L(s) = 1 | − 2·5-s + 4·11-s − 8·17-s − 8·19-s + 12·23-s + 3·25-s + 4·29-s − 4·37-s − 4·41-s − 8·43-s − 4·47-s + 12·53-s − 8·55-s − 8·67-s + 4·71-s + 8·73-s − 20·79-s − 4·83-s + 16·85-s − 4·89-s + 16·95-s − 8·97-s + 12·101-s + 4·107-s − 20·109-s + 4·113-s − 24·115-s + ⋯ |
L(s) = 1 | − 0.894·5-s + 1.20·11-s − 1.94·17-s − 1.83·19-s + 2.50·23-s + 3/5·25-s + 0.742·29-s − 0.657·37-s − 0.624·41-s − 1.21·43-s − 0.583·47-s + 1.64·53-s − 1.07·55-s − 0.977·67-s + 0.474·71-s + 0.936·73-s − 2.25·79-s − 0.439·83-s + 1.73·85-s − 0.423·89-s + 1.64·95-s − 0.812·97-s + 1.19·101-s + 0.386·107-s − 1.91·109-s + 0.376·113-s − 2.23·115-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 77792400 ^{s/2} \, \Gamma_{\C}(s)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 77792400 ^{s/2} \, \Gamma_{\C}(s+1/2)^{2} \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(=\) |
\(0\) |
\(L(\frac12)\) |
\(=\) |
\(0\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{4} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−7.34855475767127988090085173941, −7.13304885736852915700009476617, −6.93779523868016011400576679904, −6.63061868617340726001030699476, −6.35091391678578719311638554240, −6.09547868026743123145180948196, −5.31892449807896449207416508135, −5.14140241972054827041610258625, −4.55576621943235263292608948608, −4.54872442672678837514344424404, −4.04686916712369959486742807984, −3.78695530331955070755437266275, −3.26400504979946733250776653273, −2.94229646436818046960609102709, −2.34186841390727831409701225077, −2.12081502815938201861201496494, −1.25718657991151184932749391456, −1.16809601989841580868460910268, 0, 0,
1.16809601989841580868460910268, 1.25718657991151184932749391456, 2.12081502815938201861201496494, 2.34186841390727831409701225077, 2.94229646436818046960609102709, 3.26400504979946733250776653273, 3.78695530331955070755437266275, 4.04686916712369959486742807984, 4.54872442672678837514344424404, 4.55576621943235263292608948608, 5.14140241972054827041610258625, 5.31892449807896449207416508135, 6.09547868026743123145180948196, 6.35091391678578719311638554240, 6.63061868617340726001030699476, 6.93779523868016011400576679904, 7.13304885736852915700009476617, 7.34855475767127988090085173941