Properties

Label 2.67.i_fm
Base field $\F_{67}$
Dimension $2$
$p$-rank $2$
Ordinary yes
Supersingular no
Simple yes
Geometrically simple yes
Primitive yes
Principally polarizable yes
Contains a Jacobian yes

Related objects

Downloads

Learn more

Invariants

Base field:  $\F_{67}$
Dimension:  $2$
L-polynomial:  $1 + 8 x + 142 x^{2} + 536 x^{3} + 4489 x^{4}$
Frobenius angles:  $\pm0.522799401614$, $\pm0.636957921930$
Angle rank:  $2$ (numerical)
Number field:  4.0.944384.1
Galois group:  $D_{4}$
Jacobians:  $112$
Isomorphism classes:  176

This isogeny class is simple and geometrically simple, primitive, ordinary, and not supersingular. It is principally polarizable and contains a Jacobian.

Newton polygon

This isogeny class is ordinary.

$p$-rank:  $2$
Slopes:  $[0, 0, 1, 1]$

Point counts

Point counts of the abelian variety

$r$ $1$ $2$ $3$ $4$ $5$
$A(\F_{q^r})$ $5176$ $21159488$ $90071846200$ $405921247929344$ $1822955550545311096$

Point counts of the curve

$r$ $1$ $2$ $3$ $4$ $5$ $6$ $7$ $8$ $9$ $10$
$C(\F_{q^r})$ $76$ $4710$ $299476$ $20143854$ $1350212316$ $90458419350$ $6060708601828$ $406067682187614$ $27206534374338412$ $1822837805512788550$

Jacobians and polarizations

This isogeny class is principally polarizable and contains the Jacobians of 112 curves (of which all are hyperelliptic):

Decomposition and endomorphism algebra

All geometric endomorphisms are defined over $\F_{67}$.

Endomorphism algebra over $\F_{67}$
The endomorphism algebra of this simple isogeny class is 4.0.944384.1.

Base change

This is a primitive isogeny class.

Twists

Below is a list of all twists of this isogeny class.

TwistExtension degreeCommon base change
2.67.ai_fm$2$(not in LMFDB)