Properties

Label 10.11.c.b
Level $10$
Weight $11$
Character orbit 10.c
Analytic conductor $6.354$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,11,Mod(3,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.3");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.35357252674\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (16 i + 16) q^{2} + ( - 57 i + 57) q^{3} + 512 i q^{4} + (1100 i + 2925) q^{5} + 1824 q^{6} + (6953 i + 6953) q^{7} + (8192 i - 8192) q^{8} + 52551 i q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + (16 i + 16) q^{2} + ( - 57 i + 57) q^{3} + 512 i q^{4} + (1100 i + 2925) q^{5} + 1824 q^{6} + (6953 i + 6953) q^{7} + (8192 i - 8192) q^{8} + 52551 i q^{9} + (64400 i + 29200) q^{10} + 75242 q^{11} + (29184 i + 29184) q^{12} + ( - 109857 i + 109857) q^{13} + 222496 i q^{14} + ( - 104025 i + 229425) q^{15} - 262144 q^{16} + ( - 1528927 i - 1528927) q^{17} + (840816 i - 840816) q^{18} - 4038680 i q^{19} + (1497600 i - 563200) q^{20} + 792642 q^{21} + (1203872 i + 1203872) q^{22} + (712423 i - 712423) q^{23} + 933888 i q^{24} + (6435000 i + 7345625) q^{25} + 3515424 q^{26} + (6361200 i + 6361200) q^{27} + (3559936 i - 3559936) q^{28} + 446120 i q^{29} + (2006400 i + 5335200) q^{30} - 29080718 q^{31} + ( - 4194304 i - 4194304) q^{32} + ( - 4288794 i + 4288794) q^{33} - 48925664 i q^{34} + (27985825 i + 12689225) q^{35} - 26906112 q^{36} + ( - 911847 i - 911847) q^{37} + ( - 64618880 i + 64618880) q^{38} - 12523698 i q^{39} + (14950400 i - 32972800) q^{40} - 163945678 q^{41} + (12682272 i + 12682272) q^{42} + ( - 118422777 i + 118422777) q^{43} + 38523904 i q^{44} + (153711675 i - 57806100) q^{45} - 22797536 q^{46} + (276320313 i + 276320313) q^{47} + (14942208 i - 14942208) q^{48} - 185786831 i q^{49} + (220490000 i + 14570000) q^{50} - 174297678 q^{51} + (56246784 i + 56246784) q^{52} + ( - 308460097 i + 308460097) q^{53} + 203558400 i q^{54} + (82766200 i + 220082850) q^{55} - 113917952 q^{56} + ( - 230204760 i - 230204760) q^{57} + (7137920 i - 7137920) q^{58} - 940888360 i q^{59} + (117465600 i + 53260800) q^{60} - 1353610038 q^{61} + ( - 465291488 i - 465291488) q^{62} + (365387103 i - 365387103) q^{63} - 134217728 i q^{64} + ( - 200489025 i + 442174425) q^{65} + 137241408 q^{66} + (853570913 i + 853570913) q^{67} + ( - 782810624 i + 782810624) q^{68} + 81216222 i q^{69} + (650800800 i - 244745600) q^{70} + 2827014562 q^{71} + ( - 430497792 i - 430497792) q^{72} + (2753297183 i - 2753297183) q^{73} - 29179104 i q^{74} + ( - 51905625 i + 785495625) q^{75} + 2067804160 q^{76} + (523157626 i + 523157626) q^{77} + ( - 200379168 i + 200379168) q^{78} + 3324500640 i q^{79} + ( - 288358400 i - 766771200) q^{80} - 2377907199 q^{81} + ( - 2623130848 i - 2623130848) q^{82} + ( - 1346339097 i + 1346339097) q^{83} + 405832704 i q^{84} + ( - 6153931175 i - 2790291775) q^{85} + 3789528864 q^{86} + (25428840 i + 25428840) q^{87} + (616382464 i - 616382464) q^{88} - 2667450320 i q^{89} + (1534489200 i - 3384284400) q^{90} + 1527671442 q^{91} + ( - 364760576 i - 364760576) q^{92} + (1657600926 i - 1657600926) q^{93} + 8842250016 i q^{94} + ( - 11813139000 i + 4442548000) q^{95} - 478150656 q^{96} + ( - 526562847 i - 526562847) q^{97} + ( - 2972589296 i + 2972589296) q^{98} + 3954042342 i q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} + 114 q^{3} + 5850 q^{5} + 3648 q^{6} + 13906 q^{7} - 16384 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 32 q^{2} + 114 q^{3} + 5850 q^{5} + 3648 q^{6} + 13906 q^{7} - 16384 q^{8} + 58400 q^{10} + 150484 q^{11} + 58368 q^{12} + 219714 q^{13} + 458850 q^{15} - 524288 q^{16} - 3057854 q^{17} - 1681632 q^{18} - 1126400 q^{20} + 1585284 q^{21} + 2407744 q^{22} - 1424846 q^{23} + 14691250 q^{25} + 7030848 q^{26} + 12722400 q^{27} - 7119872 q^{28} + 10670400 q^{30} - 58161436 q^{31} - 8388608 q^{32} + 8577588 q^{33} + 25378450 q^{35} - 53812224 q^{36} - 1823694 q^{37} + 129237760 q^{38} - 65945600 q^{40} - 327891356 q^{41} + 25364544 q^{42} + 236845554 q^{43} - 115612200 q^{45} - 45595072 q^{46} + 552640626 q^{47} - 29884416 q^{48} + 29140000 q^{50} - 348595356 q^{51} + 112493568 q^{52} + 616920194 q^{53} + 440165700 q^{55} - 227835904 q^{56} - 460409520 q^{57} - 14275840 q^{58} + 106521600 q^{60} - 2707220076 q^{61} - 930582976 q^{62} - 730774206 q^{63} + 884348850 q^{65} + 274482816 q^{66} + 1707141826 q^{67} + 1565621248 q^{68} - 489491200 q^{70} + 5654029124 q^{71} - 860995584 q^{72} - 5506594366 q^{73} + 1570991250 q^{75} + 4135608320 q^{76} + 1046315252 q^{77} + 400758336 q^{78} - 1533542400 q^{80} - 4755814398 q^{81} - 5246261696 q^{82} + 2692678194 q^{83} - 5580583550 q^{85} + 7579057728 q^{86} + 50857680 q^{87} - 1232764928 q^{88} - 6768568800 q^{90} + 3055342884 q^{91} - 729521152 q^{92} - 3315201852 q^{93} + 8885096000 q^{95} - 956301312 q^{96} - 1053125694 q^{97} + 5945178592 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
1.00000i
1.00000i
16.0000 16.0000i 57.0000 + 57.0000i 512.000i 2925.00 1100.00i 1824.00 6953.00 6953.00i −8192.00 8192.00i 52551.0i 29200.0 64400.0i
7.1 16.0000 + 16.0000i 57.0000 57.0000i 512.000i 2925.00 + 1100.00i 1824.00 6953.00 + 6953.00i −8192.00 + 8192.00i 52551.0i 29200.0 + 64400.0i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.11.c.b 2
3.b odd 2 1 90.11.g.a 2
4.b odd 2 1 80.11.p.a 2
5.b even 2 1 50.11.c.b 2
5.c odd 4 1 inner 10.11.c.b 2
5.c odd 4 1 50.11.c.b 2
15.e even 4 1 90.11.g.a 2
20.e even 4 1 80.11.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.11.c.b 2 1.a even 1 1 trivial
10.11.c.b 2 5.c odd 4 1 inner
50.11.c.b 2 5.b even 2 1
50.11.c.b 2 5.c odd 4 1
80.11.p.a 2 4.b odd 2 1
80.11.p.a 2 20.e even 4 1
90.11.g.a 2 3.b odd 2 1
90.11.g.a 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 114T_{3} + 6498 \) acting on \(S_{11}^{\mathrm{new}}(10, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 32T + 512 \) Copy content Toggle raw display
$3$ \( T^{2} - 114T + 6498 \) Copy content Toggle raw display
$5$ \( T^{2} - 5850 T + 9765625 \) Copy content Toggle raw display
$7$ \( T^{2} - 13906 T + 96688418 \) Copy content Toggle raw display
$11$ \( (T - 75242)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 24137120898 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 4675235542658 \) Copy content Toggle raw display
$19$ \( T^{2} + 16310936142400 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1015093061858 \) Copy content Toggle raw display
$29$ \( T^{2} + 199023054400 \) Copy content Toggle raw display
$31$ \( (T + 29080718)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 1662929902818 \) Copy content Toggle raw display
$41$ \( (T + 163945678)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 28\!\cdots\!58 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 15\!\cdots\!38 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 19\!\cdots\!18 \) Copy content Toggle raw display
$59$ \( T^{2} + 88\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T + 1353610038)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!38 \) Copy content Toggle raw display
$71$ \( (T - 2827014562)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 15\!\cdots\!78 \) Copy content Toggle raw display
$79$ \( T^{2} + 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 36\!\cdots\!18 \) Copy content Toggle raw display
$89$ \( T^{2} + 71\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 55\!\cdots\!18 \) Copy content Toggle raw display
show more
show less