Properties

Label 2.61.aq_gz
Base field $\F_{61}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{61}$
Dimension:  $2$
L-polynomial:  $1 - 16 x + 181 x^{2} - 976 x^{3} + 3721 x^{4}$
Frobenius angles:  $\pm0.272543434774$, $\pm0.379700940652$
Angle rank:  $2$ (numerical)
Number field:  4.0.733625.1
Galois group:  $D_{4}$
Jacobians:  $60$

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $2911$ $14249345$ $51899217616$ $191800187765945$ $713316817363616191$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $46$ $3828$ $228646$ $13852548$ $844565406$ $51519895878$ $3142741125766$ $191707317131268$ $11694146116497886$ $713342911404480148$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 60 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{61}$.

Endomorphism algebra over $\F_{61}$
The endomorphism algebra of this simple isogeny class is 4.0.733625.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.61.q_gz$2$(not in LMFDB)