Properties

Label 10.11.c.b
Level $10$
Weight $11$
Character orbit 10.c
Analytic conductor $6.354$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [10,11,Mod(3,10)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(10, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([3]))
 
N = Newforms(chi, 11, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("10.3");
 
S:= CuspForms(chi, 11);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 10 = 2 \cdot 5 \)
Weight: \( k \) \(=\) \( 11 \)
Character orbit: \([\chi]\) \(=\) 10.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.35357252674\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (16 i + 16) q^{2} + ( - 57 i + 57) q^{3} + 512 i q^{4} + (1100 i + 2925) q^{5} + 1824 q^{6} + (6953 i + 6953) q^{7} + (8192 i - 8192) q^{8} + 52551 i q^{9} + (64400 i + 29200) q^{10} + 75242 q^{11}+ \cdots + 3954042342 i q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 32 q^{2} + 114 q^{3} + 5850 q^{5} + 3648 q^{6} + 13906 q^{7} - 16384 q^{8} + 58400 q^{10} + 150484 q^{11} + 58368 q^{12} + 219714 q^{13} + 458850 q^{15} - 524288 q^{16} - 3057854 q^{17} - 1681632 q^{18}+ \cdots + 5945178592 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/10\mathbb{Z}\right)^\times\).

\(n\) \(7\)
\(\chi(n)\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
1.00000i
1.00000i
16.0000 16.0000i 57.0000 + 57.0000i 512.000i 2925.00 1100.00i 1824.00 6953.00 6953.00i −8192.00 8192.00i 52551.0i 29200.0 64400.0i
7.1 16.0000 + 16.0000i 57.0000 57.0000i 512.000i 2925.00 + 1100.00i 1824.00 6953.00 + 6953.00i −8192.00 + 8192.00i 52551.0i 29200.0 + 64400.0i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 10.11.c.b 2
3.b odd 2 1 90.11.g.a 2
4.b odd 2 1 80.11.p.a 2
5.b even 2 1 50.11.c.b 2
5.c odd 4 1 inner 10.11.c.b 2
5.c odd 4 1 50.11.c.b 2
15.e even 4 1 90.11.g.a 2
20.e even 4 1 80.11.p.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.11.c.b 2 1.a even 1 1 trivial
10.11.c.b 2 5.c odd 4 1 inner
50.11.c.b 2 5.b even 2 1
50.11.c.b 2 5.c odd 4 1
80.11.p.a 2 4.b odd 2 1
80.11.p.a 2 20.e even 4 1
90.11.g.a 2 3.b odd 2 1
90.11.g.a 2 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} - 114T_{3} + 6498 \) acting on \(S_{11}^{\mathrm{new}}(10, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 32T + 512 \) Copy content Toggle raw display
$3$ \( T^{2} - 114T + 6498 \) Copy content Toggle raw display
$5$ \( T^{2} - 5850 T + 9765625 \) Copy content Toggle raw display
$7$ \( T^{2} - 13906 T + 96688418 \) Copy content Toggle raw display
$11$ \( (T - 75242)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + \cdots + 24137120898 \) Copy content Toggle raw display
$17$ \( T^{2} + \cdots + 4675235542658 \) Copy content Toggle raw display
$19$ \( T^{2} + 16310936142400 \) Copy content Toggle raw display
$23$ \( T^{2} + \cdots + 1015093061858 \) Copy content Toggle raw display
$29$ \( T^{2} + 199023054400 \) Copy content Toggle raw display
$31$ \( (T + 29080718)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + \cdots + 1662929902818 \) Copy content Toggle raw display
$41$ \( (T + 163945678)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + \cdots + 28\!\cdots\!58 \) Copy content Toggle raw display
$47$ \( T^{2} + \cdots + 15\!\cdots\!38 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots + 19\!\cdots\!18 \) Copy content Toggle raw display
$59$ \( T^{2} + 88\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( (T + 1353610038)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 14\!\cdots\!38 \) Copy content Toggle raw display
$71$ \( (T - 2827014562)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + \cdots + 15\!\cdots\!78 \) Copy content Toggle raw display
$79$ \( T^{2} + 11\!\cdots\!00 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 36\!\cdots\!18 \) Copy content Toggle raw display
$89$ \( T^{2} + 71\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 55\!\cdots\!18 \) Copy content Toggle raw display
show more
show less