L(s) = 1 | + 2-s − 2·3-s − 2·4-s − 2·6-s + 6·7-s − 3·8-s + 3·9-s + 4·12-s + 3·13-s + 6·14-s + 16-s + 6·17-s + 3·18-s + 10·19-s − 12·21-s − 13·23-s + 6·24-s + 3·26-s − 4·27-s − 12·28-s − 5·29-s − 11·31-s + 2·32-s + 6·34-s − 6·36-s − 11·37-s + 10·38-s + ⋯ |
L(s) = 1 | + 0.707·2-s − 1.15·3-s − 4-s − 0.816·6-s + 2.26·7-s − 1.06·8-s + 9-s + 1.15·12-s + 0.832·13-s + 1.60·14-s + 1/4·16-s + 1.45·17-s + 0.707·18-s + 2.29·19-s − 2.61·21-s − 2.71·23-s + 1.22·24-s + 0.588·26-s − 0.769·27-s − 2.26·28-s − 0.928·29-s − 1.97·31-s + 0.353·32-s + 1.02·34-s − 36-s − 1.80·37-s + 1.62·38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 82355625 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 82355625 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.61654525827892912681544626671, −7.42442649510917366155846275444, −6.76849024713045363299505953477, −6.43735114878838117891939347056, −5.81992966520887133200303347149, −5.67961599843621001923517075958, −5.36342494109812180066380740425, −5.23028755863539925821278741466, −4.87417666107340018015638331922, −4.63183694104525777612342143144, −4.02146284315080136480662303728, −3.80075802093693281974093813257, −3.49725412718601042659306848743, −3.20919893245594078758774762000, −2.23335032343851284555719073242, −1.65295468296667353948395928053, −1.40417916078730658830060001482, −1.27159492024378143510262470889, 0, 0,
1.27159492024378143510262470889, 1.40417916078730658830060001482, 1.65295468296667353948395928053, 2.23335032343851284555719073242, 3.20919893245594078758774762000, 3.49725412718601042659306848743, 3.80075802093693281974093813257, 4.02146284315080136480662303728, 4.63183694104525777612342143144, 4.87417666107340018015638331922, 5.23028755863539925821278741466, 5.36342494109812180066380740425, 5.67961599843621001923517075958, 5.81992966520887133200303347149, 6.43735114878838117891939347056, 6.76849024713045363299505953477, 7.42442649510917366155846275444, 7.61654525827892912681544626671