Properties

Label 2.67.ae_dp
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 4 x + 93 x^{2} - 268 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.321463854569$, $\pm0.592857143436$
Angle rank:  $2$ (numerical)
Number field:  4.0.1181025.1
Galois group:  $D_{4}$
Jacobians:  $288$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4311$ $20929905$ $90532655424$ $406109330336025$ $1822903578171509031$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $64$ $4660$ $301012$ $20153188$ $1350173824$ $90457688230$ $6060703739392$ $406067714410948$ $27206534870581804$ $1822837804028485300$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.1181025.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.e_dp$2$(not in LMFDB)