Properties

Label 2-9360-1.1-c1-0-30
Degree $2$
Conductor $9360$
Sign $1$
Analytic cond. $74.7399$
Root an. cond. $8.64522$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5-s + 3·7-s − 3·11-s − 13-s + 17-s + 6·19-s − 5·23-s + 25-s + 6·29-s − 2·31-s − 3·35-s + 7·37-s − 3·41-s + 8·43-s − 2·47-s + 2·49-s + 53-s + 3·55-s − 15·61-s + 65-s − 12·67-s + 5·71-s − 6·73-s − 9·77-s + 13·79-s + 12·83-s − 85-s + ⋯
L(s)  = 1  − 0.447·5-s + 1.13·7-s − 0.904·11-s − 0.277·13-s + 0.242·17-s + 1.37·19-s − 1.04·23-s + 1/5·25-s + 1.11·29-s − 0.359·31-s − 0.507·35-s + 1.15·37-s − 0.468·41-s + 1.21·43-s − 0.291·47-s + 2/7·49-s + 0.137·53-s + 0.404·55-s − 1.92·61-s + 0.124·65-s − 1.46·67-s + 0.593·71-s − 0.702·73-s − 1.02·77-s + 1.46·79-s + 1.31·83-s − 0.108·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 9360 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(9360\)    =    \(2^{4} \cdot 3^{2} \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(74.7399\)
Root analytic conductor: \(8.64522\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 9360,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.003900205\)
\(L(\frac12)\) \(\approx\) \(2.003900205\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + T \)
13 \( 1 + T \)
good7 \( 1 - 3 T + p T^{2} \) 1.7.ad
11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 - T + p T^{2} \) 1.17.ab
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 + 5 T + p T^{2} \) 1.23.f
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - T + p T^{2} \) 1.53.ab
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 15 T + p T^{2} \) 1.61.p
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 5 T + p T^{2} \) 1.71.af
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 13 T + p T^{2} \) 1.79.an
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + T + p T^{2} \) 1.89.b
97 \( 1 - 17 T + p T^{2} \) 1.97.ar
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.80860383591300069581567959531, −7.32957585345103008421660254266, −6.26567235789402417215419342910, −5.56440328248277854757199292242, −4.85862628025655817297060772428, −4.41029364293374028330845727703, −3.38521489853123041301970159108, −2.64340422040986262164550019090, −1.71022288292620648798471288509, −0.69174389754390580558784752790, 0.69174389754390580558784752790, 1.71022288292620648798471288509, 2.64340422040986262164550019090, 3.38521489853123041301970159108, 4.41029364293374028330845727703, 4.85862628025655817297060772428, 5.56440328248277854757199292242, 6.26567235789402417215419342910, 7.32957585345103008421660254266, 7.80860383591300069581567959531

Graph of the $Z$-function along the critical line