| L(s) = 1 | + 2·2-s + 3·4-s + 2·5-s + 4·7-s + 4·8-s − 4·9-s + 4·10-s + 4·13-s + 8·14-s + 5·16-s + 2·17-s − 8·18-s + 8·19-s + 6·20-s + 4·23-s − 5·25-s + 8·26-s + 12·28-s + 12·29-s + 4·31-s + 6·32-s + 4·34-s + 8·35-s − 12·36-s + 2·37-s + 16·38-s + 8·40-s + ⋯ |
| L(s) = 1 | + 1.41·2-s + 3/2·4-s + 0.894·5-s + 1.51·7-s + 1.41·8-s − 4/3·9-s + 1.26·10-s + 1.10·13-s + 2.13·14-s + 5/4·16-s + 0.485·17-s − 1.88·18-s + 1.83·19-s + 1.34·20-s + 0.834·23-s − 25-s + 1.56·26-s + 2.26·28-s + 2.22·29-s + 0.718·31-s + 1.06·32-s + 0.685·34-s + 1.35·35-s − 2·36-s + 0.328·37-s + 2.59·38-s + 1.26·40-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 80174116 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 80174116 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(19.37786068\) |
| \(L(\frac12)\) |
\(\approx\) |
\(19.37786068\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.80925525769786243835363356909, −7.57611338526197272951555818503, −7.25044458428147615273136380071, −6.69249334041594480834992678928, −6.24882931997137271280676308632, −6.15323249654228310477938042582, −5.71269521873128975844955524148, −5.49328504990412725501150440732, −5.28403657287129199853145125017, −4.75261533658739044458547638389, −4.49633605200516637795364396146, −4.27775971049550099917551007214, −3.51831683667119937082850212246, −3.27921956689601571654134061447, −2.89900162880682760555262060592, −2.58597956412012933648534270839, −2.10311493857618642765811114004, −1.61587263987191982570434848209, −0.975846593707394018645990163976, −0.962462709574703662001688144797,
0.962462709574703662001688144797, 0.975846593707394018645990163976, 1.61587263987191982570434848209, 2.10311493857618642765811114004, 2.58597956412012933648534270839, 2.89900162880682760555262060592, 3.27921956689601571654134061447, 3.51831683667119937082850212246, 4.27775971049550099917551007214, 4.49633605200516637795364396146, 4.75261533658739044458547638389, 5.28403657287129199853145125017, 5.49328504990412725501150440732, 5.71269521873128975844955524148, 6.15323249654228310477938042582, 6.24882931997137271280676308632, 6.69249334041594480834992678928, 7.25044458428147615273136380071, 7.57611338526197272951555818503, 7.80925525769786243835363356909