Properties

Label 2-9800-1.1-c1-0-69
Degree $2$
Conductor $9800$
Sign $1$
Analytic cond. $78.2533$
Root an. cond. $8.84609$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 9-s − 4·11-s + 4·13-s + 4·19-s + 2·23-s − 4·27-s + 2·29-s − 8·33-s − 4·37-s + 8·39-s − 2·41-s + 6·43-s − 6·47-s + 4·53-s + 8·57-s + 12·59-s + 10·61-s − 14·67-s + 4·69-s + 8·71-s + 8·73-s + 16·79-s − 11·81-s + 2·83-s + 4·87-s − 6·89-s + ⋯
L(s)  = 1  + 1.15·3-s + 1/3·9-s − 1.20·11-s + 1.10·13-s + 0.917·19-s + 0.417·23-s − 0.769·27-s + 0.371·29-s − 1.39·33-s − 0.657·37-s + 1.28·39-s − 0.312·41-s + 0.914·43-s − 0.875·47-s + 0.549·53-s + 1.05·57-s + 1.56·59-s + 1.28·61-s − 1.71·67-s + 0.481·69-s + 0.949·71-s + 0.936·73-s + 1.80·79-s − 1.22·81-s + 0.219·83-s + 0.428·87-s − 0.635·89-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9800\)    =    \(2^{3} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(78.2533\)
Root analytic conductor: \(8.84609\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.130907948\)
\(L(\frac12)\) \(\approx\) \(3.130907948\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 + 4 T + p T^{2} \) 1.11.e
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 16 T + p T^{2} \) 1.97.aq
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80490559912864830789451763308, −7.20511912671126545376415987851, −6.36916259218775338867521337025, −5.51293166761659743969374174316, −5.00192751095038063419861633350, −3.89903784798328546362956718852, −3.34995357407111759567627632435, −2.68534013766286934612944284896, −1.93552250057563034818517220292, −0.788949000917484654700473342274, 0.788949000917484654700473342274, 1.93552250057563034818517220292, 2.68534013766286934612944284896, 3.34995357407111759567627632435, 3.89903784798328546362956718852, 5.00192751095038063419861633350, 5.51293166761659743969374174316, 6.36916259218775338867521337025, 7.20511912671126545376415987851, 7.80490559912864830789451763308

Graph of the $Z$-function along the critical line