| L(s) = 1 | + (−1.26 − 1.18i)3-s + (0.830 − 0.479i)5-s + (2.56 − 0.657i)7-s + (0.199 + 2.99i)9-s + (−5.27 − 3.04i)11-s + (3.50 − 2.02i)13-s + (−1.61 − 0.376i)15-s − 0.732i·17-s + 3.66·19-s + (−4.01 − 2.20i)21-s + (0.751 − 0.434i)23-s + (−2.03 + 3.53i)25-s + (3.29 − 4.02i)27-s + (2.53 − 4.39i)29-s + (−2.03 − 3.51i)31-s + ⋯ |
| L(s) = 1 | + (−0.730 − 0.683i)3-s + (0.371 − 0.214i)5-s + (0.968 − 0.248i)7-s + (0.0663 + 0.997i)9-s + (−1.59 − 0.918i)11-s + (0.972 − 0.561i)13-s + (−0.417 − 0.0972i)15-s − 0.177i·17-s + 0.840·19-s + (−0.877 − 0.480i)21-s + (0.156 − 0.0905i)23-s + (−0.407 + 0.706i)25-s + (0.633 − 0.773i)27-s + (0.471 − 0.816i)29-s + (−0.364 − 0.631i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.371 + 0.928i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.371 + 0.928i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.238722470\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.238722470\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.26 + 1.18i)T \) |
| 7 | \( 1 + (-2.56 + 0.657i)T \) |
| good | 5 | \( 1 + (-0.830 + 0.479i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (5.27 + 3.04i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (-3.50 + 2.02i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 0.732iT - 17T^{2} \) |
| 19 | \( 1 - 3.66T + 19T^{2} \) |
| 23 | \( 1 + (-0.751 + 0.434i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.53 + 4.39i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (2.03 + 3.51i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 5.58T + 37T^{2} \) |
| 41 | \( 1 + (8.17 - 4.72i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (7.69 + 4.44i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-3.68 + 6.37i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 2.07T + 53T^{2} \) |
| 59 | \( 1 + (3.10 + 5.37i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (9.20 + 5.31i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.44 - 0.836i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 7.44iT - 71T^{2} \) |
| 73 | \( 1 + 7.75iT - 73T^{2} \) |
| 79 | \( 1 + (6.68 + 3.85i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-1.17 + 2.03i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + 14.5iT - 89T^{2} \) |
| 97 | \( 1 + (-11.4 - 6.58i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.965041662078882441905137875007, −8.545933727075617897142057301402, −7.995878567362238796047180451436, −7.33662544860369596439167049181, −6.04152925540021975190562313787, −5.48787077216072360077685171355, −4.78753180502653857813125840259, −3.19873447258056871293255988082, −1.87745308977489674907628702202, −0.64914726098873193086123535899,
1.54848601757038277524278655675, 2.92588000793780275936407218204, 4.29760738468206536989285598533, 5.06606500428878905012383362184, 5.70822320043761571976274152361, 6.74595235924259583333280122396, 7.73120860902926969361288139380, 8.643063678816443951663583715268, 9.555434016955577177535913864656, 10.43310590411329190001753859449