Invariants
| Base field: | $\F_{41}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 20 x + 180 x^{2} - 820 x^{3} + 1681 x^{4}$ |
| Frobenius angles: | $\pm0.149793866772$, $\pm0.266106536017$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.194816.2 |
| Galois group: | $D_{4}$ |
| Jacobians: | $6$ |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $1022$ | $2761444$ | $4773640382$ | $7997152869776$ | $13425683554533502$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $22$ | $1642$ | $69262$ | $2830086$ | $115882302$ | $4750193962$ | $194754344422$ | $7984924623678$ | $327381939284182$ | $13422659423960202$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 6 curves (of which all are hyperelliptic):
- $y^2=14 x^6+10 x^5+36 x^4+22 x^3+7 x^2+15 x+34$
- $y^2=17 x^6+5 x^5+26 x^4+15 x^3+23 x^2+3 x+19$
- $y^2=38 x^6+33 x^5+4 x^4+5 x^3+4 x+27$
- $y^2=27 x^6+17 x^5+8 x^4+13 x^3+6 x^2+38 x+7$
- $y^2=11 x^6+28 x^5+36 x^4+28 x^3+2 x^2+22 x+13$
- $y^2=11 x^6+24 x^5+30 x^3+31 x^2+27 x+24$
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{41}$.
Endomorphism algebra over $\F_{41}$| The endomorphism algebra of this simple isogeny class is 4.0.194816.2. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.41.u_gy | $2$ | (not in LMFDB) |