Invariants
| Base field: | $\F_{67}$ |
| Dimension: | $2$ |
| L-polynomial: | $1 - 8 x + 100 x^{2} - 536 x^{3} + 4489 x^{4}$ |
| Frobenius angles: | $\pm0.263593933083$, $\pm0.560069351153$ |
| Angle rank: | $2$ (numerical) |
| Number field: | 4.0.2406656.1 |
| Galois group: | $D_{4}$ |
| Jacobians: | $160$ |
| Isomorphism classes: | 288 |
| Cyclic group of points: | yes |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
| $p$-rank: | $2$ |
| Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
|---|---|---|---|---|---|
| $A(\F_{q^r})$ | $4046$ | $20772164$ | $90542686766$ | $406114168792976$ | $1822971839238164286$ |
| $r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
|---|---|---|---|---|---|---|---|---|---|---|
| $C(\F_{q^r})$ | $60$ | $4626$ | $301044$ | $20153430$ | $1350224380$ | $90458485122$ | $6060702481908$ | $406067637123294$ | $27206534594720028$ | $1822837804830194386$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):
- $y^2=4 x^6+49 x^5+42 x^4+21 x^3+42 x+37$
- $y^2=10 x^6+35 x^5+57 x^4+16 x^3+50 x^2+11 x+66$
- $y^2=40 x^6+23 x^5+42 x^4+43 x^3+18 x^2+37 x+33$
- $y^2=12 x^5+60 x^4+35 x^3+31 x^2+50 x+18$
- $y^2=44 x^6+26 x^5+3 x^4+16 x^3+19 x^2+44 x+47$
- $y^2=11 x^6+2 x^5+27 x^4+65 x^3+36 x^2+36 x+61$
- $y^2=x^6+34 x^5+64 x^4+50 x^3+17 x^2+18 x+30$
- $y^2=10 x^6+44 x^5+17 x^4+63 x^3+36 x^2+63 x+62$
- $y^2=8 x^6+31 x^5+9 x^4+56 x^3+65 x^2+20 x+32$
- $y^2=59 x^6+6 x^5+53 x^4+22 x^3+10 x^2+8 x+37$
- $y^2=8 x^6+14 x^5+34 x^4+66 x^3+6 x^2+30 x+60$
- $y^2=33 x^6+46 x^5+61 x^4+44 x^3+37 x^2+29 x+1$
- $y^2=23 x^6+55 x^5+28 x^4+23 x^3+25 x^2+20 x+32$
- $y^2=3 x^6+51 x^5+50 x^4+44 x^3+22 x^2+5 x+37$
- $y^2=64 x^6+62 x^5+18 x^4+40 x^3+22 x^2+58 x+47$
- $y^2=50 x^6+14 x^4+25 x^3+64 x^2+62 x+61$
- $y^2=19 x^6+7 x^5+26 x^4+11 x^3+22 x^2+15 x+29$
- $y^2=49 x^6+37 x^5+18 x^4+34 x^3+28 x^2+57 x+32$
- $y^2=29 x^6+34 x^5+43 x^4+45 x^3+41 x^2+61 x+42$
- $y^2=51 x^6+66 x^5+22 x^4+3 x^3+52 x^2+29 x+55$
- and 140 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$| The endomorphism algebra of this simple isogeny class is 4.0.2406656.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
| Twist | Extension degree | Common base change |
|---|---|---|
| 2.67.i_dw | $2$ | (not in LMFDB) |