Properties

Label 10.11.c
Level $10$
Weight $11$
Character orbit 10.c
Rep. character $\chi_{10}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $10$
Newform subspaces $3$
Sturm bound $16$
Trace bound $3$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 3 \)
Sturm bound: \(16\)
Trace bound: \(3\)
Distinguishing \(T_p\): \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(10, [\chi])\).

Total New Old
Modular forms 34 10 24
Cusp forms 26 10 16
Eisenstein series 8 0 8

Trace form

\( 10 q - 32 q^{2} - 124 q^{3} + 7560 q^{5} - 12160 q^{6} + 10604 q^{7} + 16384 q^{8} - 94880 q^{10} + 451520 q^{11} - 63488 q^{12} - 988434 q^{13} + 3637820 q^{15} - 2621440 q^{16} - 52906 q^{17} - 7111648 q^{18}+ \cdots + 23335064288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(10, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
10.11.c.a 10.c 5.c $2$ $6.354$ \(\Q(\sqrt{-1}) \) None 10.11.c.a \(32\) \(-366\) \(-3750\) \(-16814\) $\mathrm{SU}(2)[C_{4}]$ \(q+(16 i+16)q^{2}+(183 i-183)q^{3}+\cdots\)
10.11.c.b 10.c 5.c $2$ $6.354$ \(\Q(\sqrt{-1}) \) None 10.11.c.b \(32\) \(114\) \(5850\) \(13906\) $\mathrm{SU}(2)[C_{4}]$ \(q+(16 i+16)q^{2}+(-57 i+57)q^{3}+\cdots\)
10.11.c.c 10.c 5.c $6$ $6.354$ \(\mathbb{Q}[x]/(x^{6} - \cdots)\) None 10.11.c.c \(-96\) \(128\) \(5460\) \(13512\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-2^{4}-2^{4}\beta _{1})q^{2}+(21-21\beta _{1}+\beta _{2}+\cdots)q^{3}+\cdots\)

Decomposition of \(S_{11}^{\mathrm{old}}(10, [\chi])\) into lower level spaces

\( S_{11}^{\mathrm{old}}(10, [\chi]) \simeq \) \(S_{11}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 2}\)