Properties

Label 1008.2.cx.j.223.6
Level $1008$
Weight $2$
Character 1008.223
Analytic conductor $8.049$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1008,2,Mod(223,1008)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1008.223"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1008, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 4, 3])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1008 = 2^{4} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1008.cx (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,6,0,20,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(8.04892052375\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 223.6
Character \(\chi\) \(=\) 1008.223
Dual form 1008.2.cx.j.895.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.940521 + 1.45445i) q^{3} +(-3.48918 + 2.01448i) q^{5} +(2.54444 + 0.725126i) q^{7} +(-1.23084 - 2.73588i) q^{9} +(-4.95331 - 2.85980i) q^{11} +(1.74224 - 1.00589i) q^{13} +(0.351689 - 6.96949i) q^{15} +4.18025i q^{17} -3.22849 q^{19} +(-3.44776 + 3.01877i) q^{21} +(-3.63065 + 2.09616i) q^{23} +(5.61625 - 9.72763i) q^{25} +(5.13683 + 0.782952i) q^{27} +(1.27096 - 2.20137i) q^{29} +(-3.10138 - 5.37176i) q^{31} +(8.81812 - 4.51464i) q^{33} +(-10.3388 + 2.59563i) q^{35} +3.21605 q^{37} +(-0.175608 + 3.48006i) q^{39} +(5.51107 - 3.18181i) q^{41} +(3.71365 + 2.14408i) q^{43} +(9.80600 + 7.06646i) q^{45} +(2.92547 - 5.06707i) q^{47} +(5.94838 + 3.69008i) q^{49} +(-6.07997 - 3.93161i) q^{51} +13.9105 q^{53} +23.0440 q^{55} +(3.03646 - 4.69567i) q^{57} +(-4.26142 - 7.38100i) q^{59} +(-10.9025 - 6.29455i) q^{61} +(-1.14795 - 7.85380i) q^{63} +(-4.05267 + 7.01943i) q^{65} +(-4.54387 + 2.62341i) q^{67} +(0.365949 - 7.25208i) q^{69} -12.5319i q^{71} +7.93971i q^{73} +(8.86614 + 17.3176i) q^{75} +(-10.5297 - 10.8684i) q^{77} +(-4.48851 - 2.59144i) q^{79} +(-5.97005 + 6.73487i) q^{81} +(-2.68950 + 4.65836i) q^{83} +(-8.42103 - 14.5857i) q^{85} +(2.00641 + 3.91898i) q^{87} -3.51148i q^{89} +(5.16244 - 1.29607i) q^{91} +(10.7299 + 0.541442i) q^{93} +(11.2648 - 6.50372i) q^{95} +(-9.29978 - 5.36923i) q^{97} +(-1.72731 + 17.0716i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 6 q^{7} + 20 q^{9} - 24 q^{15} + 10 q^{21} - 18 q^{23} + 24 q^{25} - 6 q^{29} - 12 q^{37} + 12 q^{39} - 42 q^{43} + 12 q^{49} + 42 q^{51} + 96 q^{53} - 22 q^{57} - 18 q^{63} + 42 q^{65} - 36 q^{67}+ \cdots - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1008\mathbb{Z}\right)^\times\).

\(n\) \(127\) \(577\) \(757\) \(785\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.940521 + 1.45445i −0.543010 + 0.839726i
\(4\) 0 0
\(5\) −3.48918 + 2.01448i −1.56041 + 0.900902i −0.563193 + 0.826325i \(0.690427\pi\)
−0.997215 + 0.0745770i \(0.976239\pi\)
\(6\) 0 0
\(7\) 2.54444 + 0.725126i 0.961709 + 0.274072i
\(8\) 0 0
\(9\) −1.23084 2.73588i −0.410281 0.911959i
\(10\) 0 0
\(11\) −4.95331 2.85980i −1.49348 0.862261i −0.493508 0.869741i \(-0.664286\pi\)
−0.999972 + 0.00747985i \(0.997619\pi\)
\(12\) 0 0
\(13\) 1.74224 1.00589i 0.483212 0.278982i −0.238542 0.971132i \(-0.576670\pi\)
0.721754 + 0.692150i \(0.243336\pi\)
\(14\) 0 0
\(15\) 0.351689 6.96949i 0.0908057 1.79951i
\(16\) 0 0
\(17\) 4.18025i 1.01386i 0.861987 + 0.506930i \(0.169220\pi\)
−0.861987 + 0.506930i \(0.830780\pi\)
\(18\) 0 0
\(19\) −3.22849 −0.740666 −0.370333 0.928899i \(-0.620756\pi\)
−0.370333 + 0.928899i \(0.620756\pi\)
\(20\) 0 0
\(21\) −3.44776 + 3.01877i −0.752363 + 0.658749i
\(22\) 0 0
\(23\) −3.63065 + 2.09616i −0.757044 + 0.437079i −0.828233 0.560383i \(-0.810654\pi\)
0.0711897 + 0.997463i \(0.477320\pi\)
\(24\) 0 0
\(25\) 5.61625 9.72763i 1.12325 1.94553i
\(26\) 0 0
\(27\) 5.13683 + 0.782952i 0.988583 + 0.150679i
\(28\) 0 0
\(29\) 1.27096 2.20137i 0.236011 0.408784i −0.723555 0.690267i \(-0.757493\pi\)
0.959566 + 0.281483i \(0.0908264\pi\)
\(30\) 0 0
\(31\) −3.10138 5.37176i −0.557025 0.964796i −0.997743 0.0671502i \(-0.978609\pi\)
0.440718 0.897646i \(-0.354724\pi\)
\(32\) 0 0
\(33\) 8.81812 4.51464i 1.53504 0.785898i
\(34\) 0 0
\(35\) −10.3388 + 2.59563i −1.74757 + 0.438742i
\(36\) 0 0
\(37\) 3.21605 0.528716 0.264358 0.964425i \(-0.414840\pi\)
0.264358 + 0.964425i \(0.414840\pi\)
\(38\) 0 0
\(39\) −0.175608 + 3.48006i −0.0281198 + 0.557256i
\(40\) 0 0
\(41\) 5.51107 3.18181i 0.860684 0.496916i −0.00355743 0.999994i \(-0.501132\pi\)
0.864241 + 0.503078i \(0.167799\pi\)
\(42\) 0 0
\(43\) 3.71365 + 2.14408i 0.566327 + 0.326969i 0.755681 0.654940i \(-0.227306\pi\)
−0.189354 + 0.981909i \(0.560639\pi\)
\(44\) 0 0
\(45\) 9.80600 + 7.06646i 1.46179 + 1.05341i
\(46\) 0 0
\(47\) 2.92547 5.06707i 0.426724 0.739108i −0.569855 0.821745i \(-0.693001\pi\)
0.996580 + 0.0826368i \(0.0263342\pi\)
\(48\) 0 0
\(49\) 5.94838 + 3.69008i 0.849769 + 0.527155i
\(50\) 0 0
\(51\) −6.07997 3.93161i −0.851365 0.550536i
\(52\) 0 0
\(53\) 13.9105 1.91076 0.955379 0.295383i \(-0.0954472\pi\)
0.955379 + 0.295383i \(0.0954472\pi\)
\(54\) 0 0
\(55\) 23.0440 3.10725
\(56\) 0 0
\(57\) 3.03646 4.69567i 0.402189 0.621957i
\(58\) 0 0
\(59\) −4.26142 7.38100i −0.554790 0.960925i −0.997920 0.0644671i \(-0.979465\pi\)
0.443130 0.896457i \(-0.353868\pi\)
\(60\) 0 0
\(61\) −10.9025 6.29455i −1.39592 0.805934i −0.401957 0.915659i \(-0.631670\pi\)
−0.993962 + 0.109724i \(0.965003\pi\)
\(62\) 0 0
\(63\) −1.14795 7.85380i −0.144628 0.989486i
\(64\) 0 0
\(65\) −4.05267 + 7.01943i −0.502672 + 0.870653i
\(66\) 0 0
\(67\) −4.54387 + 2.62341i −0.555122 + 0.320500i −0.751185 0.660091i \(-0.770518\pi\)
0.196063 + 0.980591i \(0.437184\pi\)
\(68\) 0 0
\(69\) 0.365949 7.25208i 0.0440551 0.873048i
\(70\) 0 0
\(71\) 12.5319i 1.48727i −0.668587 0.743634i \(-0.733101\pi\)
0.668587 0.743634i \(-0.266899\pi\)
\(72\) 0 0
\(73\) 7.93971i 0.929273i 0.885502 + 0.464636i \(0.153815\pi\)
−0.885502 + 0.464636i \(0.846185\pi\)
\(74\) 0 0
\(75\) 8.86614 + 17.3176i 1.02377 + 1.99966i
\(76\) 0 0
\(77\) −10.5297 10.8684i −1.19997 1.23857i
\(78\) 0 0
\(79\) −4.48851 2.59144i −0.504997 0.291560i 0.225778 0.974179i \(-0.427508\pi\)
−0.730775 + 0.682619i \(0.760841\pi\)
\(80\) 0 0
\(81\) −5.97005 + 6.73487i −0.663339 + 0.748319i
\(82\) 0 0
\(83\) −2.68950 + 4.65836i −0.295211 + 0.511321i −0.975034 0.222055i \(-0.928723\pi\)
0.679823 + 0.733377i \(0.262057\pi\)
\(84\) 0 0
\(85\) −8.42103 14.5857i −0.913389 1.58204i
\(86\) 0 0
\(87\) 2.00641 + 3.91898i 0.215110 + 0.420159i
\(88\) 0 0
\(89\) 3.51148i 0.372216i −0.982529 0.186108i \(-0.940413\pi\)
0.982529 0.186108i \(-0.0595874\pi\)
\(90\) 0 0
\(91\) 5.16244 1.29607i 0.541170 0.135865i
\(92\) 0 0
\(93\) 10.7299 + 0.541442i 1.11263 + 0.0561449i
\(94\) 0 0
\(95\) 11.2648 6.50372i 1.15574 0.667268i
\(96\) 0 0
\(97\) −9.29978 5.36923i −0.944250 0.545163i −0.0529598 0.998597i \(-0.516866\pi\)
−0.891290 + 0.453434i \(0.850199\pi\)
\(98\) 0 0
\(99\) −1.72731 + 17.0716i −0.173601 + 1.71576i
\(100\) 0 0
\(101\) 2.98052 + 1.72080i 0.296573 + 0.171226i 0.640902 0.767623i \(-0.278560\pi\)
−0.344330 + 0.938849i \(0.611894\pi\)
\(102\) 0 0
\(103\) −0.562042 0.973484i −0.0553796 0.0959203i 0.837007 0.547193i \(-0.184304\pi\)
−0.892386 + 0.451273i \(0.850970\pi\)
\(104\) 0 0
\(105\) 5.94861 17.4785i 0.580525 1.70572i
\(106\) 0 0
\(107\) 2.50195i 0.241872i 0.992660 + 0.120936i \(0.0385897\pi\)
−0.992660 + 0.120936i \(0.961410\pi\)
\(108\) 0 0
\(109\) −11.1266 −1.06573 −0.532867 0.846199i \(-0.678885\pi\)
−0.532867 + 0.846199i \(0.678885\pi\)
\(110\) 0 0
\(111\) −3.02476 + 4.67758i −0.287098 + 0.443976i
\(112\) 0 0
\(113\) −0.599354 1.03811i −0.0563825 0.0976574i 0.836457 0.548033i \(-0.184623\pi\)
−0.892839 + 0.450376i \(0.851290\pi\)
\(114\) 0 0
\(115\) 8.44533 14.6277i 0.787532 1.36404i
\(116\) 0 0
\(117\) −4.89641 3.52848i −0.452673 0.326208i
\(118\) 0 0
\(119\) −3.03121 + 10.6364i −0.277871 + 0.975039i
\(120\) 0 0
\(121\) 10.8569 + 18.8047i 0.986989 + 1.70951i
\(122\) 0 0
\(123\) −0.555483 + 11.0081i −0.0500862 + 0.992569i
\(124\) 0 0
\(125\) 25.1105i 2.24595i
\(126\) 0 0
\(127\) 3.48012i 0.308811i −0.988008 0.154405i \(-0.950654\pi\)
0.988008 0.154405i \(-0.0493462\pi\)
\(128\) 0 0
\(129\) −6.61122 + 3.38477i −0.582085 + 0.298012i
\(130\) 0 0
\(131\) −2.73241 4.73267i −0.238732 0.413495i 0.721619 0.692290i \(-0.243398\pi\)
−0.960351 + 0.278795i \(0.910065\pi\)
\(132\) 0 0
\(133\) −8.21471 2.34106i −0.712306 0.202996i
\(134\) 0 0
\(135\) −19.5005 + 7.61617i −1.67834 + 0.655495i
\(136\) 0 0
\(137\) −4.49760 + 7.79007i −0.384256 + 0.665551i −0.991666 0.128838i \(-0.958875\pi\)
0.607410 + 0.794389i \(0.292209\pi\)
\(138\) 0 0
\(139\) −3.12779 5.41748i −0.265295 0.459505i 0.702346 0.711836i \(-0.252136\pi\)
−0.967641 + 0.252331i \(0.918803\pi\)
\(140\) 0 0
\(141\) 4.61832 + 9.02064i 0.388933 + 0.759675i
\(142\) 0 0
\(143\) −11.5065 −0.962223
\(144\) 0 0
\(145\) 10.2413i 0.850493i
\(146\) 0 0
\(147\) −10.9616 + 5.18102i −0.904099 + 0.427323i
\(148\) 0 0
\(149\) −6.32221 10.9504i −0.517936 0.897091i −0.999783 0.0208358i \(-0.993367\pi\)
0.481847 0.876255i \(-0.339966\pi\)
\(150\) 0 0
\(151\) −13.8107 7.97363i −1.12390 0.648884i −0.181507 0.983390i \(-0.558097\pi\)
−0.942394 + 0.334505i \(0.891431\pi\)
\(152\) 0 0
\(153\) 11.4367 5.14523i 0.924600 0.415967i
\(154\) 0 0
\(155\) 21.6426 + 12.4953i 1.73837 + 1.00365i
\(156\) 0 0
\(157\) 15.3782 8.87858i 1.22731 0.708588i 0.260844 0.965381i \(-0.415999\pi\)
0.966467 + 0.256793i \(0.0826658\pi\)
\(158\) 0 0
\(159\) −13.0831 + 20.2322i −1.03756 + 1.60451i
\(160\) 0 0
\(161\) −10.7580 + 2.70088i −0.847847 + 0.212859i
\(162\) 0 0
\(163\) 10.1287i 0.793339i 0.917962 + 0.396669i \(0.129834\pi\)
−0.917962 + 0.396669i \(0.870166\pi\)
\(164\) 0 0
\(165\) −21.6734 + 33.5163i −1.68727 + 2.60924i
\(166\) 0 0
\(167\) −7.08298 12.2681i −0.548098 0.949333i −0.998405 0.0564595i \(-0.982019\pi\)
0.450307 0.892874i \(-0.351315\pi\)
\(168\) 0 0
\(169\) −4.47639 + 7.75334i −0.344338 + 0.596410i
\(170\) 0 0
\(171\) 3.97376 + 8.83275i 0.303881 + 0.675457i
\(172\) 0 0
\(173\) −9.42612 5.44217i −0.716654 0.413761i 0.0968656 0.995297i \(-0.469118\pi\)
−0.813520 + 0.581537i \(0.802452\pi\)
\(174\) 0 0
\(175\) 21.3440 20.6789i 1.61345 1.56318i
\(176\) 0 0
\(177\) 14.7432 + 0.743962i 1.10817 + 0.0559196i
\(178\) 0 0
\(179\) 11.7278i 0.876578i −0.898834 0.438289i \(-0.855585\pi\)
0.898834 0.438289i \(-0.144415\pi\)
\(180\) 0 0
\(181\) 17.6522i 1.31208i −0.754727 0.656039i \(-0.772231\pi\)
0.754727 0.656039i \(-0.227769\pi\)
\(182\) 0 0
\(183\) 19.4091 9.93694i 1.43476 0.734560i
\(184\) 0 0
\(185\) −11.2214 + 6.47867i −0.825012 + 0.476321i
\(186\) 0 0
\(187\) 11.9547 20.7061i 0.874213 1.51418i
\(188\) 0 0
\(189\) 12.5026 + 5.71702i 0.909432 + 0.415852i
\(190\) 0 0
\(191\) 0.581366 + 0.335652i 0.0420662 + 0.0242869i 0.520886 0.853626i \(-0.325602\pi\)
−0.478819 + 0.877913i \(0.658935\pi\)
\(192\) 0 0
\(193\) −7.45526 12.9129i −0.536642 0.929491i −0.999082 0.0428402i \(-0.986359\pi\)
0.462440 0.886650i \(-0.346974\pi\)
\(194\) 0 0
\(195\) −6.39778 12.4963i −0.458154 0.894880i
\(196\) 0 0
\(197\) 8.84703 0.630325 0.315163 0.949038i \(-0.397941\pi\)
0.315163 + 0.949038i \(0.397941\pi\)
\(198\) 0 0
\(199\) 4.99197 0.353872 0.176936 0.984222i \(-0.443381\pi\)
0.176936 + 0.984222i \(0.443381\pi\)
\(200\) 0 0
\(201\) 0.457996 9.07619i 0.0323045 0.640185i
\(202\) 0 0
\(203\) 4.83016 4.67965i 0.339010 0.328447i
\(204\) 0 0
\(205\) −12.8194 + 22.2038i −0.895345 + 1.55078i
\(206\) 0 0
\(207\) 10.2036 + 7.35298i 0.709199 + 0.511068i
\(208\) 0 0
\(209\) 15.9917 + 9.23282i 1.10617 + 0.638648i
\(210\) 0 0
\(211\) −1.47412 + 0.851085i −0.101483 + 0.0585911i −0.549882 0.835242i \(-0.685327\pi\)
0.448400 + 0.893833i \(0.351994\pi\)
\(212\) 0 0
\(213\) 18.2271 + 11.7865i 1.24890 + 0.807601i
\(214\) 0 0
\(215\) −17.2768 −1.17827
\(216\) 0 0
\(217\) −3.99610 15.9170i −0.271273 1.08052i
\(218\) 0 0
\(219\) −11.5479 7.46746i −0.780335 0.504604i
\(220\) 0 0
\(221\) 4.20486 + 7.28302i 0.282849 + 0.489909i
\(222\) 0 0
\(223\) −10.0164 + 17.3488i −0.670745 + 1.16176i 0.306948 + 0.951726i \(0.400692\pi\)
−0.977693 + 0.210038i \(0.932641\pi\)
\(224\) 0 0
\(225\) −33.5263 3.39220i −2.23509 0.226146i
\(226\) 0 0
\(227\) −5.16212 + 8.94105i −0.342622 + 0.593438i −0.984919 0.173018i \(-0.944648\pi\)
0.642297 + 0.766456i \(0.277982\pi\)
\(228\) 0 0
\(229\) 2.90563 1.67756i 0.192009 0.110857i −0.400914 0.916116i \(-0.631307\pi\)
0.592923 + 0.805259i \(0.297974\pi\)
\(230\) 0 0
\(231\) 25.7109 5.09301i 1.69165 0.335095i
\(232\) 0 0
\(233\) −20.1788 −1.32196 −0.660978 0.750405i \(-0.729858\pi\)
−0.660978 + 0.750405i \(0.729858\pi\)
\(234\) 0 0
\(235\) 23.5732i 1.53775i
\(236\) 0 0
\(237\) 7.99066 4.09101i 0.519049 0.265739i
\(238\) 0 0
\(239\) 2.94777 1.70189i 0.190675 0.110086i −0.401623 0.915805i \(-0.631554\pi\)
0.592299 + 0.805719i \(0.298221\pi\)
\(240\) 0 0
\(241\) 1.83067 + 1.05694i 0.117924 + 0.0680832i 0.557802 0.829974i \(-0.311645\pi\)
−0.439878 + 0.898058i \(0.644978\pi\)
\(242\) 0 0
\(243\) −4.18056 15.0174i −0.268183 0.963368i
\(244\) 0 0
\(245\) −28.1886 0.892469i −1.80090 0.0570177i
\(246\) 0 0
\(247\) −5.62482 + 3.24749i −0.357899 + 0.206633i
\(248\) 0 0
\(249\) −4.24581 8.29303i −0.269067 0.525549i
\(250\) 0 0
\(251\) −1.31087 −0.0827413 −0.0413707 0.999144i \(-0.513172\pi\)
−0.0413707 + 0.999144i \(0.513172\pi\)
\(252\) 0 0
\(253\) 23.9784 1.50751
\(254\) 0 0
\(255\) 29.1342 + 1.47015i 1.82446 + 0.0920643i
\(256\) 0 0
\(257\) 9.71045 5.60633i 0.605721 0.349713i −0.165568 0.986198i \(-0.552946\pi\)
0.771289 + 0.636485i \(0.219612\pi\)
\(258\) 0 0
\(259\) 8.18306 + 2.33204i 0.508471 + 0.144906i
\(260\) 0 0
\(261\) −7.58703 0.767656i −0.469625 0.0475167i
\(262\) 0 0
\(263\) −1.54810 0.893798i −0.0954601 0.0551139i 0.451510 0.892266i \(-0.350886\pi\)
−0.546970 + 0.837152i \(0.684219\pi\)
\(264\) 0 0
\(265\) −48.5363 + 28.0225i −2.98156 + 1.72141i
\(266\) 0 0
\(267\) 5.10726 + 3.30262i 0.312559 + 0.202117i
\(268\) 0 0
\(269\) 22.8546i 1.39347i −0.717330 0.696734i \(-0.754636\pi\)
0.717330 0.696734i \(-0.245364\pi\)
\(270\) 0 0
\(271\) −13.4933 −0.819657 −0.409828 0.912163i \(-0.634411\pi\)
−0.409828 + 0.912163i \(0.634411\pi\)
\(272\) 0 0
\(273\) −2.97031 + 8.72748i −0.179771 + 0.528211i
\(274\) 0 0
\(275\) −55.6381 + 32.1227i −3.35510 + 1.93707i
\(276\) 0 0
\(277\) 10.0276 17.3684i 0.602503 1.04357i −0.389938 0.920841i \(-0.627504\pi\)
0.992441 0.122724i \(-0.0391630\pi\)
\(278\) 0 0
\(279\) −10.8792 + 15.0968i −0.651318 + 0.903821i
\(280\) 0 0
\(281\) −7.99902 + 13.8547i −0.477181 + 0.826502i −0.999658 0.0261512i \(-0.991675\pi\)
0.522477 + 0.852654i \(0.325008\pi\)
\(282\) 0 0
\(283\) 9.43384 + 16.3399i 0.560783 + 0.971305i 0.997428 + 0.0716713i \(0.0228333\pi\)
−0.436645 + 0.899634i \(0.643833\pi\)
\(284\) 0 0
\(285\) −1.13542 + 22.5009i −0.0672567 + 1.33284i
\(286\) 0 0
\(287\) 16.3298 4.09973i 0.963918 0.242000i
\(288\) 0 0
\(289\) −0.474525 −0.0279132
\(290\) 0 0
\(291\) 16.5559 8.47618i 0.970524 0.496883i
\(292\) 0 0
\(293\) −13.2893 + 7.67260i −0.776371 + 0.448238i −0.835143 0.550034i \(-0.814615\pi\)
0.0587718 + 0.998271i \(0.481282\pi\)
\(294\) 0 0
\(295\) 29.7377 + 17.1691i 1.73140 + 0.999623i
\(296\) 0 0
\(297\) −23.2052 18.5685i −1.34650 1.07745i
\(298\) 0 0
\(299\) −4.21699 + 7.30404i −0.243875 + 0.422404i
\(300\) 0 0
\(301\) 7.89445 + 8.14835i 0.455029 + 0.469663i
\(302\) 0 0
\(303\) −5.30606 + 2.71656i −0.304825 + 0.156062i
\(304\) 0 0
\(305\) 50.7209 2.90427
\(306\) 0 0
\(307\) −12.8290 −0.732192 −0.366096 0.930577i \(-0.619306\pi\)
−0.366096 + 0.930577i \(0.619306\pi\)
\(308\) 0 0
\(309\) 1.94449 + 0.0981216i 0.110618 + 0.00558194i
\(310\) 0 0
\(311\) 1.01728 + 1.76198i 0.0576846 + 0.0999127i 0.893426 0.449211i \(-0.148295\pi\)
−0.835741 + 0.549124i \(0.814962\pi\)
\(312\) 0 0
\(313\) −8.42991 4.86701i −0.476487 0.275100i 0.242465 0.970160i \(-0.422044\pi\)
−0.718951 + 0.695061i \(0.755378\pi\)
\(314\) 0 0
\(315\) 19.8267 + 25.0908i 1.11711 + 1.41371i
\(316\) 0 0
\(317\) −11.5075 + 19.9315i −0.646325 + 1.11947i 0.337669 + 0.941265i \(0.390361\pi\)
−0.983994 + 0.178202i \(0.942972\pi\)
\(318\) 0 0
\(319\) −12.5909 + 7.26938i −0.704957 + 0.407007i
\(320\) 0 0
\(321\) −3.63895 2.35313i −0.203107 0.131339i
\(322\) 0 0
\(323\) 13.4959i 0.750932i
\(324\) 0 0
\(325\) 22.5972i 1.25347i
\(326\) 0 0
\(327\) 10.4648 16.1830i 0.578703 0.894924i
\(328\) 0 0
\(329\) 11.1180 10.7715i 0.612953 0.593854i
\(330\) 0 0
\(331\) 18.3921 + 10.6187i 1.01092 + 0.583656i 0.911461 0.411386i \(-0.134955\pi\)
0.0994598 + 0.995042i \(0.468289\pi\)
\(332\) 0 0
\(333\) −3.95845 8.79872i −0.216922 0.482167i
\(334\) 0 0
\(335\) 10.5696 18.3071i 0.577478 1.00022i
\(336\) 0 0
\(337\) −13.0884 22.6698i −0.712971 1.23490i −0.963737 0.266854i \(-0.914016\pi\)
0.250766 0.968048i \(-0.419318\pi\)
\(338\) 0 0
\(339\) 2.07359 + 0.104636i 0.112622 + 0.00568303i
\(340\) 0 0
\(341\) 35.4773i 1.92120i
\(342\) 0 0
\(343\) 12.4596 + 13.7025i 0.672753 + 0.739867i
\(344\) 0 0
\(345\) 13.3323 + 26.0410i 0.717787 + 1.40200i
\(346\) 0 0
\(347\) −13.1001 + 7.56336i −0.703251 + 0.406022i −0.808557 0.588417i \(-0.799751\pi\)
0.105306 + 0.994440i \(0.466418\pi\)
\(348\) 0 0
\(349\) 18.8255 + 10.8689i 1.00771 + 0.581799i 0.910519 0.413467i \(-0.135682\pi\)
0.0971868 + 0.995266i \(0.469016\pi\)
\(350\) 0 0
\(351\) 9.73717 3.80296i 0.519731 0.202987i
\(352\) 0 0
\(353\) −17.9454 10.3608i −0.955136 0.551448i −0.0604636 0.998170i \(-0.519258\pi\)
−0.894673 + 0.446722i \(0.852591\pi\)
\(354\) 0 0
\(355\) 25.2453 + 43.7262i 1.33988 + 2.32074i
\(356\) 0 0
\(357\) −12.6192 14.4125i −0.667880 0.762791i
\(358\) 0 0
\(359\) 8.70585i 0.459477i −0.973252 0.229739i \(-0.926213\pi\)
0.973252 0.229739i \(-0.0737871\pi\)
\(360\) 0 0
\(361\) −8.57686 −0.451414
\(362\) 0 0
\(363\) −37.5615 1.89540i −1.97147 0.0994827i
\(364\) 0 0
\(365\) −15.9944 27.7031i −0.837184 1.45005i
\(366\) 0 0
\(367\) 10.5062 18.1973i 0.548419 0.949890i −0.449964 0.893047i \(-0.648563\pi\)
0.998383 0.0568434i \(-0.0181036\pi\)
\(368\) 0 0
\(369\) −15.4883 11.1613i −0.806289 0.581033i
\(370\) 0 0
\(371\) 35.3946 + 10.0869i 1.83759 + 0.523685i
\(372\) 0 0
\(373\) 6.05267 + 10.4835i 0.313395 + 0.542817i 0.979095 0.203403i \(-0.0652002\pi\)
−0.665700 + 0.746220i \(0.731867\pi\)
\(374\) 0 0
\(375\) −36.5219 23.6169i −1.88598 1.21957i
\(376\) 0 0
\(377\) 5.11376i 0.263372i
\(378\) 0 0
\(379\) 32.3259i 1.66047i −0.557414 0.830234i \(-0.688206\pi\)
0.557414 0.830234i \(-0.311794\pi\)
\(380\) 0 0
\(381\) 5.06166 + 3.27312i 0.259316 + 0.167687i
\(382\) 0 0
\(383\) 2.70529 + 4.68571i 0.138234 + 0.239428i 0.926828 0.375486i \(-0.122524\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(384\) 0 0
\(385\) 58.6342 + 16.7098i 2.98827 + 0.851610i
\(386\) 0 0
\(387\) 1.29502 12.7991i 0.0658294 0.650616i
\(388\) 0 0
\(389\) −8.74076 + 15.1394i −0.443174 + 0.767600i −0.997923 0.0644180i \(-0.979481\pi\)
0.554749 + 0.832018i \(0.312814\pi\)
\(390\) 0 0
\(391\) −8.76248 15.1771i −0.443138 0.767537i
\(392\) 0 0
\(393\) 9.45331 + 0.477026i 0.476857 + 0.0240628i
\(394\) 0 0
\(395\) 20.8816 1.05067
\(396\) 0 0
\(397\) 12.6177i 0.633264i −0.948549 0.316632i \(-0.897448\pi\)
0.948549 0.316632i \(-0.102552\pi\)
\(398\) 0 0
\(399\) 11.1311 9.74606i 0.557250 0.487913i
\(400\) 0 0
\(401\) 5.40011 + 9.35327i 0.269669 + 0.467080i 0.968776 0.247937i \(-0.0797525\pi\)
−0.699108 + 0.715017i \(0.746419\pi\)
\(402\) 0 0
\(403\) −10.8067 6.23927i −0.538322 0.310800i
\(404\) 0 0
\(405\) 7.26335 35.5257i 0.360919 1.76529i
\(406\) 0 0
\(407\) −15.9301 9.19725i −0.789626 0.455891i
\(408\) 0 0
\(409\) 9.66191 5.57831i 0.477751 0.275830i −0.241728 0.970344i \(-0.577714\pi\)
0.719479 + 0.694515i \(0.244381\pi\)
\(410\) 0 0
\(411\) −7.10018 13.8683i −0.350226 0.684071i
\(412\) 0 0
\(413\) −5.49080 21.8706i −0.270184 1.07618i
\(414\) 0 0
\(415\) 21.6718i 1.06383i
\(416\) 0 0
\(417\) 10.8212 + 0.546051i 0.529916 + 0.0267402i
\(418\) 0 0
\(419\) −7.36007 12.7480i −0.359563 0.622781i 0.628325 0.777951i \(-0.283741\pi\)
−0.987888 + 0.155170i \(0.950408\pi\)
\(420\) 0 0
\(421\) 7.90063 13.6843i 0.385053 0.666932i −0.606723 0.794913i \(-0.707516\pi\)
0.991777 + 0.127981i \(0.0408497\pi\)
\(422\) 0 0
\(423\) −17.4637 1.76698i −0.849113 0.0859133i
\(424\) 0 0
\(425\) 40.6640 + 23.4773i 1.97249 + 1.13882i
\(426\) 0 0
\(427\) −23.1764 23.9218i −1.12158 1.15766i
\(428\) 0 0
\(429\) 10.8221 16.7356i 0.522496 0.808004i
\(430\) 0 0
\(431\) 0.798303i 0.0384529i 0.999815 + 0.0192265i \(0.00612035\pi\)
−0.999815 + 0.0192265i \(0.993880\pi\)
\(432\) 0 0
\(433\) 31.2293i 1.50079i 0.660992 + 0.750393i \(0.270136\pi\)
−0.660992 + 0.750393i \(0.729864\pi\)
\(434\) 0 0
\(435\) −14.8954 9.63214i −0.714181 0.461826i
\(436\) 0 0
\(437\) 11.7215 6.76743i 0.560717 0.323730i
\(438\) 0 0
\(439\) 2.94795 5.10600i 0.140698 0.243696i −0.787062 0.616874i \(-0.788399\pi\)
0.927760 + 0.373178i \(0.121732\pi\)
\(440\) 0 0
\(441\) 2.77409 20.8160i 0.132100 0.991236i
\(442\) 0 0
\(443\) −2.02844 1.17112i −0.0963742 0.0556417i 0.451038 0.892505i \(-0.351054\pi\)
−0.547413 + 0.836863i \(0.684387\pi\)
\(444\) 0 0
\(445\) 7.07379 + 12.2522i 0.335330 + 0.580809i
\(446\) 0 0
\(447\) 21.8730 + 1.10374i 1.03456 + 0.0522049i
\(448\) 0 0
\(449\) 23.9242 1.12905 0.564527 0.825415i \(-0.309059\pi\)
0.564527 + 0.825415i \(0.309059\pi\)
\(450\) 0 0
\(451\) −36.3974 −1.71389
\(452\) 0 0
\(453\) 24.5865 12.5876i 1.15517 0.591419i
\(454\) 0 0
\(455\) −15.4018 + 14.9218i −0.722045 + 0.699547i
\(456\) 0 0
\(457\) −7.24703 + 12.5522i −0.339002 + 0.587168i −0.984245 0.176809i \(-0.943423\pi\)
0.645244 + 0.763977i \(0.276756\pi\)
\(458\) 0 0
\(459\) −3.27294 + 21.4732i −0.152768 + 1.00229i
\(460\) 0 0
\(461\) 16.2137 + 9.36101i 0.755149 + 0.435986i 0.827551 0.561390i \(-0.189733\pi\)
−0.0724022 + 0.997376i \(0.523067\pi\)
\(462\) 0 0
\(463\) 1.88529 1.08847i 0.0876166 0.0505855i −0.455552 0.890209i \(-0.650558\pi\)
0.543168 + 0.839624i \(0.317225\pi\)
\(464\) 0 0
\(465\) −38.5291 + 19.7259i −1.78675 + 0.914766i
\(466\) 0 0
\(467\) 20.8089 0.962923 0.481461 0.876467i \(-0.340106\pi\)
0.481461 + 0.876467i \(0.340106\pi\)
\(468\) 0 0
\(469\) −13.4639 + 3.38023i −0.621706 + 0.156084i
\(470\) 0 0
\(471\) −1.55003 + 30.7172i −0.0714216 + 1.41538i
\(472\) 0 0
\(473\) −12.2633 21.2406i −0.563865 0.976643i
\(474\) 0 0
\(475\) −18.1320 + 31.4055i −0.831953 + 1.44099i
\(476\) 0 0
\(477\) −17.1217 38.0575i −0.783947 1.74253i
\(478\) 0 0
\(479\) −15.5470 + 26.9281i −0.710359 + 1.23038i 0.254364 + 0.967109i \(0.418134\pi\)
−0.964723 + 0.263269i \(0.915199\pi\)
\(480\) 0 0
\(481\) 5.60315 3.23498i 0.255481 0.147502i
\(482\) 0 0
\(483\) 6.18981 18.1871i 0.281646 0.827544i
\(484\) 0 0
\(485\) 43.2648 1.96455
\(486\) 0 0
\(487\) 19.1545i 0.867972i −0.900920 0.433986i \(-0.857107\pi\)
0.900920 0.433986i \(-0.142893\pi\)
\(488\) 0 0
\(489\) −14.7316 9.52622i −0.666187 0.430791i
\(490\) 0 0
\(491\) 33.4660 19.3216i 1.51030 0.871972i 0.510371 0.859954i \(-0.329508\pi\)
0.999928 0.0120176i \(-0.00382540\pi\)
\(492\) 0 0
\(493\) 9.20228 + 5.31294i 0.414450 + 0.239283i
\(494\) 0 0
\(495\) −28.3635 63.0456i −1.27485 2.83369i
\(496\) 0 0
\(497\) 9.08723 31.8868i 0.407618 1.43032i
\(498\) 0 0
\(499\) −37.8146 + 21.8323i −1.69281 + 0.977346i −0.740584 + 0.671964i \(0.765451\pi\)
−0.952230 + 0.305382i \(0.901216\pi\)
\(500\) 0 0
\(501\) 24.5050 + 1.23655i 1.09480 + 0.0552451i
\(502\) 0 0
\(503\) 34.6828 1.54643 0.773215 0.634144i \(-0.218647\pi\)
0.773215 + 0.634144i \(0.218647\pi\)
\(504\) 0 0
\(505\) −13.8661 −0.617032
\(506\) 0 0
\(507\) −7.06669 13.8029i −0.313843 0.613006i
\(508\) 0 0
\(509\) −9.03205 + 5.21466i −0.400339 + 0.231136i −0.686630 0.727007i \(-0.740911\pi\)
0.286291 + 0.958143i \(0.407577\pi\)
\(510\) 0 0
\(511\) −5.75729 + 20.2021i −0.254688 + 0.893690i
\(512\) 0 0
\(513\) −16.5842 2.52775i −0.732210 0.111603i
\(514\) 0 0
\(515\) 3.92213 + 2.26444i 0.172830 + 0.0997832i
\(516\) 0 0
\(517\) −28.9816 + 16.7325i −1.27461 + 0.735896i
\(518\) 0 0
\(519\) 16.7808 8.59133i 0.736596 0.377118i
\(520\) 0 0
\(521\) 8.72877i 0.382414i −0.981550 0.191207i \(-0.938760\pi\)
0.981550 0.191207i \(-0.0612402\pi\)
\(522\) 0 0
\(523\) −10.6357 −0.465068 −0.232534 0.972588i \(-0.574702\pi\)
−0.232534 + 0.972588i \(0.574702\pi\)
\(524\) 0 0
\(525\) 10.0020 + 50.4927i 0.436521 + 2.20368i
\(526\) 0 0
\(527\) 22.4553 12.9646i 0.978169 0.564746i
\(528\) 0 0
\(529\) −2.71224 + 4.69773i −0.117923 + 0.204249i
\(530\) 0 0
\(531\) −14.9484 + 20.7436i −0.648704 + 0.900195i
\(532\) 0 0
\(533\) 6.40108 11.0870i 0.277262 0.480231i
\(534\) 0 0
\(535\) −5.04012 8.72974i −0.217903 0.377420i
\(536\) 0 0
\(537\) 17.0575 + 11.0303i 0.736086 + 0.475991i
\(538\) 0 0
\(539\) −18.9113 35.2893i −0.814569 1.52002i
\(540\) 0 0
\(541\) 35.8565 1.54159 0.770797 0.637081i \(-0.219858\pi\)
0.770797 + 0.637081i \(0.219858\pi\)
\(542\) 0 0
\(543\) 25.6742 + 16.6023i 1.10179 + 0.712471i
\(544\) 0 0
\(545\) 38.8226 22.4143i 1.66298 0.960121i
\(546\) 0 0
\(547\) −35.5209 20.5080i −1.51876 0.876859i −0.999756 0.0220901i \(-0.992968\pi\)
−0.519009 0.854769i \(-0.673699\pi\)
\(548\) 0 0
\(549\) −3.80189 + 37.5754i −0.162261 + 1.60368i
\(550\) 0 0
\(551\) −4.10328 + 7.10709i −0.174806 + 0.302772i
\(552\) 0 0
\(553\) −9.54165 9.84852i −0.405752 0.418802i
\(554\) 0 0
\(555\) 1.13105 22.4142i 0.0480104 0.951432i
\(556\) 0 0
\(557\) −33.8693 −1.43509 −0.717545 0.696512i \(-0.754734\pi\)
−0.717545 + 0.696512i \(0.754734\pi\)
\(558\) 0 0
\(559\) 8.62679 0.364874
\(560\) 0 0
\(561\) 18.8724 + 36.8620i 0.796791 + 1.55631i
\(562\) 0 0
\(563\) 14.7326 + 25.5176i 0.620904 + 1.07544i 0.989318 + 0.145775i \(0.0465676\pi\)
−0.368414 + 0.929662i \(0.620099\pi\)
\(564\) 0 0
\(565\) 4.18251 + 2.41477i 0.175960 + 0.101590i
\(566\) 0 0
\(567\) −20.0741 + 12.8074i −0.843033 + 0.537862i
\(568\) 0 0
\(569\) 9.11670 15.7906i 0.382192 0.661976i −0.609183 0.793029i \(-0.708503\pi\)
0.991375 + 0.131054i \(0.0418360\pi\)
\(570\) 0 0
\(571\) 21.9710 12.6850i 0.919459 0.530850i 0.0359963 0.999352i \(-0.488540\pi\)
0.883462 + 0.468502i \(0.155206\pi\)
\(572\) 0 0
\(573\) −1.03497 + 0.529880i −0.0432367 + 0.0221360i
\(574\) 0 0
\(575\) 47.0902i 1.96380i
\(576\) 0 0
\(577\) 3.50461i 0.145899i −0.997336 0.0729493i \(-0.976759\pi\)
0.997336 0.0729493i \(-0.0232411\pi\)
\(578\) 0 0
\(579\) 25.7930 + 1.30154i 1.07192 + 0.0540904i
\(580\) 0 0
\(581\) −10.2212 + 9.90270i −0.424046 + 0.410833i
\(582\) 0 0
\(583\) −68.9032 39.7813i −2.85368 1.64757i
\(584\) 0 0
\(585\) 24.1925 + 2.44780i 1.00024 + 0.101204i
\(586\) 0 0
\(587\) 20.1658 34.9282i 0.832332 1.44164i −0.0638526 0.997959i \(-0.520339\pi\)
0.896184 0.443682i \(-0.146328\pi\)
\(588\) 0 0
\(589\) 10.0128 + 17.3427i 0.412570 + 0.714592i
\(590\) 0 0
\(591\) −8.32082 + 12.8676i −0.342273 + 0.529301i
\(592\) 0 0
\(593\) 9.30611i 0.382156i −0.981575 0.191078i \(-0.938802\pi\)
0.981575 0.191078i \(-0.0611984\pi\)
\(594\) 0 0
\(595\) −10.8504 43.2187i −0.444823 1.77179i
\(596\) 0 0
\(597\) −4.69505 + 7.26057i −0.192156 + 0.297155i
\(598\) 0 0
\(599\) −0.0337880 + 0.0195075i −0.00138054 + 0.000797056i −0.500690 0.865627i \(-0.666920\pi\)
0.499310 + 0.866424i \(0.333587\pi\)
\(600\) 0 0
\(601\) −34.4552 19.8927i −1.40546 0.811441i −0.410511 0.911856i \(-0.634650\pi\)
−0.994946 + 0.100415i \(0.967983\pi\)
\(602\) 0 0
\(603\) 12.7701 + 9.20248i 0.520039 + 0.374754i
\(604\) 0 0
\(605\) −75.7632 43.7419i −3.08021 1.77836i
\(606\) 0 0
\(607\) 20.0081 + 34.6551i 0.812104 + 1.40661i 0.911389 + 0.411547i \(0.135011\pi\)
−0.0992843 + 0.995059i \(0.531655\pi\)
\(608\) 0 0
\(609\) 2.26345 + 11.4265i 0.0917196 + 0.463026i
\(610\) 0 0
\(611\) 11.7708i 0.476194i
\(612\) 0 0
\(613\) 5.49560 0.221965 0.110983 0.993822i \(-0.464600\pi\)
0.110983 + 0.993822i \(0.464600\pi\)
\(614\) 0 0
\(615\) −20.2374 39.5283i −0.816053 1.59394i
\(616\) 0 0
\(617\) −18.1436 31.4256i −0.730432 1.26515i −0.956699 0.291080i \(-0.905985\pi\)
0.226266 0.974065i \(-0.427348\pi\)
\(618\) 0 0
\(619\) −16.5285 + 28.6281i −0.664335 + 1.15066i 0.315130 + 0.949048i \(0.397952\pi\)
−0.979465 + 0.201613i \(0.935382\pi\)
\(620\) 0 0
\(621\) −20.2912 + 7.92498i −0.814259 + 0.318018i
\(622\) 0 0
\(623\) 2.54626 8.93475i 0.102014 0.357963i
\(624\) 0 0
\(625\) −22.5033 38.9768i −0.900130 1.55907i
\(626\) 0 0
\(627\) −28.4692 + 14.5755i −1.13695 + 0.582088i
\(628\) 0 0
\(629\) 13.4439i 0.536044i
\(630\) 0 0
\(631\) 27.6502i 1.10074i 0.834921 + 0.550370i \(0.185513\pi\)
−0.834921 + 0.550370i \(0.814487\pi\)
\(632\) 0 0
\(633\) 0.148583 2.94450i 0.00590564 0.117033i
\(634\) 0 0
\(635\) 7.01063 + 12.1428i 0.278208 + 0.481871i
\(636\) 0 0
\(637\) 14.0753 + 0.445634i 0.557685 + 0.0176567i
\(638\) 0 0
\(639\) −34.2859 + 15.4248i −1.35633 + 0.610197i
\(640\) 0 0
\(641\) −6.92939 + 12.0020i −0.273694 + 0.474052i −0.969805 0.243882i \(-0.921579\pi\)
0.696111 + 0.717935i \(0.254912\pi\)
\(642\) 0 0
\(643\) 18.7853 + 32.5370i 0.740819 + 1.28314i 0.952123 + 0.305715i \(0.0988956\pi\)
−0.211304 + 0.977420i \(0.567771\pi\)
\(644\) 0 0
\(645\) 16.2492 25.1282i 0.639811 0.989423i
\(646\) 0 0
\(647\) −19.3733 −0.761641 −0.380821 0.924649i \(-0.624358\pi\)
−0.380821 + 0.924649i \(0.624358\pi\)
\(648\) 0 0
\(649\) 48.7472i 1.91350i
\(650\) 0 0
\(651\) 26.9089 + 9.15817i 1.05464 + 0.358937i
\(652\) 0 0
\(653\) −4.26860 7.39344i −0.167043 0.289328i 0.770336 0.637639i \(-0.220089\pi\)
−0.937379 + 0.348311i \(0.886755\pi\)
\(654\) 0 0
\(655\) 19.0677 + 11.0088i 0.745038 + 0.430148i
\(656\) 0 0
\(657\) 21.7221 9.77253i 0.847459 0.381263i
\(658\) 0 0
\(659\) −4.61026 2.66174i −0.179590 0.103687i 0.407510 0.913201i \(-0.366397\pi\)
−0.587100 + 0.809514i \(0.699731\pi\)
\(660\) 0 0
\(661\) 12.3847 7.15033i 0.481710 0.278115i −0.239419 0.970916i \(-0.576957\pi\)
0.721129 + 0.692801i \(0.243624\pi\)
\(662\) 0 0
\(663\) −14.5475 0.734086i −0.564980 0.0285096i
\(664\) 0 0
\(665\) 33.3786 8.37997i 1.29437 0.324961i
\(666\) 0 0
\(667\) 10.6565i 0.412623i
\(668\) 0 0
\(669\) −15.8124 30.8852i −0.611343 1.19409i
\(670\) 0 0
\(671\) 36.0023 + 62.3577i 1.38985 + 2.40729i
\(672\) 0 0
\(673\) −18.3816 + 31.8378i −0.708558 + 1.22726i 0.256834 + 0.966456i \(0.417321\pi\)
−0.965392 + 0.260803i \(0.916013\pi\)
\(674\) 0 0
\(675\) 36.4660 45.5719i 1.40358 1.75406i
\(676\) 0 0
\(677\) −7.71366 4.45348i −0.296460 0.171161i 0.344391 0.938826i \(-0.388085\pi\)
−0.640852 + 0.767665i \(0.721419\pi\)
\(678\) 0 0
\(679\) −19.7694 20.4052i −0.758680 0.783080i
\(680\) 0 0
\(681\) −8.14922 15.9173i −0.312279 0.609951i
\(682\) 0 0
\(683\) 13.6622i 0.522768i 0.965235 + 0.261384i \(0.0841789\pi\)
−0.965235 + 0.261384i \(0.915821\pi\)
\(684\) 0 0
\(685\) 36.2413i 1.38471i
\(686\) 0 0
\(687\) −0.292870 + 5.80387i −0.0111737 + 0.221431i
\(688\) 0 0
\(689\) 24.2355 13.9924i 0.923300 0.533068i
\(690\) 0 0
\(691\) 17.2087 29.8063i 0.654648 1.13388i −0.327334 0.944909i \(-0.606150\pi\)
0.981982 0.188975i \(-0.0605166\pi\)
\(692\) 0 0
\(693\) −16.7741 + 42.1853i −0.637196 + 1.60249i
\(694\) 0 0
\(695\) 21.8268 + 12.6017i 0.827938 + 0.478010i
\(696\) 0 0
\(697\) 13.3008 + 23.0377i 0.503804 + 0.872613i
\(698\) 0 0
\(699\) 18.9786 29.3490i 0.717835 1.11008i
\(700\) 0 0
\(701\) 18.0060 0.680078 0.340039 0.940411i \(-0.389560\pi\)
0.340039 + 0.940411i \(0.389560\pi\)
\(702\) 0 0
\(703\) −10.3830 −0.391602
\(704\) 0 0
\(705\) −34.2860 22.1711i −1.29129 0.835012i
\(706\) 0 0
\(707\) 6.33596 + 6.53973i 0.238288 + 0.245952i
\(708\) 0 0
\(709\) 25.2917 43.8065i 0.949849 1.64519i 0.204111 0.978948i \(-0.434570\pi\)
0.745738 0.666239i \(-0.232097\pi\)
\(710\) 0 0
\(711\) −1.56522 + 15.4697i −0.0587005 + 0.580159i
\(712\) 0 0
\(713\) 22.5201 + 13.0020i 0.843385 + 0.486928i
\(714\) 0 0
\(715\) 40.1483 23.1796i 1.50146 0.866869i
\(716\) 0 0
\(717\) −0.297118 + 5.88804i −0.0110961 + 0.219893i
\(718\) 0 0
\(719\) 44.2317 1.64956 0.824782 0.565450i \(-0.191298\pi\)
0.824782 + 0.565450i \(0.191298\pi\)
\(720\) 0 0
\(721\) −0.724184 2.88453i −0.0269700 0.107425i
\(722\) 0 0
\(723\) −3.25904 + 1.66854i −0.121205 + 0.0620537i
\(724\) 0 0
\(725\) −14.2761 24.7269i −0.530200 0.918332i
\(726\) 0 0
\(727\) −23.3313 + 40.4110i −0.865310 + 1.49876i 0.00142913 + 0.999999i \(0.499545\pi\)
−0.866739 + 0.498762i \(0.833788\pi\)
\(728\) 0 0
\(729\) 25.7740 + 8.04378i 0.954592 + 0.297918i
\(730\) 0 0
\(731\) −8.96279 + 15.5240i −0.331501 + 0.574176i
\(732\) 0 0
\(733\) 29.4459 17.0006i 1.08761 0.627932i 0.154671 0.987966i \(-0.450568\pi\)
0.932939 + 0.360034i \(0.117235\pi\)
\(734\) 0 0
\(735\) 27.8100 40.1595i 1.02579 1.48130i
\(736\) 0 0
\(737\) 30.0096 1.10542
\(738\) 0 0
\(739\) 12.4853i 0.459279i −0.973276 0.229640i \(-0.926245\pi\)
0.973276 0.229640i \(-0.0737548\pi\)
\(740\) 0 0
\(741\) 0.566949 11.2353i 0.0208274 0.412740i
\(742\) 0 0
\(743\) −24.6313 + 14.2209i −0.903636 + 0.521714i −0.878378 0.477967i \(-0.841374\pi\)
−0.0252578 + 0.999681i \(0.508041\pi\)
\(744\) 0 0
\(745\) 44.1187 + 25.4719i 1.61638 + 0.933219i
\(746\) 0 0
\(747\) 16.0550 + 1.62445i 0.587424 + 0.0594356i
\(748\) 0 0
\(749\) −1.81423 + 6.36606i −0.0662904 + 0.232611i
\(750\) 0 0
\(751\) 3.91640 2.26113i 0.142911 0.0825100i −0.426839 0.904327i \(-0.640373\pi\)
0.569751 + 0.821817i \(0.307040\pi\)
\(752\) 0 0
\(753\) 1.23290 1.90659i 0.0449294 0.0694801i
\(754\) 0 0
\(755\) 64.2508 2.33833
\(756\) 0 0
\(757\) −9.85242 −0.358092 −0.179046 0.983841i \(-0.557301\pi\)
−0.179046 + 0.983841i \(0.557301\pi\)
\(758\) 0 0
\(759\) −22.5521 + 34.8753i −0.818591 + 1.26589i
\(760\) 0 0
\(761\) 45.5417 26.2935i 1.65089 0.953139i 0.674176 0.738571i \(-0.264499\pi\)
0.976709 0.214568i \(-0.0688345\pi\)
\(762\) 0 0
\(763\) −28.3110 8.06817i −1.02493 0.292087i
\(764\) 0 0
\(765\) −29.5396 + 40.9916i −1.06801 + 1.48205i
\(766\) 0 0
\(767\) −14.8489 8.57300i −0.536162 0.309553i
\(768\) 0 0
\(769\) 9.80437 5.66055i 0.353555 0.204125i −0.312695 0.949854i \(-0.601232\pi\)
0.666250 + 0.745729i \(0.267899\pi\)
\(770\) 0 0
\(771\) −0.978757 + 19.3962i −0.0352491 + 0.698538i
\(772\) 0 0
\(773\) 1.42526i 0.0512631i 0.999671 + 0.0256316i \(0.00815967\pi\)
−0.999671 + 0.0256316i \(0.991840\pi\)
\(774\) 0 0
\(775\) −69.6726 −2.50271
\(776\) 0 0
\(777\) −11.0882 + 9.70851i −0.397786 + 0.348291i
\(778\) 0 0
\(779\) −17.7924 + 10.2725i −0.637479 + 0.368049i
\(780\) 0 0
\(781\) −35.8388 + 62.0746i −1.28241 + 2.22120i
\(782\) 0 0
\(783\) 8.25227 10.3129i 0.294912 0.368555i
\(784\) 0 0
\(785\) −35.7714 + 61.9579i −1.27674 + 2.21137i
\(786\) 0 0
\(787\) −20.9215 36.2370i −0.745769 1.29171i −0.949834 0.312753i \(-0.898749\pi\)
0.204065 0.978957i \(-0.434585\pi\)
\(788\) 0 0
\(789\) 2.75601 1.41100i 0.0981164 0.0502330i
\(790\) 0 0
\(791\) −0.772261 3.07603i −0.0274585 0.109371i
\(792\) 0 0
\(793\) −25.3264 −0.899366
\(794\) 0 0
\(795\) 4.89218 96.9493i 0.173508 3.43844i
\(796\) 0 0
\(797\) −7.85796 + 4.53679i −0.278343 + 0.160701i −0.632673 0.774419i \(-0.718042\pi\)
0.354330 + 0.935120i \(0.384709\pi\)
\(798\) 0 0
\(799\) 21.1816 + 12.2292i 0.749353 + 0.432639i
\(800\) 0 0
\(801\) −9.60697 + 4.32207i −0.339446 + 0.152713i
\(802\) 0 0
\(803\) 22.7060 39.3279i 0.801276 1.38785i
\(804\) 0 0
\(805\) 32.0956 31.0955i 1.13122 1.09597i
\(806\) 0 0
\(807\) 33.2408 + 21.4952i 1.17013 + 0.756667i
\(808\) 0 0
\(809\) −18.6037 −0.654071 −0.327035 0.945012i \(-0.606050\pi\)
−0.327035 + 0.945012i \(0.606050\pi\)
\(810\) 0 0
\(811\) 43.7813 1.53737 0.768684 0.639628i \(-0.220912\pi\)
0.768684 + 0.639628i \(0.220912\pi\)
\(812\) 0 0
\(813\) 12.6907 19.6253i 0.445082 0.688288i
\(814\) 0 0
\(815\) −20.4040 35.3407i −0.714721 1.23793i
\(816\) 0 0
\(817\) −11.9895 6.92213i −0.419459 0.242175i
\(818\) 0 0
\(819\) −9.90004 12.5285i −0.345935 0.437782i
\(820\) 0 0
\(821\) −11.8053 + 20.4474i −0.412009 + 0.713620i −0.995109 0.0987801i \(-0.968506\pi\)
0.583101 + 0.812400i \(0.301839\pi\)
\(822\) 0 0
\(823\) −0.653789 + 0.377465i −0.0227897 + 0.0131576i −0.511352 0.859372i \(-0.670855\pi\)
0.488562 + 0.872529i \(0.337522\pi\)
\(824\) 0 0
\(825\) 5.60800 111.135i 0.195245 3.86922i
\(826\) 0 0
\(827\) 5.64456i 0.196281i −0.995173 0.0981404i \(-0.968711\pi\)
0.995173 0.0981404i \(-0.0312894\pi\)
\(828\) 0 0
\(829\) 26.2077i 0.910230i 0.890433 + 0.455115i \(0.150402\pi\)
−0.890433 + 0.455115i \(0.849598\pi\)
\(830\) 0 0
\(831\) 15.8302 + 30.9200i 0.549144 + 1.07260i
\(832\) 0 0
\(833\) −15.4255 + 24.8658i −0.534461 + 0.861548i
\(834\) 0 0
\(835\) 49.4276 + 28.5370i 1.71051 + 0.987565i
\(836\) 0 0
\(837\) −11.7254 30.0220i −0.405291 1.03771i
\(838\) 0 0
\(839\) 10.5365 18.2498i 0.363761 0.630053i −0.624815 0.780773i \(-0.714826\pi\)
0.988577 + 0.150720i \(0.0481591\pi\)
\(840\) 0 0
\(841\) 11.2693 + 19.5190i 0.388597 + 0.673070i
\(842\) 0 0
\(843\) −12.6277 24.6648i −0.434922 0.849501i
\(844\) 0 0
\(845\) 36.0704i 1.24086i
\(846\) 0 0
\(847\) 13.9890 + 55.7200i 0.480666 + 1.91456i
\(848\) 0 0
\(849\) −32.6382 1.64697i −1.12014 0.0565237i
\(850\) 0 0
\(851\) −11.6764 + 6.74135i −0.400261 + 0.231091i
\(852\) 0 0
\(853\) −30.6601 17.7016i −1.04978 0.606092i −0.127193 0.991878i \(-0.540597\pi\)
−0.922588 + 0.385786i \(0.873930\pi\)
\(854\) 0 0
\(855\) −31.6586 22.8140i −1.08270 0.780222i
\(856\) 0 0
\(857\) 19.1852 + 11.0766i 0.655356 + 0.378370i 0.790505 0.612455i \(-0.209818\pi\)
−0.135149 + 0.990825i \(0.543151\pi\)
\(858\) 0 0
\(859\) −2.32382 4.02497i −0.0792876 0.137330i 0.823655 0.567091i \(-0.191931\pi\)
−0.902943 + 0.429761i \(0.858598\pi\)
\(860\) 0 0
\(861\) −9.39567 + 27.6068i −0.320204 + 0.940836i
\(862\) 0 0
\(863\) 10.5090i 0.357732i −0.983873 0.178866i \(-0.942757\pi\)
0.983873 0.178866i \(-0.0572428\pi\)
\(864\) 0 0
\(865\) 43.8526 1.49103
\(866\) 0 0
\(867\) 0.446300 0.690172i 0.0151572 0.0234395i
\(868\) 0 0
\(869\) 14.8220 + 25.6725i 0.502802 + 0.870879i
\(870\) 0 0
\(871\) −5.27769 + 9.14122i −0.178828 + 0.309739i
\(872\) 0 0
\(873\) −3.24300 + 32.0517i −0.109759 + 1.08479i
\(874\) 0 0
\(875\) −18.2082 + 63.8922i −0.615551 + 2.15995i
\(876\) 0 0
\(877\) −3.60317 6.24087i −0.121670 0.210739i 0.798756 0.601655i \(-0.205492\pi\)
−0.920427 + 0.390916i \(0.872158\pi\)
\(878\) 0 0
\(879\) 1.33949 26.5449i 0.0451798 0.895337i
\(880\) 0 0
\(881\) 47.4313i 1.59800i 0.601331 + 0.799000i \(0.294637\pi\)
−0.601331 + 0.799000i \(0.705363\pi\)
\(882\) 0 0
\(883\) 44.5341i 1.49869i 0.662178 + 0.749346i \(0.269632\pi\)
−0.662178 + 0.749346i \(0.730368\pi\)
\(884\) 0 0
\(885\) −52.9405 + 27.1041i −1.77958 + 0.911096i
\(886\) 0 0
\(887\) −6.55039 11.3456i −0.219941 0.380948i 0.734849 0.678231i \(-0.237253\pi\)
−0.954790 + 0.297283i \(0.903920\pi\)
\(888\) 0 0
\(889\) 2.52352 8.85497i 0.0846363 0.296986i
\(890\) 0 0
\(891\) 48.8319 16.2868i 1.63593 0.545627i
\(892\) 0 0
\(893\) −9.44486 + 16.3590i −0.316060 + 0.547432i
\(894\) 0 0
\(895\) 23.6254 + 40.9205i 0.789711 + 1.36782i
\(896\) 0 0
\(897\) −6.65719 13.0030i −0.222277 0.434157i
\(898\) 0 0
\(899\) −15.7669 −0.525857
\(900\) 0 0
\(901\) 58.1495i 1.93724i
\(902\) 0 0
\(903\) −19.2763 + 3.81838i −0.641474 + 0.127068i
\(904\) 0 0
\(905\) 35.5600 + 61.5917i 1.18205 + 2.04738i
\(906\) 0 0
\(907\) 16.1687 + 9.33500i 0.536872 + 0.309963i 0.743810 0.668391i \(-0.233017\pi\)
−0.206938 + 0.978354i \(0.566350\pi\)
\(908\) 0 0
\(909\) 1.03936 10.2724i 0.0344734 0.340713i
\(910\) 0 0
\(911\) −9.20898 5.31680i −0.305107 0.176154i 0.339628 0.940560i \(-0.389699\pi\)
−0.644735 + 0.764406i \(0.723032\pi\)
\(912\) 0 0
\(913\) 26.6439 15.3829i 0.881785 0.509099i
\(914\) 0 0
\(915\) −47.7041 + 73.7710i −1.57705 + 2.43879i
\(916\) 0 0
\(917\) −3.52068 14.0234i −0.116263 0.463092i
\(918\) 0 0
\(919\) 25.9144i 0.854836i 0.904054 + 0.427418i \(0.140577\pi\)
−0.904054 + 0.427418i \(0.859423\pi\)
\(920\) 0 0
\(921\) 12.0660 18.6592i 0.397587 0.614841i
\(922\) 0 0
\(923\) −12.6057 21.8337i −0.414921 0.718665i
\(924\) 0 0
\(925\) 18.0621 31.2846i 0.593880 1.02863i
\(926\) 0 0
\(927\) −1.97155 + 2.73588i −0.0647542 + 0.0898582i
\(928\) 0 0
\(929\) −44.4016 25.6353i −1.45677 0.841066i −0.457918 0.888994i \(-0.651405\pi\)
−0.998851 + 0.0479287i \(0.984738\pi\)
\(930\) 0 0
\(931\) −19.2043 11.9134i −0.629395 0.390446i
\(932\) 0 0
\(933\) −3.51948 0.177597i −0.115223 0.00581427i
\(934\) 0 0
\(935\) 96.3298i 3.15032i
\(936\) 0 0
\(937\) 47.7056i 1.55847i 0.626729 + 0.779237i \(0.284393\pi\)
−0.626729 + 0.779237i \(0.715607\pi\)
\(938\) 0 0
\(939\) 15.0073 7.68335i 0.489745 0.250736i
\(940\) 0 0
\(941\) −49.3584 + 28.4971i −1.60904 + 0.928978i −0.619452 + 0.785035i \(0.712645\pi\)
−0.989586 + 0.143944i \(0.954022\pi\)
\(942\) 0 0
\(943\) −13.3392 + 23.1041i −0.434383 + 0.752374i
\(944\) 0 0
\(945\) −55.1407 + 5.23855i −1.79373 + 0.170410i
\(946\) 0 0
\(947\) −4.86698 2.80995i −0.158156 0.0913113i 0.418833 0.908063i \(-0.362439\pi\)
−0.576989 + 0.816752i \(0.695772\pi\)
\(948\) 0 0
\(949\) 7.98644 + 13.8329i 0.259251 + 0.449035i
\(950\) 0 0
\(951\) −18.1664 35.4831i −0.589085 1.15062i
\(952\) 0 0
\(953\) −39.6935 −1.28580 −0.642899 0.765951i \(-0.722269\pi\)
−0.642899 + 0.765951i \(0.722269\pi\)
\(954\) 0 0
\(955\) −2.70465 −0.0875205
\(956\) 0 0
\(957\) 1.26909 25.1499i 0.0410239 0.812980i
\(958\) 0 0
\(959\) −17.0927 + 16.5601i −0.551951 + 0.534753i
\(960\) 0 0
\(961\) −3.73718 + 6.47298i −0.120554 + 0.208806i
\(962\) 0 0
\(963\) 6.84502 3.07950i 0.220578 0.0992356i
\(964\) 0 0
\(965\) 52.0255 + 30.0369i 1.67476 + 0.966923i
\(966\) 0 0
\(967\) −23.3249 + 13.4666i −0.750078 + 0.433058i −0.825722 0.564077i \(-0.809232\pi\)
0.0756442 + 0.997135i \(0.475899\pi\)
\(968\) 0 0
\(969\) 19.6291 + 12.6932i 0.630578 + 0.407764i
\(970\) 0 0
\(971\) −9.63591 −0.309231 −0.154616 0.987975i \(-0.549414\pi\)
−0.154616 + 0.987975i \(0.549414\pi\)
\(972\) 0 0
\(973\) −4.03012 16.0525i −0.129200 0.514620i
\(974\) 0 0
\(975\) 32.8665 + 21.2531i 1.05257 + 0.680645i
\(976\) 0 0
\(977\) −25.0233 43.3417i −0.800567 1.38662i −0.919243 0.393690i \(-0.871198\pi\)
0.118676 0.992933i \(-0.462135\pi\)
\(978\) 0 0
\(979\) −10.0421 + 17.3934i −0.320947 + 0.555897i
\(980\) 0 0
\(981\) 13.6951 + 30.4410i 0.437250 + 0.971905i
\(982\) 0 0
\(983\) 20.3246 35.2032i 0.648254 1.12281i −0.335286 0.942116i \(-0.608833\pi\)
0.983540 0.180692i \(-0.0578337\pi\)
\(984\) 0 0
\(985\) −30.8689 + 17.8222i −0.983564 + 0.567861i
\(986\) 0 0
\(987\) 5.20997 + 26.3014i 0.165835 + 0.837182i
\(988\) 0 0
\(989\) −17.9773 −0.571645
\(990\) 0 0
\(991\) 7.45474i 0.236808i −0.992966 0.118404i \(-0.962222\pi\)
0.992966 0.118404i \(-0.0377777\pi\)
\(992\) 0 0
\(993\) −32.7425 + 16.7633i −1.03905 + 0.531966i
\(994\) 0 0
\(995\) −17.4179 + 10.0562i −0.552184 + 0.318804i
\(996\) 0 0
\(997\) −10.3529 5.97727i −0.327881 0.189302i 0.327019 0.945018i \(-0.393956\pi\)
−0.654900 + 0.755716i \(0.727289\pi\)
\(998\) 0 0
\(999\) 16.5203 + 2.51802i 0.522679 + 0.0796665i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1008.2.cx.j.223.6 yes 24
3.2 odd 2 3024.2.cx.j.559.12 24
4.3 odd 2 1008.2.cx.i.223.7 yes 24
7.6 odd 2 inner 1008.2.cx.j.223.7 yes 24
9.4 even 3 1008.2.cx.i.895.6 yes 24
9.5 odd 6 3024.2.cx.i.2575.1 24
12.11 even 2 3024.2.cx.i.559.12 24
21.20 even 2 3024.2.cx.j.559.1 24
28.27 even 2 1008.2.cx.i.223.6 24
36.23 even 6 3024.2.cx.j.2575.1 24
36.31 odd 6 inner 1008.2.cx.j.895.7 yes 24
63.13 odd 6 1008.2.cx.i.895.7 yes 24
63.41 even 6 3024.2.cx.i.2575.12 24
84.83 odd 2 3024.2.cx.i.559.1 24
252.139 even 6 inner 1008.2.cx.j.895.6 yes 24
252.167 odd 6 3024.2.cx.j.2575.12 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1008.2.cx.i.223.6 24 28.27 even 2
1008.2.cx.i.223.7 yes 24 4.3 odd 2
1008.2.cx.i.895.6 yes 24 9.4 even 3
1008.2.cx.i.895.7 yes 24 63.13 odd 6
1008.2.cx.j.223.6 yes 24 1.1 even 1 trivial
1008.2.cx.j.223.7 yes 24 7.6 odd 2 inner
1008.2.cx.j.895.6 yes 24 252.139 even 6 inner
1008.2.cx.j.895.7 yes 24 36.31 odd 6 inner
3024.2.cx.i.559.1 24 84.83 odd 2
3024.2.cx.i.559.12 24 12.11 even 2
3024.2.cx.i.2575.1 24 9.5 odd 6
3024.2.cx.i.2575.12 24 63.41 even 6
3024.2.cx.j.559.1 24 21.20 even 2
3024.2.cx.j.559.12 24 3.2 odd 2
3024.2.cx.j.2575.1 24 36.23 even 6
3024.2.cx.j.2575.12 24 252.167 odd 6