Properties

Label 10.11
Level 10
Weight 11
Dimension 10
Nonzero newspaces 1
Newform subspaces 3
Sturm bound 66
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 10 = 2 \cdot 5 \)
Weight: \( k \) = \( 11 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 3 \)
Sturm bound: \(66\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(10))\).

Total New Old
Modular forms 34 10 24
Cusp forms 26 10 16
Eisenstein series 8 0 8

Trace form

\( 10 q - 32 q^{2} - 124 q^{3} + 7560 q^{5} - 12160 q^{6} + 10604 q^{7} + 16384 q^{8} - 94880 q^{10} + 451520 q^{11} - 63488 q^{12} - 988434 q^{13} + 3637820 q^{15} - 2621440 q^{16} - 52906 q^{17} - 7111648 q^{18}+ \cdots + 23335064288 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(10))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
10.11.c \(\chi_{10}(3, \cdot)\) 10.11.c.a 2 2
10.11.c.b 2
10.11.c.c 6

Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces

\( S_{11}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)