Invariants
Base field: | $\F_{67}$ |
Dimension: | $2$ |
L-polynomial: | $1 + 8 x + 142 x^{2} + 536 x^{3} + 4489 x^{4}$ |
Frobenius angles: | $\pm0.522799401614$, $\pm0.636957921930$ |
Angle rank: | $2$ (numerical) |
Number field: | 4.0.944384.1 |
Galois group: | $D_{4}$ |
Jacobians: | $112$ |
Isomorphism classes: | 176 |
This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.
Newton polygon
This isogeny class is ordinary.
$p$-rank: | $2$ |
Slopes: | $[0, 0, 1, 1]$ |
Point counts
Point counts of the abelian variety
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ |
---|---|---|---|---|---|
$A(\F_{q^r})$ | $5176$ | $21159488$ | $90071846200$ | $405921247929344$ | $1822955550545311096$ |
$r$ | $1$ | $2$ | $3$ | $4$ | $5$ | $6$ | $7$ | $8$ | $9$ | $10$ |
---|---|---|---|---|---|---|---|---|---|---|
$C(\F_{q^r})$ | $76$ | $4710$ | $299476$ | $20143854$ | $1350212316$ | $90458419350$ | $6060708601828$ | $406067682187614$ | $27206534374338412$ | $1822837805512788550$ |
Jacobians and polarizations
This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):
- $y^2=24 x^6+21 x^5+53 x^4+32 x^3+18 x^2+51 x+24$
- $y^2=19 x^6+45 x^5+9 x^4+10 x^3+63 x^2+55 x+62$
- $y^2=24 x^6+37 x^5+29 x^4+6 x^3+x^2+65 x+46$
- $y^2=59 x^6+8 x^5+20 x^4+23 x^3+56 x^2+13 x+16$
- $y^2=56 x^6+7 x^5+58 x^4+x^3+6 x^2+28 x+5$
- $y^2=22 x^6+35 x^5+60 x^4+32 x^3+23 x^2+37 x$
- $y^2=6 x^6+2 x^5+51 x^4+34 x^3+17 x^2+44 x+5$
- $y^2=15 x^6+24 x^5+13 x^4+51 x^3+26 x^2+x+18$
- $y^2=59 x^6+18 x^5+6 x^4+4 x^3+62 x^2+7 x+50$
- $y^2=44 x^6+6 x^5+25 x^4+51 x^3+8 x^2+7 x+29$
- $y^2=3 x^6+50 x^5+30 x^4+47 x^3+38 x^2+8 x+19$
- $y^2=13 x^6+47 x^5+59 x^4+59 x^3+62 x^2+44 x+46$
- $y^2=34 x^6+31 x^5+31 x^4+42 x^3+x^2+8 x$
- $y^2=26 x^6+7 x^4+33 x^3+9 x^2+13 x+21$
- $y^2=32 x^6+12 x^4+2 x^3+10 x^2+65 x+23$
- $y^2=5 x^6+21 x^5+34 x^4+2 x^3+12 x^2+17 x+54$
- $y^2=16 x^6+2 x^5+3 x^4+20 x^3+61 x^2+66 x+36$
- $y^2=25 x^6+23 x^5+54 x^4+14 x^3+19 x^2+52 x+4$
- $y^2=49 x^6+50 x^4+54 x^3+43 x^2+5 x+63$
- $y^2=x^6+56 x^5+23 x^4+23 x^3+18 x^2+56 x+13$
- and 92 more
Decomposition and endomorphism algebra
All geometric endomorphisms are defined over $\F_{67}$.
Endomorphism algebra over $\F_{67}$The endomorphism algebra of this simple isogeny class is 4.0.944384.1. |
Base change
This is a primitive isogeny class.
Twists
Below is a list of all twists of this isogeny class.
Twist | Extension degree | Common base change |
---|---|---|
2.67.ai_fm | $2$ | (not in LMFDB) |