Defining parameters
Level: | \( N \) | = | \( 10 = 2 \cdot 5 \) |
Weight: | \( k \) | = | \( 11 \) |
Nonzero newspaces: | \( 1 \) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(66\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{11}(\Gamma_1(10))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 34 | 10 | 24 |
Cusp forms | 26 | 10 | 16 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{11}^{\mathrm{new}}(\Gamma_1(10))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
10.11.c | \(\chi_{10}(3, \cdot)\) | 10.11.c.a | 2 | 2 |
10.11.c.b | 2 | |||
10.11.c.c | 6 |
Decomposition of \(S_{11}^{\mathrm{old}}(\Gamma_1(10))\) into lower level spaces
\( S_{11}^{\mathrm{old}}(\Gamma_1(10)) \cong \) \(S_{11}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 4}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 2}\)\(\oplus\)\(S_{11}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 1}\)