Properties

Label 2.67.ai_dw
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 - 8 x + 100 x^{2} - 536 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.263593933083$, $\pm0.560069351153$
Angle rank:  $2$ (numerical)
Number field:  4.0.2406656.1
Galois group:  $D_{4}$
Jacobians:  $160$
Isomorphism classes:  288
Cyclic group of points:    yes

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $4046$ $20772164$ $90542686766$ $406114168792976$ $1822971839238164286$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $60$ $4626$ $301044$ $20153430$ $1350224380$ $90458485122$ $6060702481908$ $406067637123294$ $27206534594720028$ $1822837804830194386$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 160 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.2406656.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.i_dw$2$(not in LMFDB)