Invariants
Base field: | $\F_{41}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 4 x + 81 x^{2} + 164 x^{3} + 1681 x^{4}$ |
Frobenius angles: | $\pm0.494132003022$, $\pm0.607312256930$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.598625.1 |
Galois group: | $D_{4}$ |
Jacobians: | $52$ |
Isomorphism classes: | 52 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $1931$ | $3079945$ | $4721557616$ | $7973364695945$ | $13424907573234091$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $1828$ | $68506$ | $2821668$ | $115875606$ | $4750181038$ | $194753765686$ | $7984924741188$ | $327381932296906$ | $13422659312313348$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 52 curves (of which all are hyperelliptic):
- $y^2=39 x^6+13 x^5+3 x^4+19 x^3+16 x^2+31 x+18$
- $y^2=31 x^6+20 x^5+24 x^4+17 x^2+19 x+25$
- $y^2=40 x^6+5 x^5+3 x^4+15 x^3+26 x^2+32$
- $y^2=2 x^6+15 x^5+34 x^4+29 x^3+25 x^2+24 x+14$
- $y^2=x^6+4 x^5+4 x^4+6 x^3+40 x+16$
- $y^2=2 x^6+40 x^5+15 x^4+33 x^3+2 x^2+38 x+15$
- $y^2=40 x^6+38 x^5+7 x^4+37 x^3+22 x^2+28 x+21$
- $y^2=40 x^6+26 x^5+9 x^4+x^3+3 x+9$
- $y^2=x^6+26 x^5+x^4+29 x^3+40 x^2+9 x+32$
- $y^2=35 x^6+32 x^5+25 x^4+24 x^3+26 x^2+24 x+29$
- $y^2=16 x^6+10 x^5+12 x^4+10 x^3+26 x^2+20 x+1$
- $y^2=25 x^6+10 x^5+37 x^4+30 x^3+12 x^2+28 x+27$
- $y^2=34 x^6+2 x^5+34 x^4+18 x^3+22 x^2+37 x+31$
- $y^2=14 x^6+7 x^5+7 x^4+37 x^3+35 x^2+33 x+36$
- $y^2=12 x^6+3 x^5+21 x^4+16 x^3+17 x^2+30 x+17$
- $y^2=29 x^6+27 x^5+16 x^4+23 x^3+35 x^2+15 x+18$
- $y^2=21 x^6+32 x^5+14 x^4+31 x^3+6 x^2+2 x+9$
- $y^2=14 x^6+11 x^5+29 x^4+14 x^2+28 x+20$
- $y^2=22 x^6+22 x^5+20 x^4+13 x^3+2 x^2+27 x+10$
- $y^2=24 x^6+40 x^5+11 x^4+34 x^3+22 x^2+22 x+37$
- and 32 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$The endomorphism algebra of this simple isogeny class is 4.0.598625.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.41.ae_dd | $2$ | (not in LMFDB) |