Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 4 x + 93 x^{2} - 268 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.321463854569$, $\pm0.592857143436$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.1181025.1 |
Galois group: | $D_{4}$ |
Jacobians: | $288$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $4311$ | $20929905$ | $90532655424$ | $406109330336025$ | $1822903578171509031$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $64$ | $4660$ | $301012$ | $20153188$ | $1350173824$ | $90457688230$ | $6060703739392$ | $406067714410948$ | $27206534870581804$ | $1822837804028485300$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 288 curves (of which all are hyperelliptic):
- $y^2=49 x^6+44 x^5+15 x^4+20 x^3+39 x^2+5 x+43$
- $y^2=18 x^6+15 x^5+10 x^4+48 x^3+6 x^2+29 x+12$
- $y^2=52 x^6+2 x^5+64 x^4+11 x^3+55 x^2+18 x+1$
- $y^2=32 x^6+66 x^5+64 x^4+40 x^3+56 x^2+23 x+13$
- $y^2=19 x^6+14 x^5+58 x^4+63 x^3+43 x^2+61 x+3$
- $y^2=57 x^6+26 x^5+64 x^4+11 x^3+19 x^2+47 x+9$
- $y^2=64 x^6+65 x^5+24 x^4+56 x^3+59 x^2+43 x+43$
- $y^2=53 x^6+64 x^5+17 x^4+4 x^3+48 x^2+53 x+39$
- $y^2=14 x^6+x^5+48 x^4+2 x^3+64 x^2+29 x+6$
- $y^2=58 x^6+11 x^5+35 x^4+25 x^3+62 x^2+5 x+33$
- $y^2=34 x^6+8 x^5+50 x^4+26 x^3+46 x^2+47 x+46$
- $y^2=x^6+65 x^5+15 x^4+32 x^3+48 x^2+63 x+66$
- $y^2=25 x^6+13 x^5+6 x^4+23 x^3+36 x^2+41 x+42$
- $y^2=17 x^6+60 x^5+16 x^4+54 x^3+4 x^2+41 x+54$
- $y^2=21 x^6+13 x^5+6 x^4+41 x^3+44 x^2+9 x+26$
- $y^2=24 x^6+63 x^5+62 x^4+9 x^3+53 x^2+51 x+57$
- $y^2=41 x^6+39 x^5+5 x^4+40 x^3+29 x^2+63 x+27$
- $y^2=13 x^6+7 x^5+30 x^4+13 x^3+16 x^2+40 x+27$
- $y^2=25 x^6+61 x^5+34 x^4+27 x^3+62 x^2+35 x+5$
- $y^2=26 x^6+36 x^5+12 x^4+25 x^3+40 x^2+18 x+32$
- and 268 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.1181025.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.e_dp | $2$ | (not in LMFDB) |