| L(s) = 1 | + (0.382 − 1.68i)3-s + (−3.07 + 1.77i)5-s + (2.63 − 0.230i)7-s + (−2.70 − 1.29i)9-s + (0.434 + 0.250i)11-s + (−2.36 + 1.36i)13-s + (1.81 + 5.86i)15-s − 1.06i·17-s − 6.16·19-s + (0.618 − 4.54i)21-s + (−3.62 + 2.09i)23-s + (3.78 − 6.56i)25-s + (−3.22 + 4.07i)27-s + (−3.28 + 5.69i)29-s + (1.67 + 2.90i)31-s + ⋯ |
| L(s) = 1 | + (0.220 − 0.975i)3-s + (−1.37 + 0.792i)5-s + (0.996 − 0.0872i)7-s + (−0.902 − 0.430i)9-s + (0.130 + 0.0755i)11-s + (−0.654 + 0.378i)13-s + (0.469 + 1.51i)15-s − 0.258i·17-s − 1.41·19-s + (0.134 − 0.990i)21-s + (−0.755 + 0.436i)23-s + (0.757 − 1.31i)25-s + (−0.619 + 0.784i)27-s + (−0.610 + 1.05i)29-s + (0.300 + 0.521i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.492 - 0.870i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.492 - 0.870i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(0.3792008325\) |
| \(L(\frac12)\) |
\(\approx\) |
\(0.3792008325\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.382 + 1.68i)T \) |
| 7 | \( 1 + (-2.63 + 0.230i)T \) |
| good | 5 | \( 1 + (3.07 - 1.77i)T + (2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-0.434 - 0.250i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (2.36 - 1.36i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + 1.06iT - 17T^{2} \) |
| 19 | \( 1 + 6.16T + 19T^{2} \) |
| 23 | \( 1 + (3.62 - 2.09i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.28 - 5.69i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + (-1.67 - 2.90i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 6.88T + 37T^{2} \) |
| 41 | \( 1 + (8.83 - 5.10i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (0.403 + 0.233i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (1.56 - 2.71i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + 9.57T + 53T^{2} \) |
| 59 | \( 1 + (-2.30 - 3.99i)T + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (1.76 + 1.02i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (12.5 - 7.22i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 1.11iT - 71T^{2} \) |
| 73 | \( 1 + 12.6iT - 73T^{2} \) |
| 79 | \( 1 + (-14.2 - 8.20i)T + (39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (-4.96 + 8.59i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 9.58iT - 89T^{2} \) |
| 97 | \( 1 + (11.1 + 6.44i)T + (48.5 + 84.0i)T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.52833003900703752646492945689, −9.170728421334722218937455993923, −8.206785499536928919913689066864, −7.77735591233242028225905674608, −7.04431162382626292555349563665, −6.32572240065365116278860151715, −4.90237378013977312664008845735, −3.94669517254490365886373388962, −2.85398780766500295009901109224, −1.68367398672502600698713500091,
0.16266232635300254706783878409, 2.20884478716871122344259668367, 3.69987620438094125298831490403, 4.40643859461419387673664703958, 4.92486623715363835798255660826, 6.07428592454477548880316315734, 7.62430892287012447201342876587, 8.187976504835266695755819870908, 8.638920502958627381086144759634, 9.650688421390590165681844552358