Invariants
Base field: | $\F_{61}$ |
Dimension: | $2$ |
L-polynomial: | $1 - 16 x + 181 x^{2} - 976 x^{3} + 3721 x^{4}$ |
Frobenius angles: | $\pm0.272543434774$, $\pm0.379700940652$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.733625.1 |
Galois group: | $D_{4}$ |
Jacobians: | $60$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $2911$ | $14249345$ | $51899217616$ | $191800187765945$ | $713316817363616191$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $46$ | $3828$ | $228646$ | $13852548$ | $844565406$ | $51519895878$ | $3142741125766$ | $191707317131268$ | $11694146116497886$ | $713342911404480148$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):
- $y^2=11 x^6+38 x^5+56 x^4+28 x^3+30 x^2+55 x+7$
- $y^2=40 x^6+16 x^5+13 x^4+15 x^3+54 x^2+4 x+45$
- $y^2=39 x^6+38 x^5+30 x^4+40 x^3+22 x^2+18 x+40$
- $y^2=23 x^6+24 x^5+2 x^4+14 x^3+35 x^2+16 x+23$
- $y^2=47 x^6+32 x^5+29 x^4+34 x^3+31 x^2+22 x+43$
- $y^2=12 x^6+37 x^5+50 x^4+9 x^3+30 x^2+20 x+37$
- $y^2=7 x^6+29 x^5+7 x^4+51 x^3+48 x^2+51 x+52$
- $y^2=58 x^6+10 x^5+58 x^4+58 x^3+25 x^2+40 x+58$
- $y^2=4 x^6+57 x^5+46 x^4+20 x^3+18 x^2+35 x+8$
- $y^2=50 x^6+16 x^5+15 x^4+47 x^3+52 x^2+11 x+35$
- $y^2=18 x^6+40 x^5+19 x^4+12 x^3+46 x^2+52 x+42$
- $y^2=57 x^6+36 x^5+27 x^4+48 x^3+47 x^2+38 x+2$
- $y^2=51 x^6+36 x^5+55 x^4+13 x^3+3 x^2+58 x+52$
- $y^2=43 x^6+10 x^5+34 x^4+16 x^3+40 x^2+x+14$
- $y^2=54 x^6+46 x^5+40 x^4+54 x^3+47 x^2+12 x+34$
- $y^2=48 x^6+2 x^5+13 x^4+22 x^3+43 x^2+18 x+36$
- $y^2=7 x^6+39 x^5+9 x^4+54 x^3+37 x^2+21 x+22$
- $y^2=45 x^6+49 x^5+53 x^4+32 x^3+41 x^2+4 x+47$
- $y^2=51 x^6+56 x^5+17 x^4+50 x^3+25 x^2+25 x+5$
- $y^2=33 x^6+27 x^5+21 x^4+3 x^3+60 x^2+17 x+20$
- and 40 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{61}$.
Endomorphism algebra over $\F_{61}$The endomorphism algebra of this simple isogeny class is 4.0.733625.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.61.q_gz | $2$ | (not in LMFDB) |