Properties

Label 2.13.ad_r
Base field $\F_{13}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{13}$
Dimension:  $2$
L-polynomial:  $1 - 3 x + 17 x^{2} - 39 x^{3} + 169 x^{4}$
Frobenius angles:  $\pm0.264943912837$, $\pm0.582772800111$
Angle rank:  $2$ (numerical)
Number field:  4.0.34525.1
Galois group:  $D_{4}$
Jacobians:  $15$
Isomorphism classes:  15
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $145$ $33205$ $4846045$ $820329525$ $138532768000$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $11$ $195$ $2207$ $28723$ $373106$ $4825635$ $62718947$ $815705443$ $10604574191$ $137858191350$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 15 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{13}$.

Endomorphism algebra over $\F_{13}$
The endomorphism algebra of this simple isogeny class is 4.0.34525.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.13.d_r$2$2.169.z_pd