.649874i
\(765\) 3.32646 + 16.3166i 0.120268 + 0.589930i
\(766\) 39.5047i 1.42736i
\(767\) −3.79070 2.18856i −0.136874 0.0790245i
\(768\) 34.0661 12.9143i 1.22925 0.466004i
\(769\) 12.9344 7.46765i 0.466425 0.269290i −0.248317 0.968679i \(-0.579877\pi\)
0.714742 + 0.699388i \(0.246544\pi\)
\(770\) 0 0
\(771\) −39.7073 + 15.0528i −1.43002 + 0.542114i
\(772\) 16.0439 27.7888i 0.577431 1.00014i
\(773\) 39.9848 1.43815 0.719076 0.694931i \(-0.244565\pi\)
0.719076 + 0.694931i \(0.244565\pi\)
\(774\) 34.2518 6.98288i 1.23115 0.250994i
\(775\) 8.50951i 0.305671i
\(776\) −35.7845 + 61.9806i −1.28459 + 2.22497i
\(777\) 0 0
\(778\) −18.3466 31.7772i −0.657758 1.13927i
\(779\) −6.91539 + 3.99260i −0.247770 + 0.143050i
\(780\) 12.4323 + 2.02217i 0.445148 + 0.0724055i
\(781\) −3.21007 + 5.56000i −0.114865 + 0.198952i
\(782\) −54.5622 −1.95114
\(783\) 25.7492 16.2681i 0.920201 0.581376i
\(784\) 0 0
\(785\) 25.8383 + 14.9178i 0.922209 + 0.532438i
\(786\) 71.9513 + 11.7032i 2.56642 + 0.417440i
\(787\) −1.94091 + 1.12059i −0.0691860 + 0.0399446i −0.534194 0.845362i \(-0.679385\pi\)
0.465008 + 0.885307i \(0.346051\pi\)
\(788\) 26.2561 15.1590i 0.935336 0.540016i
\(789\) −11.5635 + 14.1588i −0.411671 + 0.504066i
\(790\) 11.3468 + 6.55108i 0.403701 + 0.233077i
\(791\) 0 0
\(792\) 9.79551 8.67333i 0.348068 0.308193i
\(793\) 17.7432 0.630079
\(794\) −12.5883 + 21.8036i −0.446742 + 0.773780i
\(795\) 2.37874 + 6.27478i 0.0843652 + 0.222544i
\(796\) −65.6605 + 37.9091i −2.32727 + 1.34365i
\(797\) 22.1077 + 38.2916i 0.783094 + 1.35636i 0.930131 + 0.367227i \(0.119693\pi\)
−0.147037 + 0.989131i \(0.546974\pi\)
\(798\) 0 0
\(799\) 16.8668 29.2142i 0.596705 1.03352i
\(800\) 30.5444i 1.07991i
\(801\) 4.61644 + 1.54259i 0.163114 + 0.0545046i
\(802\) 22.6451 0.799625
\(803\) 3.54309 6.13682i 0.125033 0.216564i
\(804\) −86.3133 70.4921i −3.04404 2.48607i
\(805\) 0 0
\(806\) −6.84243 + 3.95048i −0.241014 + 0.139150i
\(807\) 0.636514 3.91328i 0.0224064 0.137754i
\(808\) −10.4914 6.05723i −0.369087 0.213093i
\(809\) 4.98227i 0.175167i 0.996157 + 0.0875837i \(0.0279145\pi\)
−0.996157 + 0.0875837i \(0.972085\pi\)
\(810\) −17.5826 + 23.3718i −0.617789 + 0.821201i
\(811\) 36.5749i 1.28432i 0.766571 + 0.642160i \(0.221961\pi\)
−0.766571 + 0.642160i \(0.778039\pi\)
\(812\) 0 0
\(813\) −41.3049 6.71844i −1.44863 0.235626i
\(814\) −2.13091 3.69084i −0.0746883 0.129364i
\(815\) 5.52693 + 9.57292i 0.193600 + 0.335325i
\(816\) −52.8112 43.1310i −1.84876 1.50989i
\(817\) 7.39861 + 4.27159i 0.258845 + 0.149444i
\(818\) −38.6225 −1.35040
\(819\) 0 0
\(820\) 24.8690 0.868465
\(821\) −34.8397 20.1147i −1.21591 0.702008i −0.251872 0.967761i \(-0.581046\pi\)
−0.964041 + 0.265753i \(0.914379\pi\)
\(822\) 73.0986 27.7113i 2.54961 0.966542i
\(823\) 17.9016 + 31.0065i 0.624011 + 1.08082i 0.988731 + 0.149701i \(0.0478313\pi\)
−0.364720 + 0.931117i \(0.618835\pi\)
\(824\) 26.1819 + 45.3483i 0.912089 + 1.57978i
\(825\) −1.29886 3.42620i −0.0452204 0.119285i
\(826\) 0 0
\(827\) 32.0733i 1.11530i −0.830077 0.557648i \(-0.811704\pi\)
0.830077 0.557648i \(-0.188296\pi\)
\(828\) −44.6385 50.4140i −1.55130 1.75201i
\(829\) 16.2397i 0.564029i 0.959410 + 0.282014i \(0.0910026\pi\)
−0.959410 + 0.282014i \(0.908997\pi\)
\(830\) −24.5842 14.1937i −0.853332 0.492671i
\(831\) −15.2543 12.4582i −0.529166 0.432170i
\(832\) −5.66023 + 3.26793i −0.196233 + 0.113295i
\(833\) 0 0
\(834\) −4.54081 + 27.9169i −0.157236 + 0.966682i
\(835\) −13.8248 + 23.9453i −0.478429 + 0.828663i
\(836\) 5.54314 0.191714
\(837\) −0.513833 12.8808i −0.0177607 0.445226i
\(838\) 11.0930i 0.383202i
\(839\) 1.35145 2.34077i 0.0466571 0.0808125i −0.841754 0.539862i \(-0.818477\pi\)
0.888411 + 0.459049i \(0.151810\pi\)
\(840\) 0 0
\(841\) 2.67914 + 4.64041i 0.0923842 + 0.160014i
\(842\) 25.9053 14.9565i 0.892757 0.515434i
\(843\) 22.3141 27.3223i 0.768539 0.941029i
\(844\) 19.1927 33.2427i 0.660639 1.14426i
\(845\) −14.3995 −0.495357
\(846\) 58.0534 11.8353i 1.99592 0.406906i
\(847\) 0 0
\(848\) −23.7962 13.7388i −0.817166 0.471791i
\(849\) −7.46660 19.6959i −0.256253 0.675960i
\(850\) −34.1293 + 19.7046i −1.17063 + 0.675861i
\(851\) −10.9575 + 6.32632i −0.375619 + 0.216864i
\(852\) 30.2076 + 79.6834i 1.03489 + 2.72991i
\(853\) 41.3187 + 23.8554i 1.41473 + 0.816793i 0.995829 0.0912411i \(-0.0290834\pi\)
0.418897 + 0.908034i \(0.362417\pi\)
\(854\) 0 0
\(855\) −7.00378 + 1.42785i −0.239524 + 0.0488316i
\(856\) −1.07499 −0.0367424
\(857\) 8.93973 15.4841i 0.305375 0.528926i −0.671969 0.740579i \(-0.734551\pi\)
0.977345 + 0.211653i \(0.0678847\pi\)
\(858\) 2.15200 2.63499i 0.0734680 0.0899571i
\(859\) −29.1901 + 16.8529i −0.995953 + 0.575014i −0.907048 0.421026i \(-0.861670\pi\)
−0.0889047 + 0.996040i \(0.528337\pi\)
\(860\) −13.3034 23.0422i −0.453642 0.785731i
\(861\) 0 0
\(862\) 21.6367 37.4759i 0.736950 1.27643i
\(863\) 18.9739i 0.645878i 0.946420 + 0.322939i \(0.104671\pi\)
−0.946420 + 0.322939i \(0.895329\pi\)
\(864\) −1.84437 46.2349i −0.0627468 1.57294i
\(865\) −5.09652 −0.173287
\(866\) 16.0155 27.7396i 0.544228 0.942630i
\(867\) 0.729981 4.48791i 0.0247915 0.152417i
\(868\) 0 0
\(869\) 2.15351 1.24333i 0.0730530 0.0421772i
\(870\) −25.5533 20.8694i −0.866339 0.707540i
\(871\) −14.4764 8.35795i −0.490514 0.283198i
\(872\) 38.1915i 1.29333i
\(873\) −20.1288 22.7331i −0.681255 0.769398i
\(874\) 23.4204i 0.792206i
\(875\) 0 0
\(876\) −33.3415 87.9501i −1.12650 2.97156i
\(877\) −18.6188 32.2487i −0.628712 1.08896i −0.987810 0.155662i \(-0.950249\pi\)
0.359098 0.933300i \(-0.383084\pi\)
\(878\) −28.7035 49.7159i −0.968695 1.67783i
\(879\) −43.6230 + 16.5373i −1.47137 + 0.557788i
\(880\) −5.94726 3.43365i −0.200482 0.115748i
\(881\) 4.71527 0.158862 0.0794308 0.996840i \(-0.474690\pi\)
0.0794308 + 0.996840i \(0.474690\pi\)
\(882\) 0 0
\(883\) 30.1766 1.01552 0.507762 0.861497i \(-0.330473\pi\)
0.507762 + 0.861497i \(0.330473\pi\)
\(884\) −22.2665 12.8556i −0.748904 0.432380i
\(885\) −5.99167 4.89340i −0.201408 0.164490i
\(886\) 6.33251 + 10.9682i 0.212745 + 0.368485i
\(887\) 19.2217 + 33.2930i 0.645402 + 1.11787i 0.984208 + 0.177013i \(0.0566436\pi\)
−0.338806 + 0.940856i \(0.610023\pi\)
\(888\) −32.2084 5.23886i −1.08084 0.175805i
\(889\) 0 0
\(890\) 5.27243i 0.176732i
\(891\) 2.17296 + 5.10780i 0.0727969 + 0.171118i
\(892\) 37.9963i 1.27221i
\(893\) 12.5399 + 7.23993i 0.419632 + 0.242275i
\(894\) 7.66405 47.1184i 0.256324 1.57588i
\(895\) −9.03135 + 5.21425i −0.301885 + 0.174293i
\(896\) 0 0
\(897\) −7.82286 6.38894i −0.261198 0.213320i
\(898\) −16.1329 + 27.9431i −0.538363 + 0.932472i
\(899\) 14.5420 0.485001
\(900\) −46.1284 15.4138i −1.53761 0.513794i
\(901\) 13.6980i 0.456346i
\(902\) 3.35857 5.81721i 0.111828 0.193692i
\(903\) 0 0
\(904\) −22.8781 39.6261i −0.760916 1.31794i
\(905\) 13.7486 7.93774i 0.457018 0.263859i
\(906\) 15.1105 + 39.8593i 0.502011 + 1.32424i
\(907\) −21.7951 + 37.7503i −0.723695 + 1.25348i 0.235814 + 0.971798i \(0.424224\pi\)
−0.959509 + 0.281678i \(0.909109\pi\)
\(908\) −98.4206 −3.26620
\(909\) 3.84802 3.40719i 0.127631 0.113009i
\(910\) 0 0
\(911\) −1.67736 0.968423i −0.0555734 0.0320853i 0.471956 0.881622i \(-0.343548\pi\)
−0.527529 + 0.849537i \(0.676881\pi\)
\(912\) 18.5136 22.6688i 0.613046 0.750638i
\(913\) −4.66585 + 2.69383i −0.154417 + 0.0891528i
\(914\) 24.2025 13.9733i 0.800548 0.462197i
\(915\) 30.9519 + 5.03448i 1.02324 + 0.166435i
\(916\) −24.6379 14.2247i −0.814058 0.469997i
\(917\) 0 0
\(918\) 50.4716 31.8876i 1.66581 1.05245i
\(919\) −9.22843 −0.304418 −0.152209 0.988348i \(-0.548639\pi\)
−0.152209 + 0.988348i \(0.548639\pi\)
\(920\) −21.0377 + 36.4384i −0.693594 + 1.20134i
\(921\) −36.5338 5.94240i −1.20383 0.195809i
\(922\) 1.49724 0.864434i 0.0493091 0.0284686i
\(923\) 6.39118 + 11.0698i 0.210368 + 0.364368i
\(924\) 0 0
\(925\) −4.56937 + 7.91438i −0.150240 + 0.260223i
\(926\) 107.835i 3.54368i
\(927\) −21.7680 + 4.43783i −0.714956 + 0.145757i
\(928\) 52.1974 1.71346
\(929\) −26.6849 + 46.2197i −0.875504 + 1.51642i −0.0192794 + 0.999814i \(0.506137\pi\)
−0.856225 + 0.516603i \(0.827196\pi\)
\(930\) −13.0571 + 4.94989i −0.428160 + 0.162313i
\(931\) 0 0
\(932\) −86.0952 + 49.7071i −2.82014 + 1.62821i
\(933\) −26.2876 + 9.96551i −0.860619 + 0.326256i
\(934\) 88.3010 + 50.9806i 2.88930 + 1.66814i
\(935\) 3.42346i 0.111959i
\(936\) −5.20356 25.5240i −0.170084 0.834279i
\(937\) 28.6378i 0.935555i −0.883846 0.467778i \(-0.845055\pi\)
0.883846 0.467778i \(-0.154945\pi\)
\(938\) 0 0
\(939\) 15.4268 18.8891i 0.503434 0.616424i
\(940\) −22.5480 39.0542i −0.735433 1.27381i
\(941\) 0.688308 + 1.19218i 0.0224382 + 0.0388641i 0.877026 0.480442i \(-0.159524\pi\)
−0.854588 + 0.519306i \(0.826190\pi\)
\(942\) 17.1727 105.577i 0.559516 3.43990i
\(943\) −17.2704 9.97105i −0.562401 0.324702i
\(944\) 31.6764 1.03098
\(945\) 0 0
\(946\) −7.18651 −0.233653
\(947\) 47.0080 + 27.1401i 1.52755 + 0.881933i 0.999464 + 0.0327450i \(0.0104249\pi\)
0.528090 + 0.849188i \(0.322908\pi\)
\(948\) 5.29903 32.5784i 0.172105 1.05810i
\(949\) −7.05423 12.2183i −0.228990 0.396622i
\(950\) −8.45802 14.6497i −0.274414 0.475300i
\(951\) −22.2374 + 27.2283i −0.721097 + 0.882939i
\(952\) 0 0
\(953\) 11.2998i 0.366036i 0.983110 + 0.183018i \(0.0585867\pi\)
−0.983110 + 0.183018i \(0.941413\pi\)
\(954\) 18.0122 15.9487i 0.583167 0.516359i
\(955\) 4.76197i 0.154094i
\(956\) −35.4994 20.4956i −1.14813 0.662874i
\(957\) −5.85506 + 2.21962i −0.189267 + 0.0717502i
\(958\) −85.6097 + 49.4268i −2.76592 + 1.59691i
\(959\) 0 0
\(960\) −10.8012 + 4.09467i −0.348607 + 0.132155i
\(961\) −12.4226 + 21.5166i −0.400729 + 0.694083i
\(962\) −8.48519 −0.273574
\(963\) 0.144541 0.432564i 0.00465778 0.0139392i
\(964\) 40.0479i 1.28986i
\(965\) 4.25324 7.36682i 0.136917 0.237146i
\(966\) 0 0
\(967\) 5.93412 + 10.2782i 0.190829 + 0.330525i 0.945525 0.325549i \(-0.105549\pi\)
−0.754696 + 0.656074i \(0.772216\pi\)
\(968\) 65.0324 37.5465i 2.09022 1.20679i
\(969\) 14.4014 + 2.34246i 0.462640 + 0.0752506i
\(970\) −16.4454 + 28.4842i −0.528029 + 0.914573i
\(971\) 56.1674 1.80250 0.901249 0.433302i \(-0.142652\pi\)
0.901249 + 0.433302i \(0.142652\pi\)
\(972\) 70.7552 + 20.5465i 2.26947 + 0.659029i
\(973\) 0 0
\(974\) 17.0826 + 9.86263i 0.547361 + 0.316019i
\(975\) −7.20059 1.17121i −0.230603 0.0375088i
\(976\) −111.201 + 64.2020i −3.55946 + 2.05506i
\(977\) −18.7626 + 10.8326i −0.600268 + 0.346565i −0.769147 0.639072i \(-0.779319\pi\)
0.168879 + 0.985637i \(0.445985\pi\)
\(978\) 25.0678 30.6940i 0.801580 0.981486i
\(979\) −0.866594 0.500328i −0.0276964 0.0159906i
\(980\) 0 0
\(981\) 15.3678 + 5.13516i 0.490656 + 0.163953i
\(982\) 9.98145 0.318521
\(983\) −9.70006 + 16.8010i −0.309384 + 0.535869i −0.978228 0.207534i \(-0.933456\pi\)
0.668844 + 0.743403i \(0.266789\pi\)
\(984\) −18.2313 48.0918i −0.581194 1.53311i
\(985\) 6.96052 4.01866i 0.221781 0.128045i
\(986\) 33.6733 + 58.3238i 1.07238 + 1.85741i
\(987\) 0 0
\(988\) 5.51814 9.55771i 0.175556 0.304071i
\(989\) 21.3356i 0.678432i
\(990\) 4.50169 3.98597i 0.143073 0.126683i
\(991\) 25.3261 0.804509 0.402254 0.915528i \(-0.368227\pi\)
0.402254 + 0.915528i \(0.368227\pi\)
\(992\) 11.0461 19.1325i 0.350715 0.607456i
\(993\) 35.5072 + 28.9988i 1.12679 + 0.920248i
\(994\) 0 0
\(995\) −17.4066 + 10.0497i −0.551828 + 0.318598i
\(996\) −11.4810 + 70.5851i −0.363790 + 2.23657i
\(997\) −4.82016 2.78292i −0.152656 0.0881360i 0.421726 0.906723i \(-0.361424\pi\)
−0.574382 + 0.818587i \(0.694758\pi\)
\(998\) 83.4050i 2.64014i
\(999\) 6.43875 12.2559i 0.203713 0.387759i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 441.2.o.d.146.5 10
3.2 odd 2 1323.2.o.c.440.1 10
7.2 even 3 63.2.i.b.38.1 yes 10
7.3 odd 6 63.2.s.b.47.1 yes 10
7.4 even 3 441.2.s.b.362.1 10
7.5 odd 6 441.2.i.b.227.1 10
7.6 odd 2 441.2.o.c.146.5 10
9.4 even 3 1323.2.o.d.881.1 10
9.5 odd 6 441.2.o.c.293.5 10
21.2 odd 6 189.2.i.b.143.5 10
21.5 even 6 1323.2.i.b.521.5 10
21.11 odd 6 1323.2.s.b.656.5 10
21.17 even 6 189.2.s.b.89.5 10
21.20 even 2 1323.2.o.d.440.1 10
28.3 even 6 1008.2.df.b.929.1 10
28.23 odd 6 1008.2.ca.b.353.1 10
63.2 odd 6 567.2.p.c.80.5 10
63.4 even 3 1323.2.i.b.1097.1 10
63.5 even 6 441.2.s.b.374.1 10
63.13 odd 6 1323.2.o.c.881.1 10
63.16 even 3 567.2.p.d.80.1 10
63.23 odd 6 63.2.s.b.59.1 yes 10
63.31 odd 6 189.2.i.b.152.1 10
63.32 odd 6 441.2.i.b.68.5 10
63.38 even 6 567.2.p.d.404.1 10
63.40 odd 6 1323.2.s.b.962.5 10
63.41 even 6 inner 441.2.o.d.293.5 10
63.52 odd 6 567.2.p.c.404.5 10
63.58 even 3 189.2.s.b.17.5 10
63.59 even 6 63.2.i.b.5.5 10
84.23 even 6 3024.2.ca.b.2033.2 10
84.59 odd 6 3024.2.df.b.1601.2 10
252.23 even 6 1008.2.df.b.689.1 10
252.31 even 6 3024.2.ca.b.2609.2 10
252.59 odd 6 1008.2.ca.b.257.1 10
252.247 odd 6 3024.2.df.b.17.2 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
63.2.i.b.5.5 10 63.59 even 6
63.2.i.b.38.1 yes 10 7.2 even 3
63.2.s.b.47.1 yes 10 7.3 odd 6
63.2.s.b.59.1 yes 10 63.23 odd 6
189.2.i.b.143.5 10 21.2 odd 6
189.2.i.b.152.1 10 63.31 odd 6
189.2.s.b.17.5 10 63.58 even 3
189.2.s.b.89.5 10 21.17 even 6
441.2.i.b.68.5 10 63.32 odd 6
441.2.i.b.227.1 10 7.5 odd 6
441.2.o.c.146.5 10 7.6 odd 2
441.2.o.c.293.5 10 9.5 odd 6
441.2.o.d.146.5 10 1.1 even 1 trivial
441.2.o.d.293.5 10 63.41 even 6 inner
441.2.s.b.362.1 10 7.4 even 3
441.2.s.b.374.1 10 63.5 even 6
567.2.p.c.80.5 10 63.2 odd 6
567.2.p.c.404.5 10 63.52 odd 6
567.2.p.d.80.1 10 63.16 even 3
567.2.p.d.404.1 10 63.38 even 6
1008.2.ca.b.257.1 10 252.59 odd 6
1008.2.ca.b.353.1 10 28.23 odd 6
1008.2.df.b.689.1 10 252.23 even 6
1008.2.df.b.929.1 10 28.3 even 6
1323.2.i.b.521.5 10 21.5 even 6
1323.2.i.b.1097.1 10 63.4 even 3
1323.2.o.c.440.1 10 3.2 odd 2
1323.2.o.c.881.1 10 63.13 odd 6
1323.2.o.d.440.1 10 21.20 even 2
1323.2.o.d.881.1 10 9.4 even 3
1323.2.s.b.656.5 10 21.11 odd 6
1323.2.s.b.962.5 10 63.40 odd 6
3024.2.ca.b.2033.2 10 84.23 even 6
3024.2.ca.b.2609.2 10 252.31 even 6
3024.2.df.b.17.2 10 252.247 odd 6
3024.2.df.b.1601.2 10 84.59 odd 6