Newspace parameters
| Level: | \( N \) | \(=\) | \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1008.cx (of order \(6\), degree \(2\), minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(8.04892052375\) |
| Analytic rank: | \(0\) |
| Dimension: | \(32\) |
| Relative dimension: | \(16\) over \(\Q(\zeta_{6})\) |
| Twist minimal: | yes |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 223.1 | 0 | −1.69540 | − | 0.354449i | 0 | −2.63271 | + | 1.52000i | 0 | −0.770727 | + | 2.53100i | 0 | 2.74873 | + | 1.20186i | 0 | ||||||||||
| 223.2 | 0 | −1.69540 | − | 0.354449i | 0 | 2.63271 | − | 1.52000i | 0 | −1.80655 | + | 1.93297i | 0 | 2.74873 | + | 1.20186i | 0 | ||||||||||
| 223.3 | 0 | −1.37099 | + | 1.05848i | 0 | −0.973047 | + | 0.561789i | 0 | 2.64036 | + | 0.168790i | 0 | 0.759236 | − | 2.90234i | 0 | ||||||||||
| 223.4 | 0 | −1.37099 | + | 1.05848i | 0 | 0.973047 | − | 0.561789i | 0 | −1.46636 | − | 2.20223i | 0 | 0.759236 | − | 2.90234i | 0 | ||||||||||
| 223.5 | 0 | −1.26474 | − | 1.18340i | 0 | −0.830715 | + | 0.479614i | 0 | −0.711914 | − | 2.54817i | 0 | 0.199131 | + | 2.99338i | 0 | ||||||||||
| 223.6 | 0 | −1.26474 | − | 1.18340i | 0 | 0.830715 | − | 0.479614i | 0 | 2.56274 | − | 0.657550i | 0 | 0.199131 | + | 2.99338i | 0 | ||||||||||
| 223.7 | 0 | −0.382689 | + | 1.68925i | 0 | −3.07115 | + | 1.77313i | 0 | −2.63565 | + | 0.230944i | 0 | −2.70710 | − | 1.29291i | 0 | ||||||||||
| 223.8 | 0 | −0.382689 | + | 1.68925i | 0 | 3.07115 | − | 1.77313i | 0 | 1.11782 | + | 2.39801i | 0 | −2.70710 | − | 1.29291i | 0 | ||||||||||
| 223.9 | 0 | 0.382689 | − | 1.68925i | 0 | −3.07115 | + | 1.77313i | 0 | 2.63565 | − | 0.230944i | 0 | −2.70710 | − | 1.29291i | 0 | ||||||||||
| 223.10 | 0 | 0.382689 | − | 1.68925i | 0 | 3.07115 | − | 1.77313i | 0 | −1.11782 | − | 2.39801i | 0 | −2.70710 | − | 1.29291i | 0 | ||||||||||
| 223.11 | 0 | 1.26474 | + | 1.18340i | 0 | −0.830715 | + | 0.479614i | 0 | 0.711914 | + | 2.54817i | 0 | 0.199131 | + | 2.99338i | 0 | ||||||||||
| 223.12 | 0 | 1.26474 | + | 1.18340i | 0 | 0.830715 | − | 0.479614i | 0 | −2.56274 | + | 0.657550i | 0 | 0.199131 | + | 2.99338i | 0 | ||||||||||
| 223.13 | 0 | 1.37099 | − | 1.05848i | 0 | −0.973047 | + | 0.561789i | 0 | −2.64036 | − | 0.168790i | 0 | 0.759236 | − | 2.90234i | 0 | ||||||||||
| 223.14 | 0 | 1.37099 | − | 1.05848i | 0 | 0.973047 | − | 0.561789i | 0 | 1.46636 | + | 2.20223i | 0 | 0.759236 | − | 2.90234i | 0 | ||||||||||
| 223.15 | 0 | 1.69540 | + | 0.354449i | 0 | −2.63271 | + | 1.52000i | 0 | 0.770727 | − | 2.53100i | 0 | 2.74873 | + | 1.20186i | 0 | ||||||||||
| 223.16 | 0 | 1.69540 | + | 0.354449i | 0 | 2.63271 | − | 1.52000i | 0 | 1.80655 | − | 1.93297i | 0 | 2.74873 | + | 1.20186i | 0 | ||||||||||
| 895.1 | 0 | −1.69540 | + | 0.354449i | 0 | −2.63271 | − | 1.52000i | 0 | −0.770727 | − | 2.53100i | 0 | 2.74873 | − | 1.20186i | 0 | ||||||||||
| 895.2 | 0 | −1.69540 | + | 0.354449i | 0 | 2.63271 | + | 1.52000i | 0 | −1.80655 | − | 1.93297i | 0 | 2.74873 | − | 1.20186i | 0 | ||||||||||
| 895.3 | 0 | −1.37099 | − | 1.05848i | 0 | −0.973047 | − | 0.561789i | 0 | 2.64036 | − | 0.168790i | 0 | 0.759236 | + | 2.90234i | 0 | ||||||||||
| 895.4 | 0 | −1.37099 | − | 1.05848i | 0 | 0.973047 | + | 0.561789i | 0 | −1.46636 | + | 2.20223i | 0 | 0.759236 | + | 2.90234i | 0 | ||||||||||
| See all 32 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 4.b | odd | 2 | 1 | inner |
| 7.b | odd | 2 | 1 | inner |
| 9.c | even | 3 | 1 | inner |
| 28.d | even | 2 | 1 | inner |
| 36.f | odd | 6 | 1 | inner |
| 63.l | odd | 6 | 1 | inner |
| 252.bi | even | 6 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 1008.2.cx.k | ✓ | 32 |
| 3.b | odd | 2 | 1 | 3024.2.cx.k | 32 | ||
| 4.b | odd | 2 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| 7.b | odd | 2 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| 9.c | even | 3 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| 9.d | odd | 6 | 1 | 3024.2.cx.k | 32 | ||
| 12.b | even | 2 | 1 | 3024.2.cx.k | 32 | ||
| 21.c | even | 2 | 1 | 3024.2.cx.k | 32 | ||
| 28.d | even | 2 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| 36.f | odd | 6 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| 36.h | even | 6 | 1 | 3024.2.cx.k | 32 | ||
| 63.l | odd | 6 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| 63.o | even | 6 | 1 | 3024.2.cx.k | 32 | ||
| 84.h | odd | 2 | 1 | 3024.2.cx.k | 32 | ||
| 252.s | odd | 6 | 1 | 3024.2.cx.k | 32 | ||
| 252.bi | even | 6 | 1 | inner | 1008.2.cx.k | ✓ | 32 |
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 1008.2.cx.k | ✓ | 32 | 1.a | even | 1 | 1 | trivial |
| 1008.2.cx.k | ✓ | 32 | 4.b | odd | 2 | 1 | inner |
| 1008.2.cx.k | ✓ | 32 | 7.b | odd | 2 | 1 | inner |
| 1008.2.cx.k | ✓ | 32 | 9.c | even | 3 | 1 | inner |
| 1008.2.cx.k | ✓ | 32 | 28.d | even | 2 | 1 | inner |
| 1008.2.cx.k | ✓ | 32 | 36.f | odd | 6 | 1 | inner |
| 1008.2.cx.k | ✓ | 32 | 63.l | odd | 6 | 1 | inner |
| 1008.2.cx.k | ✓ | 32 | 252.bi | even | 6 | 1 | inner |
| 3024.2.cx.k | 32 | 3.b | odd | 2 | 1 | ||
| 3024.2.cx.k | 32 | 9.d | odd | 6 | 1 | ||
| 3024.2.cx.k | 32 | 12.b | even | 2 | 1 | ||
| 3024.2.cx.k | 32 | 21.c | even | 2 | 1 | ||
| 3024.2.cx.k | 32 | 36.h | even | 6 | 1 | ||
| 3024.2.cx.k | 32 | 63.o | even | 6 | 1 | ||
| 3024.2.cx.k | 32 | 84.h | odd | 2 | 1 | ||
| 3024.2.cx.k | 32 | 252.s | odd | 6 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1008, [\chi])\):
|
\( T_{5}^{16} - 24 T_{5}^{14} + 411 T_{5}^{12} - 3402 T_{5}^{10} + 20394 T_{5}^{8} - 39555 T_{5}^{6} + \cdots + 18225 \)
|
|
\( T_{11}^{16} - 45 T_{11}^{14} + 1716 T_{11}^{12} - 12681 T_{11}^{10} + 67806 T_{11}^{8} - 176958 T_{11}^{6} + \cdots + 18225 \)
|