Properties

Label 2.41.e_dd
Base field $\F_{41}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{41}$
Dimension:  $2$
L-polynomial:  $1 + 4 x + 81 x^{2} + 164 x^{3} + 1681 x^{4}$
Frobenius angles:  $\pm0.494132003022$, $\pm0.607312256930$
Angle rank:  $2$ (numerical)
Number field:  4.0.598625.1
Galois group:  $D_{4}$
Jacobians:  $52$
Isomorphism classes:  52

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $1931$ $3079945$ $4721557616$ $7973364695945$ $13424907573234091$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $1828$ $68506$ $2821668$ $115875606$ $4750181038$ $194753765686$ $7984924741188$ $327381932296906$ $13422659312313348$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{41}$.

Endomorphism algebra over $\F_{41}$
The endomorphism algebra of this simple isogeny class is 4.0.598625.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.41.ae_dd$2$(not in LMFDB)